斑点叉尾鮰肾脏细胞系建立与出血病病原学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑点叉尾鮰自1984年引进我国养殖以来,成为我国主要出口创汇的名优养殖鱼类,已在我国20多个省市推广养殖,每年产量达22万吨以上。随着产量的增长,集约化程度的提高以及种质的退化,使得病害问题也越来越严重。近年来全国各地爆发疑似病毒性的出血性疾病,给斑点叉尾鮰养殖造成了巨大的经济损失。为了能分离病毒性病原,本研究从斑点叉尾鮰组织细胞系入手,建立了斑点叉尾鮰肾脏细胞系,并应用该细胞系针对斑点叉尾鮰出血病开展了病原学和疫苗研究,研究结果如下:
     1.斑点叉尾鮰肾脏细胞系的建立:采用组织块移植培养技术,对来源于斑点叉尾鮰肾脏组织的细胞进行原代培养,建立了斑点叉尾鮰肾脏组织细胞系,已稳定传代培养70多次,定名为CCK。斑点叉尾鮰肾脏组织细胞为成纤维样细胞,最佳培养基为M199,最适培养温度范围为28-32℃,培养基血清浓度为10%,此条件下CCK细胞的倍增时间约为38.9-41.0h。斑点叉尾鲴肾脏细胞的集落形成效率为74.16±3.54%,第9代传代细胞的染色体数目为正常二倍体2n=58,第33代传代细胞的染色体众数为2n=60。液氮冷冻保存6个月后的细胞经台盼兰染色检验,86.69±1.04%仍保持活性,细胞复苏后培养生长旺盛。通过对离体培养细胞的核糖体28S基因进行PCR扩增及序列分析与比对,表明该细胞系来源于斑点叉尾鲴。
     2.斑点叉尾鲴出血病的病原学研究:从湖北省一爆发出血病的斑点叉尾鲴鱼种养殖场分离到一株呼肠孤病毒,命名为CCRV-730.人工感染试验证实该病毒即为斑点叉尾鲴出血病的病原。斑点叉尾鲴出血病的主要症状包括腹部膨大,眼睛凸出,鳃盖、下颌、皮肤以及鳍条基部出血。用CCK细胞进行了病毒培养与分离,电子显微镜下可见大量呼肠孤病毒样颗粒以晶格状排列于细胞质中,直径60-70nm,提取病毒基因组总RNA,并用SDS-PAGE电泳分析其电泳型,克隆并测序了基因组S组节段基因的完整序列。将S组节段基因序列在NCBI基因库中进行比对分析,发现CCRV-730和水生呼肠孤病毒属的成员相似性最高,特别是和草鱼呼肠孤病毒873株(GCRV-873)相应片段的相似性高达99%~100%。这些结果表明GCRV-873可能在自然界发生基因变异,这些变异改变了其宿主专一性,扩大了宿主范围,使其成为斑点叉尾鮰的病原。
     3.斑点叉尾鮰出血病细胞培养灭活疫苗研究:以β丙内酯作为灭活剂,制备了斑点叉尾鮰细胞培养灭活疫苗,对疫苗的安全性、免疫效果进行了评估。结果显示,以终浓度为0.025%(V/V)的β内酯于4℃灭活CCRV-730病毒液24h,即可达到理想的灭活效果,灭活疫苗的细胞感染试验与鱼体感染试验均证实病毒已被灭活,无菌检验显示疫苗无细菌污染,表明此法制备的疫苗安全性好。免疫保护效果试验结果显示,在实验室条件下,规格为8~10cm的斑点叉尾鮰鱼种每尾腹腔注射0.2mL效价为105TCID50/mL的疫苗,可获得高达89.1%的保护力。池塘养殖试验免疫保护效果结果显示,采用浸泡的方式免疫4~6cm小规格鱼种也可获得72.6%的保护力。上述结果表明,无论是通过注射免疫还是浸泡免疫,β丙内酯灭活疫苗免疫的斑点叉尾鮰鱼种能获得很好的保护力,此疫苗可在生产上进行广泛应用以预防斑点叉尾鮰出血病。
Since channel catfish(Ictalurus punctatus) was introduced into China in1984, it has become an important export species farmed in nearly20provinces in China. According to production estimates, the annual output of farmed channel catfish in China was about220,000metric tons. With the increasing production there has been more epizootic diseases detected in farmed channel catfish in China because of high density stocking and genetic depression. Recently, a hemorrhagic disease in cultured channel catfish fingerlings broke out and spread in the most part of China. It caused large economic losses to channel catfish industry. We attempted to establish a cell line from channel catfish tissues for the isolation of viral pathogen from the hemorrhagic diseased fish. Fortunately, a channel catfish kidney cell line was obtained and it was apllied in the pathology and vaccine research of channel catfish hemorrhagic disease. The results were present as below:
     1. Establishment of channel catfish kidney cell line
     A channel catfish kidney cell line (CCK), was established from the kidney of channel catfish, Ictalurus punctatus, Rafinnesque by using explant techqiques. CCK cell line had been continuously subcultured over70times and been fully characterized in the aspects of morphology observation, optimal growth kinetics, plating efficiency, karyotyping, cryopreservation and28S ribosome RNA genotyping, etc. The CCK cell monolayer was consisted of fibroblast-like cells and the optimal growth condition for CCK cells was:medium, M199; temperature,28-32℃; FBS,10%. The plating efficiency of CCK cells was about74%. Following cryopreservation in liquid nitrogen, thawed cells exhibited a viability of86.69±1.04%after6months storage period. Chromosome typing of CCK cell line revealed that at9th pasage the modal diploid chromosome numeber was2n=58, and at33rd passage the modal number was60. Polymerase chain reaction amplification of partial28S ribosome RNA and sequence analysis indicated94.0%identity to the sequence found in Genbank from channel catfish source, confirming that the cell line was of Channel catfish origin.
     2. Pathology of channel catfish hemorrhagic disease.
     A reovirus, designated as CCRV-730, was isolated from channel catfish, Ictalurus punctatus, fingerlings suffering a severe hemorrhage in Hubei province in China. Experimental infection confirmed the pathogenicity of the virus and proved it to be the causative pathogen. Signs of the diseased channel catfish included abdominal distention, eyes bulging and hemorrhages of operculum, lower jaw, skin and fin bases. The CCK cell line was used for viral pathogen isolation. The electron microscopy observation of the virus infected cells revealed that there were a large number of reovirus-like particles measuring60~70nm in diameter in cytoplasm arrayed in crystalline. The viral genomic RNA was extracted and analyzed by SDS-PAGE and the complete S-class (S7-S11) segments of genome RNA were cloned and sequenced. The sequence alignment analysis of the S-class segments of CCRV-730with corresponding sequences of other Aquareovirus members in the genetic sequence database of NCBI indicated that the virus had high similarity to grass carp reovirus, especially shared99%-100%nucleotide sequence identity with the grass carp reovirus873strain (GCRV-873). The results implied that the genetic variation of GCRV-873potentially arose in natural environment and resulted in the viral host conversion or expansion and made it pathogenic to channel catfish.
     3. Inactivated vaccine of channel catfish hemorrhagic disease
     Cell culture inactivated vaccine of channel catfish hemorrhagic disease was produced by using (3propiolactone as the inactivator. The safety and immune effect of the vaccine were assessed.The results showed that CCRV-730virus could be completely inactivated within a final concentration of0.025%(V/V) β-propiolactone at4℃for24h. The vaccine was test by infecting cells and fish to confirm the virus had been completely inactivated. Bacterial test showed no bacterial contamination of the vaccine. These results confirmed the safty of the produced vaccine. Immune protective effect test results show that, under laboratory conditions, the8~10cm channel catfish fingerlings intraperitoneal injection0.2mL105TCID5o/mL vaccine could obtain up to89.1%protective rate. Immune protective effect test in the fish cultured in ponds showed that4~6cm small size fingerlings, which were immunized by immersion, could obtain72.6%protective rate. These results indicate that channel catfish fingerlings immunized with P-propiolactone inactivated channel catfish hemorrhagic disease vaccine by injection or immersion could obtain good protective force. This vaccine can be widely used in the production in order to prevent the channel catfish hemorrhagic disease.
引文
1. 陈怀青.鱼类病毒研究评述.国外水产,1990,3:30-32
    2. 陈莉,张敏,买霞,徐瑞成.鲨鱼软骨制剂对人不同细胞生长抑制作用及其机制的探讨.解剖科学进展,2002,8(3):211-214
    3. 陈延,王炜,柯丽华,蔡宜权.草鱼出血病病毒的糖蛋白和结构多肽的抗原性.病毒学报,1992,8(1):57-61
    4. 陈燕燊,江育林.草鱼出血病形态结构及其理化特性.科学通报,1983,28(18):1138-1140
    5. 程顺峰.溶藻弧菌疫苗对牙鲆免疫效果的研究.青岛农业大学学报(自然科学版),2009,26(2):124-127
    6. 戴华生.新实验病毒学.北京:中国学术出版社,1983
    7. 丁清泉,余兰芬,柯丽华,蔡宜权.草鱼出血病病毒对其它鱼的感染性研究.中国病毒学,1991,6(4):371-373
    8. 丁清泉,余兰芬,王学兰,柯丽华,叶荫云.草鱼出血病鱼主要器官组织的超薄切片观察及感染力的比较.水产学报,1990,14(1):66-69
    9. 樊廷俊,耿晓芬,丛日山,姜国建,于秋涛,付永锋,王晶,于苗苗,杨秀霞,吴建东.大菱鲆鳍细胞系的建立.中国海洋大学学报,2007,37(5):759-766
    10.方勤,丁清泉,汪亚平,朱作言.两株水生呼肠孤病毒部分特性的比较.中国病毒学,2003,18(5):464-467
    11. 方勤,柯丽华,蔡宜权.草鱼出血病病毒的生长特性及高滴价培养.病毒学杂志,1989,4(3):315-319
    12. 方勤,朱作言.呼肠弧病毒结构与功能研究进展.病毒学报,2003,9(4):381-384
    13. 方勤,朱作言.水生呼肠孤病毒研究进展.中国病毒学,2003,18(1):82-86
    14.耿毅,汪开毓,叶仕根.斑点叉尾鮰病毒病的诊断与防治.科学养鱼,2002,6:43-44
    15. 耿毅,汪开毓.斑点叉尾鮰疑似疱疹病毒感染的病理形态学观察.中国兽医学报,2005,25(6):636-639
    16.巩华,黄志斌,吴淑勤.水产疫苗研究开发现状与展望.海洋与渔业,2010,1:43-47
    17.黄辉,齐振雄,余露军,吴勤超.我国水产疫苗的研究现状.湖南农业科学,2010,(21):136-138
    18. 黄倢,于佳,王秀华,宋晓玲,麻次松,赵法箴,杨丛海.单克隆抗体酶联免疫技术检测对虾皮下及造血组织坏死病的病原及其传播途径.海洋水产研究,1995,16(1):40-50
    19.江育林,于平,李正秋.用酶联免疫吸附试验快速检测虹鳟的传染性胰脏坏死病病毒.水生生物学报,1990,14(3):276-279
    20. 柯丽华,方勤,蔡宜权.一株新的草鱼出血病病毒分离物的特性.水生生物学报,1990,14(2):153-159
    21. 李军,王铁辉,陆仁后,陈宏溪.草鱼出血病病毒的研究进展.海洋与湖沼,1999,30(4):445-452
    22. 李军,王铁辉,陆仁后.鱼类病毒检测技术.海洋湖沼通报,1996,2:58-62
    23. 刘玉林,王敏,王卫民.斑点叉尾鮰病毒性疾病综述.水利渔业,2006,26(6):84-96
    24. 毛树坚,邵建忠,杭绮,张念慈.草鱼出血病的病原研究.水产学报,1989,13(1):1-4
    25. 倪达书.我国鱼病学研究现状及其发展前景.现代渔业信息,1994,03:1-4
    26. 钱冬,陈月英,沈锦玉,沈智华,张念慈.应用酶联免疫吸附法检测暴发病病原—嗜水气单胞菌的研究.水产养殖,1993,4:14-17
    27.邱涛,张菁,陆仁后,朱作言.草鱼出血病病毒873株基因组外发现缺损性干扰颗粒的亚基因组成份.病毒学报,2001,17(2):141-144
    28. 屈三甫,张小榕,郑从义.鱼呼肠孤病毒诱导草鱼肾细胞凋亡.水生生物学报,2000,24(6):616-619
    29. 任国诚,陈松林,沙珍霞.半滑舌鳎肝脏细胞系的建立与鉴定.高技术通讯,2008,18:657-660
    30.孙建和,严亚贤,陈怀青,陆承平.嗜水气单胞菌亚单位疫苗的研制.中国兽医学报,1996,16(1):11-14
    31. 王崇明,杨冰,宋晓玲,黄倢.应用双抗夹心ELISA法检测皱纹盘鲍致病病原—创伤弧菌的研究.海洋水产研究,1999,20(1):30-34
    32. 王军,焉庆枇,苏永全,马梁,邵勋.养殖大黄鱼副溶血弧菌的酶联免疫吸附法研究.台湾海峡,2001,20(3):346-351
    33. 王利,谢长勇.鱼类疫苗研究进展.动物医学进展,2003,24(5):26-28
    34.邬国民,陈慈,李恒颂,张大疆,胡隐昌、邓国成.我国斑点叉尾鲴养殖的现状和前景展望.中山大学学报论丛,998,4:75-79
    35.吴礼龙.草鱼出血病的快速ELISA诊断试验.内陆水产,1997,(4):2-3
    36. 夏永娟,黄威权.新型鱼用疫苗的研究进展.中国水产科学,2001,8(1):86-88
    37. 徐伟,张兴,柯丽华,王冰,郑东.草鱼出血病病毒的低温电镜技术和三维重构.电子显微学报,1998,17(4):325-326
    38. 许淑英,李焕林,邓国成,姜兰.草鱼出血病细胞培养弱毒疫苗的制备及其免疫效果.水产学报,1994,18(2):111-116
    39. 薛庆善.体外培养的原理与技术.北京,科学出版社,2001
    40. 严文静,陈汉民,赵小立,俞宏,张铭.低温诱导淡水白鲳尾鳍细胞系早期凋亡.实验生物学报,2005,38(2):105-107
    41. 杨广智,张念慈.草鱼出血病细胞疫苗制备技术研究.鱼类病害研究,1990,12(1):12-16
    42.杨先乐,陈远新.渔用疫苗的研究现状及其发展趋势.水产学报,1996,20(2):159-165
    43. 杨先乐,吴明泉.草鱼出血病细胞培养灭活疫苗的研究:生产性免疫试验.水产科技情报,1992,19(1):10-14
    44. 殷震,刘景华.动物病毒学.北京,科学出版社,1997
    45. 于秋涛,樊廷俊,汪小锋,樊廷俊,汪小峰,丛日山,汤志宏,吕翠仙,史振平.宽纹虎鲨软骨细胞体外培养的启动.海洋科学,2005,29(3):33-37
    46. 曾令兵,贺路,左文功.草鱼出血病病毒854株的理化、生物学特性及基因组结构.水产学报,1998,22(3):279-282
    47. 曾令兵,李晓莉,张林,徐进,张燕.斑点叉尾鮰肾脏组织细胞系的建立及其生物学特性.中国水产科学,2009,16(1):73-81
    48. 曾令兵,袁明雄.草鱼出血病病毒高滴度培养方法的研究.淡水渔业,2000,30(4):40-41
    49. 张保焰,柯丽华.草鱼出血病病毒基因组体内转录的研究.中国病毒学,1993,8(2):185-188
    50. 张林,孟彦,罗晓松,曾令兵.斑点叉尾鮰主要疾病及其防治概述.淡水渔业,2007,3(1):76-79
    51.张延龄,张晖.疫苗学.北京:科学出版社,2006:100-102
    52. 张幼敏.斑点叉尾鮰养殖业现存问题分析与建议.水利渔业,2007,27(1):36-39
    53. 张忠信,王瑶.病毒分类学.高等教育出版社,2006:116-133
    54. 中国科学院武汉病毒研究所,中国水产科学研究院长江水产研究所沙市分所草鱼出血病研究协作组.草鱼出血病病毒精细结构.淡水渔业,1984,14(2):21-22
    55. 朱心玲,贾丽珠,张明瑛.草鱼出血病潜伏期和发病期的血液病理研究.水生生物学报,1987,11(1):59-66
    56. Ahne W. Viral infectious of aquatic animals with special reference to Asian aquaculture. Ann Rev Fish Dis,1994,4:375-388
    57. Alvin CC. Channel catfish virus disease. SRAC Publication,2004,4702
    58. Amend DF, McDowell T, Hedrick RP. Characteristics of a previously unidentified virus from channel catfish (Ictalurus punctatus). Can J Fish Aquat Sci,1984,41(5): 807-811
    59. Attoui H, Fang Q, Jafa FM. Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of golden shiner reovirus, grass carp reovirus, striped bass reovirus and golden ide reovirus. J Gen Virol,2002, 83:1941-1951
    60. Awad MA, Nusbaum KE, Brady YJ. Preliminary studies of a newly developed subunit vaccine for channel catfish virus disease. JAquat Anim Health,1989,1: 233-237
    61. Baek Y, Boyle JA. Detection of channel catfish virus in adult channel catfish by use of polymerase chain reaction. J Aquat Anim Health,1996,8:97-103
    62. Booy FP, Trus BL, Davison AJ. The capsid architecture of channel catfish virus, an evolutionarily distant herpesvirus, is largely conserved in the absence of discernible sequence homology with herpes simplex virus. Virology,1996,215:134-141
    63. Bowser PR, Munson AD, Jarboe HH, Floyd F, Watersrat RP. Isolation of channel catfish virus from channel catfish (Ictalurus punctatus) broodstock. J Fish Dis, 1985,8:557-561.
    64. Bowser PR, Plumb JA. Channel catfish virus:comparative replication and sensitivity of cell lines from channel catfish ovary and brown bullhead. J Wild Dis, 1980b,16:451-454
    65. Bowser PR, Plumb JA. Fish cell lines:establishment of a line from ovaries of channel catfish. In Vitro,1980a,16:365-368
    66. Bowser PR, Plumb JA. Growth rates of a new cell line from channel catfish ovary and channel catfish virus replication at different temperatures. Can J Fish Aquat Sci, 1980,37:871-873
    67. Bragg RR. The indirect fluorescent antibody technique for the rapid identification of streptococcosis of rainbow trout (Salmo gairdneri). Onderstepoort J Vet Res, 1988,55(1):59-61
    68. Cheng TC, Lai YS, Lin IY. Establishment, characterization, virus susceptibility and transfection of cell lines from cobia, Rachycentron canadum (L), brain and fin. J Fish Dis,2010,33(2):161-169
    69. Chumnongsitathum B, Plumb JA, Hilge V. Histopathology, electron microscopy and isolation of channel catfish virus in experimentally infected European catfish, Silurus glanis L. J Fish Dis.1988,11:351-357
    70. Cipriamo R, Starliper CE. Immersion and injection vaccination of salmonids against funtunculosis with an avirulent strain of Aeromomas salmonicida. Prog Fish Cult, 1982,44:167-169
    71. Crawford SA, Gardner IA, Hedrick RP. An Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Antibodies to Channel Catfish Virus (CCV) in Channel Catfish. J Aquat Anim Health,1999,11(2):148-153
    72. Davison AJ. Channel Catfish Virus:A new type of herpesvirus. Virology,1992, 186:9-14
    73. Fang Q, Shah S, Liang Y.3D reconstruction and capsid protein characterization of grass carp reovirus. Sci China C Life Sci,2005,48:593-600
    74. Fijan NN. Progress report on acute mortality of channel catfish fingerlings caused by a virus. Off Int Epizoot Bull,1968,69:1167-1168
    75. Francki RIB, Fanquet CM, Knudson DL. Classification and nomenclature of viruses: Fifth Report of the International Committee on Taxonomy of Viruses. Arch Virol, 1991,2:186-192
    76. Freshney RI. Culture of animal cells:a manual of basic technique.5th ed. UK:John Wiley & Sons,2005.283-294
    77. Freshney RI. Culture of Animal Cells—A manual of basic technique.4th ed. New York, Wiley-Liss,2000
    78. Fryer JL, Lannan CN. Three decades of fish cell culture:A current listing of cell lines derived from fish. J Tissue Culture Meths,1994,16(2):87-94
    79. Fryer JL. Vaccination for control of infectious diseases in Pacific salmon. Fish Pathal,1976,10(2):155-164.
    80. Fynan EF, Webster RG, Fuller DH. DNA vaccines:protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA,1993,90: 11478-11482
    81. Gray WL, Williams RJ, Griffin BR. Detection of channel catfish virus DNA in acutely infected channel catfish, Ictalurus punctatus (Rafinesque), using the polymerase chain reaction. J Fish Dis,1999a,22:111-116
    82. Gray WL, Williams RJ, Jordan RL, Griffin BR. Detection of channel catfish virus DNA in latently infected catfish. J Gen Virol,1999b,80:1817-1822
    83. Heather CH. Investigations into DNA vaccination against channel catfish virus. (Ph D dissertation). B. Sc. Texas A & M University,2004
    84. Hedrick RP, Rosemark R, Aronstein D. Characteristics of a new Reovirus f rom channel catfish (Ictalurus punctatus). J Gen Virol,1984,65:1527-1534
    85. Hedrick RP, Groff JM, McDowell T. Response of adult channel catfish to waterborne exposures of channel catfish virus. Prog Fish Cult,1987,49:181-187
    86. Imajoh M, Ikawa T, Oshima SI. Characterization of a new fibroblast cell line from a tail fin of red sea bream, Pagusmajor, and phylogenetic relationships of a recent RSIV isolate in Japan. Virus Res,2007,126:45-52
    87. Joel H, Heather LD. Application of DNA vaccine technology to aquaculture. Adv Drug Deliver Rev,2000,43:29-43
    88. Jorgensen PE, Meyling A. Egtved virus:demonstration of virus antigen by the fluorescent antibody technique in tissues of rainbow trout affected by viral haemorrhagic septicaemia and in cell cultures infected with Egtved virus. Arch Gesamte Virusforsch,1972,36(1):115-122
    89. Kancharla SR, Hanson LA. Production and shedding of channel catfish virus (CCV) and thymidine kinase negative CCV in immersion exposed channel catfish fingerlings. Dis Aquat Org,1996,27:25-34
    90. Koide Y, Nagata T, Yoshida A. DAN vaccine. Jpa JPharmacol,2000,83(3): 167-174
    91. Kuby J. Immunology.3rd ed. New York:W. H Freeman and Company,1997
    92. Kucuktas H, Brady JA. Molecular biology of channel catfish virus. Aquaculture, 1999,172:147-161
    93. Kuzyk MA, Burian J, Machander D. An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia salmonis. Vaccine,2001, 19:2337-2344
    94. Laemmli UK. Cleavage of st ructural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680-685
    95. Lambden PR, Cooke SJ, Caul EO. Cloning of noncultivatable human rotavirus by single primer amplification. J Virol,1992,66:1817-1822
    96. Li HY, Zhang SC. In vitro cytotoxicity of the organophosphorus esticide parathion to FG-9307 cells.Toxicology In Vitro,2001,15(6):643-647
    97. Lu Y, Aguirre AA, Hamm C. Establishment, cryopreservation, and growth of 11 cell lines prepared from a juvenile Hawaiian monk seal, Monachus schauinslandi. Methods Cell Sci.2000,22:115-124
    98. Mercier G, Campbell J, Chappell J. A chimeric adenovirus vector encoding reovirus attachment protein σl targets cells expressing junctional adhesion molecule. Proc Natl Acad Sci USA,2004,101:6188
    99. Meyers TR. A Reo-like virus isolated from juvenile American oysters (Crassostrea virginiea).J Gen Virol,1979,43:203-212
    100. Mitsunobu I, Michael AR, Nobuko I. Molecular cloning of double-stranded RNA virus genome. Proc Natl Acad Sci USA,1983,80:373-377
    101. Montufar-Solis D, Klein J. Experimental intestinal reovirus infection of mice. Immunologic research,2005,33:257-265
    102. Naito E, Dewa K, Yamanouchi H. Ribosomal ribonucleic acid (rRNA) gene typing for species identification. JForen Sci,1992,37:396-403
    103. Nason EL, Samal SK, Prasad VV. Trypsin induced structural transformation in aquareovirus. J Virol,2000,74:6546-6555
    104. Nusbaum KE, Smith BF, DeInnocentes P. Protective immunity induced by DNA vaccination of channel catfish with early and late transcripts of the channel catfish herpesvirus(IHV-1). Vet Immu-nol Immunopathol,2002,84:151-168
    105. Parameswaran V, Ahmed VPI, Shukla R. Development and characterization of two new cell lines from milkfish(Chanos chanos) and grouper (Epinephelus coioides) for virus isolation. Mar Biotechnol,2007,9:281-291
    106. Plumb JA. Effects of temperature on mortality of fingerlings of channel catfish (Ictalurus punctatus) experimentally infected with channel catfish virus. Fisheries Research Board of Canada,1973,30:568-570
    107. Plumb JA. Epizootilogy of channel catfish virus disease. Marine Fish Rev,1978,40: 326-329
    108. Plumb JA. Tissue distribution of channel catfish virus. J Wildl Dis,1971,7: 213-216
    109. Plumb JA. Neutralization of channel catfish virus by serum of channel catfish. J Wildl Dis,1973,9:324-330
    110. Prediger EA. Detection and quantitation of mRNAs using ribonuclease protrction assays. Methods Mol Biol,2001,160:495
    111. Qin QW, Wu TH, Jia TL. Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. J Virol Meth,2006,131:58-64
    112. Qiu T, Lu RH, Zhang J. The molecular characterization of RNA segment S9 of grass carp hemorrhage virus (GCRV), an aquareovirus. Aquaculture,2001,203:127
    113. Rottman JB. The ribonuclease protection assay:a powerful tool for the veterinary pathologist. Vet Pathol,2002,39(1):2
    114. Shaw AL, Samal SK, Subramanian K. The structure of aquareovirus show how the different geometries of the two layers of the capsids are reconciled to provide symmetrical interactions and stabilization. Structure,1996,4(8):957-967
    115. Su F, Zhang S, Li H. In vitro cytotoxicity of the organotin compound bis-(tri-n-butyltin) oxide to FG cells. Toxicol Mech Methods,2005,15 (3):205-209
    116. Tang DC, DeVit M, Johnson SA. Genetic immunization is a simple method for eliciting an immune response. Nature,1992,356:152-154
    117. Traxler GS, Anderson E, Lapatra SE. Naked DNA vaccination of Atlantic salmon Salmosalar against IHNV. Dis Aquat Organ,1999,38(3):183-190
    118. Ulmer JB, Donnely JJ, Parker SE. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science,1993,59:1745-1749
    119. Vanderheijden N, Alard P, Lecomte C, Martial JA. The attenuated V60 strain of channel catfish virus possesses a deletion in ORF50 coding for a potentially secreted glycoprotein. Virology,1996,218:422-426
    120. Wang G, Lapatra S, Zeng L. Establishment, growth, cryopreservation and species of origin identification of three cell lines from white sturgeon, Acipenser transmontanus. Methods Cell Sci,2004,25:211-220.
    121. Wise JA, Harrell SF, Busch RL. Vertical transmission of channel catfish viruse. Am J Vet Res,1988,49(9):1506-1309
    122. Wolf K, Darlington RW. Channel catfish virus:a new herpesvirus of ictalurid fish. J Virol,1971,8:525-533
    123. Wolf K, Quimby MC. Established eurythermicline of fish cells in vitro. Science, 1962,135(23):1065-1066
    124. Wolff JA, Malone RW, William P. Direct gene transfer into muscle in vivl. Science, 1990,247:1456
    125. Ye HQ, Chen SL, Sha ZX. Development and characterization of cell lines from heart, liver, spleen and head kidney of sea perch Lateolabrax japonicus. Fish Boil, 2006,69:115-126
    126. Zhang HG, Hanson LA. Deletion of thymidine kinase gene attenuates channel catfish herpesvirus while maintaining infectivity. Virology,1995,209:658-663
    127. Zhang Q, Ruan H, Li Z. Detection of grass carp hemorrhage virus (GCHV) from Vietnam and comparison with GCHV strain from China. High Technology Letters, 2003,9:7-13
    128. Zhang Q, Tiersch TR. Standardization of the channel catfish karyotype with localization of constitutive heterochromatin and restriction enzyme banding. Trans Am Fish Soc,1998,127:551-560
    129. Zhang, HG and Hanson LA. Deletion of thymidine kinase gene attenuates channel catfish herpesvirus while maintaining infectivity. Virology,1995,209:658-663
    130. Zhou BS, Liu WH, Rudolf SS. Cultured gillepithelial cells from tilapia (Oreochromis niloticus):a new in vitro assay for toxicants. Aquat Toxicol,2005, 71(1):61-72
    131. Zhou GZ, Gui L, Li ZQ. Establishment of a Chinese sturgeon (Acipenser sinensis) tail fin cell line and it's susceptibility to frog iridovirus. JFish Biol,2008,73: 2058-2067

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700