葡萄根际高效溶有机磷细菌的筛选及其溶磷特性初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物生长发育的必需营养元素之一,而土壤中绝大部分的磷素不能被植物直接利用。施用磷肥一直是保证农业生产增产的重要手段之一,单纯依靠大量施用磷肥来解决磷素缺乏已经出现资源浪费、环境污染等诸多弊端。利用植物根际与磷循环相关的生物学系统来解决这个问题已经越来越被人们所关注。溶磷微生物在该生物学系统中担任着重要的角色。它可将土壤中难溶性的磷酸盐转化为可溶性盐供作物生长利用,提高磷肥的利用率,减少土壤对磷酸盐的吸附固定,避免磷肥过量使用造成环境污染。因此从土壤中筛选高效溶磷微生物生产生物肥料,以减少磷肥施用量,对农业可持续发展具有重要的生态和社会意义。
     本研究主要以西北几个地区葡萄根际土壤为试验材料,利用平板培养法和微生物选择培养基进行培养分离,初步筛选出具有溶有机磷能力的细菌。再通过液体摇瓶试验,利用钼锑抗比色法测定液体培养基中可溶性磷的含量,通过定量比较,得到高效溶磷菌株。利用16S rDNA序列分析对部分菌株进行鉴定。对其中几株溶磷效果较好的菌株进行溶磷能力和溶磷特性初步研究,以期为溶磷微生物肥料的开发应用提供优良菌株。得出如下主要结果:
     1.从各种土壤中筛选得到溶有机磷细菌81株,从陕西泾阳和宁夏银川葡萄根际土壤中筛选到的细菌的数目较多。从宁夏银川筛选出来的菌株的总体溶磷效果较其他土样的菌株溶磷效果好。溶磷效果最好的菌株为宁夏银川葡萄园中筛得,其溶磷效果可达到62.2856mg/L。
     2.对筛选出来溶磷效果较好的13株菌株进行了16S rDNA序列分析,结果表明,13株溶有机磷的细菌中9株属于根瘤菌属(Rhizobium sp.)、1株属于节杆菌属(Arthrobacter sp.)、1株属于不动杆菌属(Acinetobacter sp.)、1株属于假单胞菌属(Pseudomonas sp.)、1株属于土壤杆菌属(Agrobacterium sp.)。
     3.根据统计结果和差异显著性分析,选择溶有机磷较好的5株(2-15、5-12、5-18、5-19、5-21)研究其溶磷能力受碳源、氮源的影响。选择溶磷最好的2株(5-18、5-19)检测其溶磷动态,不同培养时间溶磷量和pH之间的关系。研究结果:
     在液体摇瓶条件下溶磷菌株溶磷能力受碳源、氮源的影响。总体上菌株在以葡萄糖作为唯一碳源时溶磷较好,葡萄糖还是较理想的碳源。在氮源的单因子试验中,5株菌在以硝酸钾作为氮源时,都不是最佳的溶磷效果,但是可以利用硝态氮。不同碳源、氮源对菌株的溶磷情况均有一定的影响。
     两株溶有机磷细菌在整个培养过程总体溶磷趋势为先升后降,pH值是先降后升。微生物的溶磷量与培养液中的pH值存在一定的关系,但培养液pH值的下降,并不是溶磷的必要条件。溶磷机制还需要进一步研究。
Phosphorus is one of the necessary elements for the growth of the plants. Application of phosphorus fertilizer is a very crucial management to increase crop yields, because most of the phosphorus in soil can not be utilized by plants directly. In recent years, excessive phosphate fertilizer application in soil has brought a series of problems, such as mineral resource waste and environment contamination. Nowadays more and more researchers focus on solution for this problem by regulating the bio-system and micro-environment in the rizosphere of plant roots. Phosphorus solubilizing bacteria in soil plays an important role in this bio-system. Generally, insoluble phosphate in soil can be dissolved by phosphorus solublizing microorganisms and absorbed by plant, which can increase the utilizing efficiency of phosphorus fertilizer and decrease environmental pollution caused by slathering phosphorus fertilizer. Hence it is very important for agricultural sustainable development that screening high efficiency phosphate-solublizing microbial strains as inoculant to manufacture biofertilizer.
     In this study, different rhizosphere soils of grapevine from vineyards located in northwestern areas in China were taken as samples. The method of plate culture and selective medium were used to culture and separate soil microbes, and then organic-phosphorus solubilizing bacteria was screened preliminary. In liquid medium, ability of dissolving organic phosphorus of organic-phosphoru solubilizing bacteria (OSB) was investigated via Molybdenum-antimony spectrophotometric method. Phosphorus solublizing bacteria was isolated from soil samples, and then identified by 16S rDNA sequence analysis. Several isolates were studied on their phosphorus solubilizing ability and mechanism to develop excellent phosphate solubilizing strains for bettering phosphorus utilization. The main results are as follows:
     1. There are 81 OSB strains with better effect of solubilizing organic phosphorus in liquid medium (NBRIP), and the number of OSB in Jingyang(Shannxi) and Yinchuan (Ningxia) was more than other areas.The phosphorus solubilizing ability of the strains isolated from Ningxia area were better than the strains isolated from other areas. The best performance of dissolving organic phosphorus was found on the OSB isolated from Ningxia with 62.2856mg/L.
     2. 13 strains of OSB with better performance were identified by 16S rDNA sequence analysis. The results showed that 9 strains belong to the Rhizobium sp., other four strains belong to the Arthrobacter sp., the Acinetobacter sp., the Pseudomonas sp.and the Agrobacterium sp., respectively.
     3. An experiment was conducted with 5 chosen OSB strains(2-15、5-12、5-18、5-19、5-21) to figure out their phosphorus solubilizing ability under different carbon sources and nitrogen sources.
     It indicated that phosphate-solubilizing abilities of these 5 strains were affected by carbon source and nitrogen source. Glucose looks like the best candidate when it treated as the only carbon source. All the strains can not show the best phosphorus solubilizing ability when KNO3 was the only nitrogen source, but the result showed that the strains can use the nitrate nitrogen source.
     Other 2 strains (5-18 and 5-19) were chosen to study the dynamic of phosphate solubilization and the relationship between phosphorus content and pH value at different time. It was indicated that the phosphorus content in the fermentation liquid of the two strains increased at first and then decreased, while the pH Value decreased at first and then increase during the culture process. At last, the conclusion which can be obtained was that the phosphorus content had some relation with the pH value, but the decline of the pH value was not the necessary condition for the microorganism to solubilize the phosphorus.
引文
[1]林葆,李家康,黄照愿.中国肥料[M].上海科学技术出版社,2002:13~32.
    [2] GERRETSEN F C. The influence of microorganisms on the phosphate intake by the plant[J]. Plant and soil,1948,(1):51~81.
    [3]李振声,朱兆良,章申,等.挖掘生物高效利用土壤养分潜力保持土壤环境良性循环[M].北京:中国农业大学出版社,2004:33~34.
    [4]童学军,严小龙,卢永根,等.广东大豆地方种质磷效率特性研究-大豆基因型磷效率特性差异及其与土壤有效磷含量的关系[J].土壤学报,1999,36(3):404~411.
    [5]鲁如坤.我国的磷矿资源和磷肥生产消费——I.矿资源和磷肥生产[J].土壤,2004,36(1):1~4.
    [6]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:70~71.
    [7]郝敏.西北地区农村扶贫开发模式研究[J].农村经济,2007,9:104~106.
    [8]焦如珍,杨承栋,孙启武.细菌肥料菌株对无效磷的转化利用[J].林业科学,2005,41(4):194~198.
    [9]米歇尔.二00七年国际肥料市场分析及中期展望[N].中华合作时报,2007,9.
    [10]李华,沈忠勋.发挥西北地区资源优势促进葡萄酒产业化发展[J].中国食物与营养,2001,1:6~7.
    [11]易秀,李侠.西北地区土壤资源特征及其开发利用与保护[J].地球科学与环境学报,2004,4:85~89.
    [12]沈善敏,陈欣.中国土壤磷素肥力与农业中的磷管理中国土壤肥力[M].中国农业出版社,北京,1998:212~269.
    [13] Kristine L. Medium for screening phosphate so1ubilizing microorganisms[J].FEMS Microbiology Letters.1999,170:265~270.
    [14]尹端玲.我国旱地土壤的解磷微生物土壤与环境[J].2003,20(5):243~246.
    [15]李法云,高子勤.土壤一植物根际磷的生物有效性研究[J].生态学杂志,1997,16(5):57~60.
    [16] Jenkinson D S and Ladd J N. Microbial biomass in soil: Measurement and turnover Soil Biochemistry, Edited by Paul E.A. and J. N. Ladd[D]. Marcel Dekker lnc, New York and Basel. 1981,5:415~471.
    [17] Hartmann A, Schmid M, Wenzel W, et al. Rhizosphere 2004-Perspectives and Challenges-A tribute to Lorenz Hiltner[J]. Munich, Germany: GSF-National Research Center for Environment and Health, 2005.
    [18]徐秋芳,姜培坤.毛竹根区土壤微生物数量与酶活性研究[J].林业科学研究,2001,14(6):648~652.
    [19]方昉,吴承祯,洪伟,等.植物根际、非根际土壤酶与微生物相关性研究进展[J].亚热带农业研究,2007,3(3):209~215.
    [20]常学秀,文传浩,沈其荣.锌厂Pb污染农田小麦根际与非根际土壤酶活性特征研究[J].生态学杂志, 2001,20(4):5~8.
    [21] Phillips D A, Fox T C, King M D, et al. Microbial products trigger amino acid exudation from plant roots[J].Plant Physiol,2004,136:2887~2894.
    [22]刘子雄,朱天辉,张建,等.林木根系分泌物与根际微生物研究进展[J].世界林业研究,2005, 18(6):25~31.
    [23] Denis T, Frédéric L, Francis M. The ectomycorrhizal symbiosis: genetics and development[J]. Plant and Soil, 2002,244 (35):1~2.
    [24] Prosser J. Molecular and functional diversity in soil micro-organisms[J]. Plant Soil,2002,244:9~17.
    [25]陆雅海,张福锁.根际微生物研究进展[J].土壤,2006,38(2):113~121.
    [26]梁锦峰.解磷细菌生长条件及解磷机理的研究[D].2001.
    [27] Al-Niemi T S, Summers M L, Elkins J G, et al. Regulation of the Phosphate Stress Response in Rhiozobium meliloti by PhoB[J]. Appl Environ Microbiol,1997,63:4978~4981.
    [28] Louw H A, Webley D M. A study of soil bacteria dissoliving certain inorganic-phosphate fertilizers and related compounds[J]. Appl Bacteriol,1959,174(18):5814~5819.
    [29] Staltrom V A. Boitrag Zur kennturs der Ein-wisking steriler under Garung bofindlicher organischer strofffe auf dilloslickeit der phosphorsen des tricalcium phosphate[J].Zel.Bskt,1908,11:724~732.
    [30] Sachett W G, Patten A G, Bromn C W. The solvent action of soil bacteria upon the insoluble phosphates of raw bone meal and natural rock phosphate[J]. Zentralbl, Bakteriol. 1908,28:668~672.
    [31] Hopkins G G and Whiting A L. Soil bacteria and phosphates[J].Agric. Exp. Stn. Bull.1916,190: 395~406.
    [32] Kelly W P. Effect of nitrifying bacteria on the solubility of tricalcium phosphate[J]. Agric.Res.1918, 12:671~683.
    [33] Pikovskaya R I. Mobilization of phosphates in soil in connection with the vital activities of some microbial species[J].Mikrobiologiya, u.s.s.r.1948,17:362~370.
    [34]范六云.从施用混合肥料后的土壤中分离硅酸盐细菌及其分解磷矿石粉的能力[J].土壤微生物通讯,1955:28~31.
    [35] Menkina S M and Steel R. Effect of phosphate on the production of organic acids by Aspergillus niger[J]. Can.J.Microbiol.1950,1:470~472.
    [36] Johnston H W. The solubilization of phosphate. I: The action of various organic compounds on dicalcium and tricalcium phosphates[J]. New Zealand J.Sci.Technol.Sect, B.1952,33:436~446.
    [37] Rose R E. Techniques for determining the effect of microorganisms on insoluble inorganic phosphates[J]. New Zealand J.Sci.Technol.1957,38B:773~780.
    [38] Sperber J I. Solution of mineral phosphates by soil bacteria[J].Nature,1957,180:994~995.
    [39] Wernali P V, More B B and Patil P L. Physiological studies on the activity of phosphorus solubilizing micro-organisms[J]. Indian J.Microbiology.1979, 19:23~25.
    [40] Rao N S, Subba.土壤微生物对磷酸盐的溶解作用[J].国外农业科技,1982,(4):40~42.
    [41] Banik S and Dey B K. Phythormone producing ability of phosphate solubilizin bacteria[J]. Indian Agric., 1978,22:93~97.
    [42] Falih A M and Wainwrigt M. Nitrificaton,S-oxidation and P-solubilization by the soil yeasy Williopsis California and by Saccharomyces[J]. Mycological research.1995,99(2):200~204.
    [43] Goldstein A H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria[J]. Biological Agriculture and Horticuiture,1987, 12(2):185~193.
    [44] Samia Ahmed Sfm. Transfer of phosphate dissolving ability of B. Megatherium var. phosphaticum to Azotobacter via genetic transformation[J]. Annals of Agricultural Science.1998,43(1):41~48.
    [45]李阜棣,胡正嘉.微生物学[M].第五版.北京,中国农业出版社,2000:228.
    [46] Katzelson H, Petersone A, Rcuat J W. Phosphate-dissolving microoraganisms on seed and in the root zone of plants[J].CanJBot,1962,40:1181~1186.
    [47]林启美,赵小蓉,孙焱鑫,等.四种不同生态环境中解磷细菌的数量及种群分布[J].土壤与环境,2000,9(1):34~37.
    [48]赵小蓉,林启美.小麦根际与非根际解磷细菌的分布[J].华北农学报,2001,16(1):111~115.
    [49]赵小蓉,林启美.玉米根际与非根际解磷细菌的分布[J].生态学杂志,2001,20(6):62~64.
    [50]于翠.本溪山樱根际与非根际解磷细菌群落结构及动态变化[J].应用生态学报,2006, 17(12):2381~2384.
    [51]于翠.大青叶根际与非根际解磷细菌分布特征研究初报[J].中国农学通报,2006,22(2):237~240.
    [52] Shekhar Nautiyal C. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiology Letters,1999,170: 265~270.
    [53]尹瑞玲.我国旱地土壤的溶磷微生物[J].土壤,1988,20(5):243~246.
    [54]梁绍芬,姜瑞波,葛诚.微生物肥料的生产和发展及存在的问题[M].北京:中国农业科技出版社,1996:61~65.
    [55]许光辉.土壤微生物分析方法手册[M].北京:农业出版社,1986:246~248.
    [56]赵小蓉,林启美,孙焱鑫,等.细菌解磷能力测定方法的研究[J].微生物学通报,2001,28(1):1~4.
    [57] Paul N B, Sundara Rao W.V.B.Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes[J].Plant and Soil,1971,35:127~132.
    [58] Yadav K S and Dadarwal K R. Phosphate solubilization and mobilization through soil microorganisms.In:Biotechnological Approaches in Soil Microorganisms for Sustainable Crop Production(Dadarwal,K.R.,Ed.) [J]. Scientific Publishers, Jodhpur.1997, 293~308.
    [59] Vazquez P, Holguin G, Puente M E, et al. Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves growing in a semiarid coastal lagoon [J]. Biol. Fertil. Soils.,2000,30:460~468.
    [60]钟传青,黄为一.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化[J].土壤学报.2005,42(2):286~294.
    [61] Anderson G. Assessing organic phosphorus in soils[A]. In:Khssawnch EE et al (eds.). The role of phosphorus in agriculture[C]. Am.Soci.of Agro.,1980, 411~431.
    [62] Illmer P and Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forest soil[J].Soil.Biol Biochem.,1992,24(4):389~395.
    [63] Liu S T, Lee L Y, Tai C Y, et al.Cloning of an Erwinia berbicola necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coil IIB 101:nucleotide sequence and propable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone[J]. J Bacterial, 1992, 174:5814~5819.
    [64] Goldstein A H, Rogers R D, Mead G.Separating phosphate from ores via bioprocessing[J]. Bio/Technology,1993,11:1250~1254.
    [65] Halder A K, Mishra A K, Bhat tacharyya P, et al. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium[J]. J. Gen. Appl. Microbiol,1990,36:81~92.
    [66]王富民,刘桂芝,张彦,等.高效溶磷菌的分离、筛选及在土壤中溶磷有效性的研究[J].生物技术, 1992,2(6):34~37.
    [67]林启美,赵海英,赵小蓉. 4株溶磷细菌和真菌溶解磷矿粉的特性[J].微生物学通报,2002,29(6):24~28.
    [68]钟传青,黄为一.磷细菌P17对不同来源磷矿粉的溶磷作用及机制[J].土壤学报, 2004,41(6):931~937.
    [69] Rajan S S S. Use of low grade phosphate rocks as biosuper fertilizer[J]. Fertilizer Research,1981(2):199~210.
    [70] Illmer P, Barbato A, Schinner F. Solubilisation of hardly-soluble AlPO4 with P-solubilizing microorganisms[J]. Soil Biology and Biochemistry 1995,27:265~270.
    [71] Goldstein A H, Liu S T. Molecular cloning and regulation of a mineral phosphate solubilizing(MPS) gene from Erwinia Herbicola [A].In: Torriani-Gorini A et al(eds.). Phosphate in microorganisms: cellular and molecular biology [C]. ASM Press. Washington. D.C.,1994,197~203.
    [72] Kim K Y, McDonald G A, Joudan D. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escgeruchia coli in culture medium [J]. Biol. Fertil. Soils, 1997, 27:1~6.
    [73] Torriani A, Ludtka D. The phoreguion of E.coli K12 [A].In: Schacchtes et al (eds.). The Molecular biology of bacterial growth [C]. Jones and Bariett, 1985, 224~242.
    [74] Wanner B L. Overlapping and separate controls on the phosphate regulon in E.coli K12 [J]. J.Mol.Biol., 1983, 166:283~308.
    [75] Feng Ke, Lu Haiming, Sheng Haijun, et al. Effect of Organic Ligands on Biological Availability of Inorganic Phosphorus in Soils[J].Pedosphere,2004, 14(1):85~92.
    [76] Wanner B L, McSharry R. Phosphate controlled gene expression in E.coli K12 using Mudl-directed LacZ Fusions[J].J. Mol.Biol.,1982,158:347~363.
    [77]陆文静,何振立,许建平.石灰性土壤难溶态磷的微生物转化和利用[J].植物营养与肥料学报,1999,5(4):377~383.
    [78] Rovira A D, Davey C B. Biology of the rhizosphere.In:Carson EW(ed). The plant root and its environment[J].Charlottesville:Univ Virginia Press,1974:153~204.
    [79] Arihara J, Kanasawa T. Effect of previous crops on arbucular mycorrhizal formation and growth of succeeding maize[J]. Soil Sci Plant Nutr,2000,46(1):43~51.
    [80]曾广勤,刘荣昌.磷细菌剂在小麦上应用研究[J].河北省科学院学报,1997,3:25~28.
    [81]郜春花,王岗.解磷菌剂盆栽及大田施用效果[J].山西农业科学,2003,31(3):40~43.
    [82]申建波,张福锁.根分泌物的生态效应[J].中国农业科技导报,1999,1(4):21~27.
    [83]许衡,束怀瑞.果树根际微域环境的研究进展[J].山东农业大学学报,2004,35(3):476~480.
    [84]韩振海.园艺植物根际营养学的研究一文献评述[J].园艺学报,1993,20(2):116~122.
    [85]张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,35(1):104~111.
    [86] Prikry L Z. Root exudates of plant[J]. Plant and Soil,1980,57:69~83.
    [87]潘超美,郭庆荣,邱桥姐,等. VA菌根真菌对玉米生长及根际土壤微生态环境的影响[J].土壤与环境, 2000,9(4):304~306.
    [88]朱丽霞.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(l):102~105.
    [89] Blum U, Staman K L, Flint L J, et al. Induction and/or selection of phenolics acid-utlizating bulk-soil and rhizosphere bacteria and their influence on phenolics acid phytotoxicity[J].Chem. Ecol.,2000, 26:2059~2078.
    [90]熊明彪.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145~148.
    [91] Molla M A Z, Chowdhury M A.Microbial mineralizati on of organic phosphate in soil[J]. Plant and soil, 1984,78(1):393~399.
    [92] Shou Tian, Zhou JianMin, Wang HunYan, et al. Phenolic Acids in Plant-Soil-Microbe System:A Review[J]. Science Press,2002,12(1):12~14.
    [93] Ma R X, Feng Y. Effect of allelopathic chemical on growth ad denitrification of bacillus subtitis underanaerobic condition[J].Chem. Ecol.,1998,24:187~193.
    [94]蔡磊,李文鹏,张克勤.高效解磷菌株的分离、筛选及其对小麦苗期生长的促进作用研究[J].土壤通报,2002,33(1):44~46.
    [95] Chabot R, Antoun H and Cescas M P. Growth promotion of maize and lettuce by phosphate solubilizing rhizobium legume inorsarum biovar phaseoli[J]. Plant Soil,1996,184:311~321.
    [96] Barea J M, Navarro E, Montoya E.Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria[J].J Appl Bact,1976,40:129~134.
    [97]朱培淼.高效解磷细菌的筛选及其应用[D].南京农业大学.2007.06.
    [98]冯月红,姚拓,龙瑞军.土壤解磷菌研究进展[J].草原与草坪,2003,100(1):3~7.
    [99]芷宇,李良漠,施卫明.根际研究法[M].南京:江苏科学技术出版社,1997.
    [100] Sangeeta Mehta, Chandra Shekhar Nautiyal. An efficient method for qualitative screening of phosphate-solubilizing bacteria[J]. Current Microbiology, 2001,43,pp:51~56.
    [101]胡子全,赵海泉.一株有机解磷菌的筛选激起最佳生长条件的研究[J].中国给水排水,2007,23(17):66~70.
    [102]中国标准出版社第一编辑室.中国农业标准汇编[M],2002,271~273.
    [103] F.奥斯伯等编著,颜子颖,王海林译.精编分子生物学实验指南[M].北京:科学出版社,2001,39.
    [104]王晓玲,郭安平,彭于发,等.海南普通野生稻不同群居cDNA ITS区序列的比较分析[J].热带作物学报,2008,29(4):478~484.
    [105] M.Alexander(亚历山大)(美)著.土壤微生物学导论[M].广西农学院农业微生物学教研组译.北京:科学出版社, 1983.
    [106]覃丽金.高效解磷细菌筛选及接种盆栽柱花草的效益研究[D].华南热带农业大学,2006.
    [107] Kucey R M N. Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils[J].Canadian Journal of Soil Science,1983,63:671~678.
    [108] Pexi A, Rivas R, Santa R I, et al. A novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. International journal of systematic and evolutionary[J]. Microbiology,2004, 54(3):847~850.
    [109] Rivas R, Trujillo M E, Sánchez M, et al. Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra [J]. International Journal of Systematic and Evolutionary Microbiology,2004,54(2):513~517.
    [110] Rivas R, Pexi A, Mateos P F, et al. Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils[J]. Plant and Soil,2006,287(1~2):23~33.
    [111] Son H J, Park G T, Cha M S,et al. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere[J].Bioresource Technology,2006,97(2):204~210.
    [112] Loganathan P, Nair S. Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). International Journal of Systernatic and Evolutionary Microbiology,2004,54(4):1185~1190.
    [113] Loganathan P, Nair S. Crop-specific endophytic colonization by a novel, salt-tolerant, N2-fixing and phosphate-solubilizing Gluconacetobacter sp. from wild rice[J]. Biotechnology Letters,2003,25(6): 497~501.
    [114]范丙全.北方石灰性土壤中青霉菌P8(Penicillium oxalicum)活化难溶磷的作用和机理研究[D].中国农业科学院,2001.
    [115] Thompson J D, Higgins D G, Gibson T J, et al. Improving the sensitivity of progressive multiple sequence alignment through sequence wtighting, position specific gap penalties and weight matrix choice[J]. Nucleic Aceds Res. 1994, 22: 4 673~4 680.
    [116]冯月红.苜蓿和小麦根际高效解磷细菌筛选及其解磷效果的初步研究[D].甘肃农业大学.2003.
    [117]赵小蓉,林启美,李保国.C、N源及C/N比对微生物溶磷的影响.植物营养与肥料学报, 2002,8(2):197~204.
    [118] Asea P E A, Kucey R M N and Stewart J W B. Inorganic phosphate solubilization by two Penicillium species in solution culture and soils. Soil Biol Biochem, 1988,20(4):459~464.
    [119] Narsian V and Patel H H. Aspergillus aculeatus as a rock phosphate solubilizer[J]. Soil Biol. Biochem., 2000,32:559~565.
    [120] Thomas G V. Occurrence and activity of phosphate-solubilizing fungi from coconut plantation soils. Plant and soil, 1985,87(3):357~364.
    [121]冯瑞章.苜蓿和小麦根际溶磷菌之溶磷特性和促生效应研究[D].甘肃农业大学,2005.
    [122] Jone D L, Darrah P R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil. 1994,166:247~257.
    [123]杨慧.溶磷高效菌株筛选鉴定及其溶磷作用[D].中国农业科学院, 2007.
    [124] Roos W, et al. Relationship between proton extrusion and pluxes of ammonium ions and organic acids in Penicillium cyclopium. J. Gen. Microbiol. 1984,130:1007~1014.
    [125] Halder A K, et al. Role of NH4+ or NO3- on release of soluble phosphorus from hydroxyapatite by Rhizobia and Bradyrhizobium[J]. Journal of Basic Microbiology, 1992,32(5):325~330.
    [126] Illmer P, and Schinner F. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biol. Biochem. 1995,27(3):257~263.
    [127]范丙全,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究[J].中国农业科学,2002,35(5):525~530.
    [128] Wenzel M R. Phosphrus availability in acidsorganic soil of lower north Carolina coastal plain[J]. Ecology.1991,72:2083~2100.
    [129] Wenzel C L, et al. Phosphate-solubilizing bacteria associated with proteoid roots of seedlings of waratah [Telopea speciosissima (Sm.) R.Br.]. New Phytologist, 1994,128(3): 487~496.
    [130] Vora M S, et al. Impact of addition of different carbon and nitrogen sources on solubization of rock phosphate by phosphate solubilizing microorganisms[J]. Indian J. Agric. Sci. 1997,68(6):292~294.
    [131] Cunningham J E and Kuiack C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii[J]. Appl Environ Microbiol., 1992,58(5):1451~1458.
    [132]刘晓芳.高效溶磷菌株的筛选及其生物特性研究[D].山东大学,2004.
    [133] Cunningham J E, Kuiack C, Komendant K E. Viability of Penicillium bilaji and Colletotrichum gloeosporioides conidia from liquid cultures[J]. Canadian Journal of Botany , 1990,68: 2270~2274.
    [134]刘丽丽,陈立新,王广朝,等.磷细菌9320-SD的溶磷动力学研究[J].南开大学学报,2002, 35(1):28~32.
    [135] Isbelia Reyes, Louis Bernier, Régis R Simard, et al. Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants[J]. FEMS Microbiology Ecology,1999,28:291~295.
    [136] Robinson J S, Syers J K, Bolan N S. Importance of proton supply and calcium-sink size in the dissolution of phosphate rock materials of different reactivity in soil. J Soil Sci.,1992,43:447~459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700