带有输入饱和的挠性航天器姿态跟踪鲁棒控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际的航天任务中,燃料的消耗、有效载荷的运动以及挠性附件(如太阳能帆板、天线等)的振动,致使航天器的惯量参数是时变的且不能精确获知;同时在轨航天器又不可避免地受到各种外部干扰的作用(如太阳光压、气动力矩等),这些因素使得航天器姿态控制系统是一个变参数、强耦合以及存在外干扰的多变量非线性系统。此外由于执行机构自身的物理限制,导致其输出是饱和受限的,这种饱和特性的存在将大大降低航天器姿态控制性能,严重时将导致闭环系统不稳定,从而使整个航天任务失败。因此针对上述问题,设计一种控制方法确保带有执行机构饱和非线性的挠性航天器姿态跟踪控制具有很好的跟踪性能便显得十分重要。正是在这种背景下,本论文结合国家自然科学基金(60774062)、高等学校博士学科点专项科研基金(20070213061)等基础研究课题,从理论和应用两方面对挠性航天器的动力学建模、姿态跟踪控制等方面进行了深入的研究,其研究内容主要包括以下几个方面:
     首先,根据欧拉定理分别建立了用欧拉角和四元数描述的挠性航天器姿态运动学方程;并基于真—伪坐标形式的Lagrange方程,利用Hamilton原理建立了挠性航天器的动力学模型,且应用模态分析法,进一步将挠性航天器的耦合方程规范化,使之适用于姿态跟踪控制系统的分析与设计。
     其次,针对转动惯量未知、存在外部干扰以及控制输入饱和受限的轮控挠性航天器姿态跟踪问题,基于其线性化后的姿态运动学方程,利用自适应反步控制提出了两种不同的姿态跟踪鲁棒控制方法:第一种控制方法将反步控制与L_2增益控制相结合,它通过设计一个鲁棒控制器和构造一个附加的输入误差信号系统,使所设计的控制器在其幅值不超过执行机构最大输出力矩的同时,保证闭环系统的一致最终有界稳定性且姿态跟踪性能对外部干扰具有??2小增益。为了克服第一种方法只能保证姿态有界跟踪的缺点,充分利用滑模控制对系统不确定性的鲁棒控制能力,又提出了一种自适应反步滑模控制策略,并基于Lyapunov方法证明了该控制方法能够实现对期望姿态的全局渐近跟踪控制。仿真结果表明上述所设计的两种方法在实现姿态高精度跟踪控制的同时,对系统不确定性和外部干扰具有很强的鲁棒性。
     同时,针对挠性航天器模型中存在参数不确定性、控制输入受限及外部干扰的姿态跟踪控制问题,提出了一种非线性姿态输出反馈控制方法。该方法用神经网络来逼近和估计系统中的不确定项、未知挠性部件振动模态以及外部干扰;运用有界的反正切函数来设计控制器,从而保证所设计的控制器在执行机构输出受限且不需要任何角速度测量信息的情况下实现对姿态跟踪误差的一致最终有界稳定控制。仿真结果表明,尽管不需要角速度反馈且存在受限的控制输入,所设计的控制器不但可以快速地、高精度地完成姿态跟踪操作,而且对系统不确定性具有很强的鲁棒性。
     最后,将上述研究结果应用于某型挠性航天器进行大量的数学仿真,仿真结果进一步验证本文设计的三种姿态跟踪控制方案能够有效地处理系统不确定性、外部干扰以及控制输入饱和受限问题。
In practical space missions, note that during operation the mass properties of thespacecraft may be uncertain or may change due to onboard payload motion, rotation offlexible appendages such as solar arrays, or fuel consumptions, and an orbital spacecraftis also affected by external disturbances, such as solar radiation, aerodynamic drags, etc.All these issues lead to the uncertain coupling nonlinear attitude system with multi-inputand multi-output. Moreover, due to physical limitation, momentum exchange devices orthrusters as actuator for the spacecraft attitude control plant fail to render infinite controltorque and thus the actuator outputs are constantly bounded or constrained. Once the ac-tuator reaches its input limit, the efforts to further increase the actuator output would notresult in any variation in the output, and then this usually deteriorates the system perfor-mance and even results in system instability. Consequently, it is very desirable to takeinput saturation into account during the attitude controller design. In this thesis, dynamicmodeling of spacecraft with ?exible appendages and attitude tracking control are deeplystudied, which is funded by the National Natural Science Foundation of China(ProjectNumber: 60774062) and the Research Fund of the Doctoral Program of Higher Educa-tion of China(Project Number: 20070213061), and the main contents of this thesis arepresented as follows:
     Firstly, flexible spacecraft attitude kinematics described by Euler angle and unitquaternion is presented based upon Euler Theorem, and an approximately analytical dy-namic model of spacecraft is derived using Hamilton’s principle with discretization bythe assumed mode method. The obtained mathematical model is then converted to statespace form for the purpose of attitude tracking control design.Secondly, two robust adaptive backstepping attitude tracking control schemes aredeveloped for a moment exchange devices controlled spacecraft based on the linearizedattitude kinematics, in which the unknown inertia matrix, disturbances torques and in-put saturation are considered. The first control strategy combines backstepping techniquewith L_2 gain control. In this approach, a robust controller and an auxiliary input signalerror system are incorporated to treat the input saturation problem. Although ??2 trackingperformance with the desirable attenuation level to disturbances can be achieved with this proposed control scheme, it can only guarantee uniformly ultimately bounded stability ofattitude tracking error. For the purpose of achieving globally asymptotically attitude track-ing control, an adaptive backstepping sliding mode control scheme is then proposed withthe advantages of sliding mode control for its robustness to system unmodeled dynamic.Furthermore, the benefits of these two control approaches are analytically authenticatedand also validated via simulation study.
     Moreover, a theoretical framework for attitude tracking control using quaternionmeasurements only is developed and applied to the flexible spacecraft with external dis-turbance, parameter uncertainties and control input constraint taken into account simul-taneously. In contrast to the most existing approaches, the proposed controller does notrequire the knowledge of body angular velocity and the flexible modal vibrations as well.By employing neural network approximate technique, the problem of unknown systemdynamics is explicitly addressed in the control design. In the closed-loop systems, it isshown that uniform ultimate boundedness of all signals is guaranteed, and the attitudecan track the reference trajectories as close as possible. Moreover, the derived adaptiveattitude tracking controller can ensure that the controller rigorously enforces actuator-magnitude saturation constraints. Numerical simulation results are also presented whichnot only highlights the ensuring closed-loop performance benefits from the control lawderived here but also illustrates its robustness in face of external disturbances and systemuncertainties.
     Last but not least, the details of system responses are numerically simulated in anorbital flexible spacecraft in conjunction with the above proposed three novel attitudetracking control laws. It is shown that parametric uncertainty and unmodeled dynamicof the attitude system, external disturbances and even input saturation can be explicitlyaddressed by our proposed controllers with perfect attitude tracking performance guar-anteed. Moreover, theirs benefits of theoretical and engineering practice are also high-lighted.
引文
1 S. R. Vadali. Variable Structure Control of Spacecraft Large Attitude Maneuvers[J].Journal of Guidance Control and Dynamics, 1986, 9(3):235–239.
    2 Q. L. Hu, G. F. Ma. Variable Structure Control and Active Vibration Suppressionof Flexible Spacecraft During Attitude Maneuver[J]. Aerospace Science and Tech-nology, 2005, 9(4):307–317.
    3 J. D. Boskovic, S. M. Li, R. K. Mehra. Robust Adaptive Variable Structure Controlof Spacecraft under Control Input Saturation[J]. Journal of Guidance Control andDynamics, 2001, 24(1):14–22.
    4 S. C. Lo, Y. P. Chen. Smooth Sliding-mode Control for Spacecraft Attitude Track-ing Maneuvers[J]. Journal of Guidance Control and Dynamics, 1995, 18(6):1345–1349.
    5 J. Mehrdad, S. Nasser, M. Hamidreza. Robust Tracking Control of Attitude Satel-lite with Using New Ekf for Large Rotational Maneuvers[C]. AIAA Guidance,Navigation, and Control Conference and Exhibit, Austin, Texas, 2003:5785–5794.
    6 Z. X. Li, B. L. Wang. Robust Attitude Tracking Control of Spacecraft in thePresence of Disturbances[J]. Journal of Guidance Control and Dynamics, 2007,30(4):1156–1159.
    7 J. D. Boskovic, S. M. Li, R. K. Mehra. Robust Tracking Control Design for Space-craft under Control Input Saturation[J]. Journal of Guidance Control and Dynamics,2004, 27(4):627–633.
    8 E. D. Jin, Z. W. Sun. Robust Attitude Tracking Control of Flexible Spacecraft forAchieving Globally Asymptotic Stability[J]. International Journal of Robust andNonlinear Control, 2009, 19(11):1201–1223.
    9卜劭华,宋斌.航天器姿态跟踪系统的自适应滑模控制[J].控制工程, 2008,18(S1):38–41.
    10宋斌,卜劭华,颜根廷.航天器姿态跟踪系统的非线性鲁棒自适应控制[J].上海航天,2009,26(5):1–6.
    11林壮,段广仁,宋申民.刚体航天器姿态跟踪的高阶滑模控制器设计[J].控制与决策,2009,24(11):1753–1756.
    12靳永强,刘向东,侯朝祯.含有参数不确定性的挠性航天器姿态跟踪滑模控制[J].控制理论与应用,2009,26(3):299–304.
    13 M. S. Chen, Y. R. Hwang, M. Tomizuka. A State-dependent Boundary Layer De-sign for Sliding Mode Control[J]. IEEE Transactions on Automatic Control, 2002,47(10):1677–1681.
    14 H. H. Choi. Lmi Based Sliding Surface Design for Integral Sliding Mode Controlof Mismatched Uncertain Systems[J]. IEEE Transactions on Automatic Control,2007, 52(4):736–742.
    15 S. Kohn-Rich, R. Y. Chiang, H. Flashner. Robust Fuzzy Logic Attitude TrackingControl[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Austin, Texas, 2003:5826–5832.
    16 J. Ahmed, V. T. Coppola, D. S. Bernstein. Adaptive Asymptotic Tracking of Space-craft Attitude Motion with Inertia Matrix Identification[J]. Journal of GuidanceControl and Dynamics, 1998, 21(5):684–691.
    17 W. C. Luo, Y. C. Chu, K. V. Ling. Inverse Optimal Adaptive Control for Atti-tude Tracking of Spacecraft[J]. IEEE Transactions on Automatic Control, 2005,50(11):1639–1654.
    18 N. A. Chaturvedi, D. S. Bernstein, J. Ahmed, et al. Globally Convergent AdaptiveTracking of Angular Velocity and Inertia Identification for a 3-dof Rigid Body[J].IEEE Transactions on Control Systems Technology, 2006, 14(5):841–853.
    19 C. J. Li, G. F. Ma. Adaptive Backstepping Control for Attitude Tracking of a Space-craft[C]. 2007 IEEE International Symposium on Industrial Electronics, Caixanova- Vigo, Spain, 2007:83–88.
    20 D. Seo, M. R. Akella. High-performance Spacecraft Adaptive Attitude-trackingControl Through Attracting-manifold Design[J]. Journal of Guidance Control andDynamics, 2008, 31(4):884–891.
    21 S. K. Scarritt. Nonlinear Model Reference Adaptive Control for Satellite AttitudeTracking[C]. AIAA Guidance, Navigation and Control Conference and Exhibit,Honolulun, Hawaii, 2008:7165–7175.
    22 X. Liao, Y. D. Song. Attitude Tracking of Crew Exploration Vehicles (cevs) Drivenby Nonlinear on Ff Actuators[C]. AIAA Guidance, Navigation and Control Con-ference and Exhibit, Hilton Head, South Carolina, 2007:6688–6709.
    23 W. C. Cai, X. H. Liao, Y. D. Song. Indirect Robust Adaptive Fault-tolerant Controlfor Attitude Tracking of Spacecraft[J]. Journal of Guidance Control and Dynamics,2008, 31(5):1456–1463.
    24朱良宽,马广富,胡庆雷.挠性航天器鲁棒后步滑模姿态跟踪及主动振动控制[J].控制与决策,2008,23(5):134–140.
    25李争学,王本利,马兴瑞.挠性附件航天器的鲁棒姿态跟踪控制[J].宇航学报,2009, 30(3):974–980.
    26 R. Sharma, A. Tewari. Optimal Nonlinear Tracking of Spacecraft Attitude Maneu-vers[J]. IEEE Transactions on Control Systems Technology, 2004, 12(5):677–682.
    27 W. C. Luo, Y. C. Chu, K. V. Ling. H-infinity Inverse Optimal Attitude-trackingControl of Rigid Spacecraft[J]. Journal of Guidance Control and Dynamics, 2005,
    28(3):481–493.
    28 C. Pukdeboon, A. S. Zinober. Optimal Sliding Mode Controllers for Attitude Track-ing of Spacecraft[C]. 18th IEEE International Conference on Control Applications,Saint Petersburg, Russia, 2009:1708–1713.
    29 A. K. Sanyal, N. A. Chaturvedi. Almost Global Robust Attitude Tracking Controlof Spacecraft in Gravity[C]. AIAA Guidance, Navigation and Control Conferenceand Exhibit, Honolulu, Hawaii, 2008:6979–6988.
    30 A. Sanyal, Z. Lee-Ho. Attitude Tracking Control of a Small Satellite in Low EarthOrbit[C]. AIAA Guidance, Navigation, and Control Conference, Chiago, Illinois,2009:5902–1916.
    31 Z. Zhou, R. Colgren. Spacecraft Nonlinear Attitude Tracking Control with Non-constant Rate Command[C]. AIAA Guidance, Navigation, and Control Conferenceand Exhibit, Providence, Rhode Island, 2004:5128–5138.
    32王芳,战毅,张洪华.有扰情况下航天器全局稳定姿态跟踪控制[J].宇航学报,2007, 28(2):470–474.
    33袁长清,李俊峰,王天舒,等.基于逆系统方法的航天器姿态跟踪最优鲁棒控制[J].工程力学,2008,25(2):214–218.
    34 Q. Yang, C. Gang, X. Min. The Nonlinear Controller Designing for SpacecraftLarge Angle Attitude State Tracking[C]. 14th AIAA/AHI Space Planes and Hyper-sonic Systems and Technologies Conference, Canberra, Australia, 2006:67–74.
    35 A. Sanyal, A. Fosbury, N. Chaturvedi, et al. Inertia-free Spacecraft Attitude Track-ing with Disturbance Rejection and Almost Global Stabilization[J]. Journal ofGuidance Control and Dynamics, 2009, 32(4):1167–1178.
    36霍伟.基于无源性的航天器姿态跟踪控制设计[J].空间控制技术与应用,2008, 34(2):3–13.
    37 M. Malekzadeh, A. Naghash. Robust Nonlinear Tracking Control Design for Flexi-ble Spacecraft[C]. AIAA Guidance, Navigation, and Control Conference, Chicago,Illinois, 2009:6187–6205.
    38 H. Yoon, P. Tsiotras. Spacecraft Adaptive Attitude and Power Tracking with Vari-able Speed Control Moment Gyroscopes[J]. Journal of Guidance Control and Dy-namics, 2002, 25(6):1081–1090.
    39 H. Yoon, P. Tsiotras. Adaptive Spacecraft Attitude Tracking Control with Actu-ator Uncertainties[C]. AIAA Guidance, Navigation, and Control Conference andExhibit, San Francisco, California, 2005:6392–6404.
    40 W. MacKunis, K. Dupree, N. Fitz-Coy, et al. Daptive Satellite Attitude Control inthe Presence of Inertia and Cmg Gimbal Friction Uncertainties[C]. IAA Guidance,Navigation and Control Conference and Exhibit, 2007:6432–6438.
    41刘军,韩朝.新型执行机构的航天器鲁棒自适应姿态跟踪控制[C].第26届中国控制会议,云南昆明,2007:664–669.
    42刘军,韩朝.使用变速控制力矩陀螺的航天器鲁棒自适应姿态跟踪控制[J].航空学报,2008,1(1):159–164.
    43金磊,徐世杰.采用单框架控制力矩陀螺和动量轮的航天器姿态跟踪控制研究[J].宇航学报,2008,29(3):916–921.
    44 R. Kristiansen, P. J. Nicklasson, J. T. Gravdahl. Satellite, Attitude Control byQuaternion-based Backstepping[J]. IEEE Transactions on Control Systems Tech-nology, 2009, 17(1):227–232.
    45 H. Wong, M. S. de Queiroz, V. Kapila. Adaptive Tracking Control Using Synthe-sized Velocity from Attitude Measurements[J]. Automatica, 2001, 37(6):947–953.
    46 B. T. Costic, D. M. Dawson, V. Kapila. Quaternion-based Adaptive Attitude Track-ing Controller without Velocity Measurements[J]. Journal of Guidance Control andDynamics, 2001, 24(6):1214–1222.
    47 S. Tanygin, A. Graphics, I. Malvern. Generalization of Adaptive Attitude Track-ing[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey,California, 2002:4833–4844.
    48 S. Di Gennaro. Output Attitude Tracking for Flexible Spacecraft[J]. Automatica,2002, 38(10):1719–1726.
    49 A. Tayebi. A Velocity-free Attitude Tracking Controller for Rigid Spacecraft[C].Proceedings of the 46th IEEE Conference on Decision and Control, New York,2007:303–307.
    50 A. Tayebi. Unit Quaternion-based Output Feedback for the Attitude Tracking Prob-lem[J]. IEEE Transactions on Automatic Control, 2008, 53(6):1516–1520.
    51 D. Seo, M. R. Akella. Separation Property for the Rigid-body Attitude Track-ing Control Problem[J]. Journal of Guidance Control and Dynamics, 2007,30(6):1569–1576.
    52 R. Kristiansen, A. Loria, A. Chaillet, et al. Spacecraft Relative Rotation Trackingwithout Angular Velocity Measurements[J]. Automatica, 2009, 45(3):750–756.
    53 Y. D. Song, W. C. Cai. Quaternion Observer-based Model-independent AttitudeTracking Control of Spacecraft[J]. Journal of Guidance Control and Dynamics,2009, 32(5):1476–1482.
    54 C. L. Wang. Semiglobal Practical Stabilization of Nonholonomic Wheeled MobileRobots with Saturated Inputs[J]. Automatica, 2008, 44(3):816–822.
    55 T. Hu, Z. Lin. Control Systems with Actuator Saturation: Analysis and Design[M].Birkhauser Boston, 2001.
    56 D. V. Iourtchenko. Solution to a Class of Stochastic Lq Problems with BoundedControl[J]. Automatica, 2009, 45(6):1439–1442.
    57 F. Tyan, D. S. Bernstein. Antiwindup Compensator Synthesis for Systems withSaturation Actuators[J]. International Journal of Robust and Nonlinear Control,1995, 5(5):521–537.
    58 W. M. Haddad, V. Kapila. Antiwindup Controllers for Systems with Input Nonlin-earities[J]. Journal of Guidance Control and Dynamics, 1996, 19(6):1387–1390.
    59 F. Wu, B. Lu. Anti-windup Control Design for Exponentially Unstable Lti Systemswith Actuator Saturation[J]. Systems Control Letters, 2004, 52(3-4):305–322.
    60 G. Herrmann, M. C. Matthew, C. Turner, et al. Anti-windup Synthesis for NonlinearDynamic Inversion Controllers[C]. Proceeding of the 5th IFAC Symposium onRobust Control Design, Roulousse, France, 2006:80–86.
    61 G. Grimm, J. Hatfield, I. Postlethwaite, et al. Antiwindup for Stable Linear Sys-tems with Input Saturation: An Lmi-based Synthesis[J]. IEEE Transactions onAutomatic Control, 2003, 48(9):1509–1525.
    62 G. Grimm, A. R. Teel, L. Zaccarian. Linear Lmi-based External Anti-windup Aug-mentation for Stable Linear Systems[J]. Automatica, 2004, 40(11):1987–1996.
    63 S. Sajjadi-Kia, F. Jabbari. Combining Anti-windup and Over Saturation[C]. AIAAGuidance, Navigation and Control Conference and Exhibit, Hilton Head, SouthCarolina, 2007:6410–6421.
    64 S. Boyd, L. EI Ghaoul, E. Feron, et al. Linear Matrix Inequalities in System andControl Theory[M]. Society for Industrial Mathematics, 1994.
    65 J. M. da Silva, I. Ghiggi, S. Tarbouriech. Non-rational Dynamic Output Feedbackfor Time-delay Systems with Saturating Inputs[J]. International Journal of Control,2008, 81(4):557–570.
    66 S. S. Yoon, J. K. Park, T. W. Yoon. Dynamic Anti-windup Scheme for FeedbackLinearizable Nonlinear Control Systems with Saturating Inputs[J]. Automatica,2008, 44(12):3176–3180.
    67 J. M. Maciejowski. Predictive Control: With Constraints[M]. Prentice Hall, 2002.
    68 D. Q. Mayne, J. B. Rawlings. Constrained Model Predictive Control: Stability andOptimality[J]. Automatica, 2001, 37(3):483–483.
    69 L. Chisci, J. A. Rossiter, G. Zappa. Systems with Persistent Disturbances: Predic-tive Control with Restricted Constraints[J]. Automatica, 2001, 37(7):1019–1028.
    70 D. Famularo, D. Martino, M. Mattei. Constrained Control Strategies to ImproveSafety and Comfort on Aircraft[J]. Journal of Guidance Control and Dynamics,2008, 31(6):1782–1792.
    71 J. J. Yan. Sliding Mode Control Design for Uncertain Time-delay Systems Sub-jected to a Class of Nonlinear Inputs[J]. International Journal of Robust and Non-linear Control, 2003, 13(6):519–532.
    72 J. Lam, H. Gao, S. Xu, et al. H-infinity and L-2/l Infinity Model Reduction forSystem Input with Sector Nonlinearities[J]. Journal of Optimization Theory andApplications, 2005, 125(1):137–155.
    73 F. M. Yu, H. Y. Chung, S. Y. Chen. Fuzzy Sliding Mode Controller Design forUncertain Time-delayed Systems with Nonlinear Input[J]. Fuzzy Sets and Systems,2003, 140(2):359–374.
    74 J. Farrell, M. Polycarpou, M. Sharma. Adaptive Backstepping with Magnitude,Rate, and Bandwidth Constraints: Aircraft Longitude Control[C]. Annual Ameri-can Control Conference (ACC 2003), Denver, Co, 2003:3898–3904.
    75 J. Zhou, M. J. Er, Y. Zhou. Adaptive Neural Network Control of Uncertain Nonlin-ear Systems in the Presence of Input Saturation[C]. 9th International Conferenceon Control, Automation, Robotics and Vision, SINGAPORE, 2006:590–594.
    76 A. Leonessa, W. M. Haddad, T. Hayakawa, et al. Adaptive Control for NonlinearUncertain Systems with Actuator Amplitude and Rate Saturation Constraints[J].International Journal of Adaptive Control and Signal Processing, 2009, 23(1):73–96.
    77 P. G. He, S. Jagannathan. Reinforcement Learning Neural-network-based Con-troller for Nonlinear Discrete-time Systems with Input Constraints[J]. IEEE Trans-actions on Systems Man and Cybernetics Part B-Cybernetics, 2007, 37(2):425–436.
    78 A. Kulkarni, S. Purwar. Wavelet Based Adaptive Backstepping Controller for aClass of Nonregular Systems with Input Constraints[J]. Expert Systems with Ap-plications, 2009, 36(3):6686–6696.
    79 Y. Hong, B. Yao. A Globally Stable High-performance Adaptive Robust ControlAlgorithm with Input Saturation for Precision Motion Control of Linear MotorDrive Systems[J]. IEEE-Asme Transactions on Mechatronics, 2007, 12(2):198–207.
    80 L. Sonneveldt, Q. P. Chu, J. A. Mulder. Nonlinear Flight Control Design UsingConstrained Adaptive Backstepping[J]. Journal of Guidance Control and Dynam-ics, 2007, 30(2):322–336.
    81 S. Purwar, I. N. Kar, A. N. Jha. Adaptive Output Feedback Tracking Control ofRobot Manipulators Using Position Measurements only[J]. Expert Systems withApplications, 2008, 34(4):2789–2798.
    82 A. Bateman, J. Hull, Z. L. Lin. A Backstepping-based Low-and-high Gain Designfor Marine Vehicles[J]. International Journal of Robust and Nonlinear Control,2009, 19(4):480–493.
    83 M. Abu-Khalaf, F. L. Lewis, J. Huang. Policy Iterations on the Hamilton-jacobi-isaacs Equation for H-infinity State Feedback Control with Input Saturation[J].IEEE Transactions on Automatic Control, 2006, 51(12):1989–1995.
    84 Y. H. Luo, H. G. Zhang. Approximate Optimal Control for a Class of NonlinearDiscrete-time Systems with Saturating Actuators[J]. Progress in Natural Science,2008, 18(8):1023–1029.
    85 P. P. Biswas, S. Ray, A. N. Samanta. Nonlinear Control of High Purity DistillationColumn under Input Saturation and Parametric Uncertainty[J]. Journal of ProcessControl, 2009, 19(1):75–84.
    86 K. Graichen, M. Zeitz. Feedforward Control Design for Finite-time TransitionProblems of Nonlinear Systems with Input and Output Constraints[J]. IEEE Trans-actions on Automatic Control, 2008, 53(5):1273–1278.
    87 B. Wie, J. B. Lu. Feedback-control Logic for Spacecraft Eigenaxis Rotations underSlew Rate and Control Constraints[J]. Journal of Guidance Control and Dynamics,1995, 18(6):1372–1379.
    88张美华,张丙文.轮控小卫星姿态大角度机动递阶饱和控制器设计[J].上海航天,2005,22(3):15–18.
    89 S. Di Gennaro. Stabilization of Rigid Spacecraft with Uncertainties and Input Sat-uration in a Central Gravitational Field[C]. 36th IEEE Conference on Decision andControl, San Diego, Ca, 1997:4204–4209.
    90 A. Laib. Adaptive Output Regulation of Robot Manipulators under Actuator Con-straints[J]. IEEE Transactions on Robotics and Automation, 2000, 16(1):29–35.
    91 M. R. kella, A. Valdivia, G. R. Kotamraju. Elocity-free Attitude Controllers Subjectto Actuator Magnitude and Rate Saturations[C]. Blacksburg, Va, 2002:59–666.
    92 H. Bang, M. J. Tahk, H. D. Choi. Large Angle Attitude Control of Spacecraft withActuator Saturation[J]. Control Engineering Practice, 2003, 11(9):989–997.
    93 R. J. Wallsgrove, M. R. Akella. Globally Stabilizing Saturated Attitude Controlin the Presence of Bounded Unknown Disturbances[C]. AAS/AIAA 14th SpaceFlight Mechanics Meeting, Maui, HI, 2004:957–963.
    94 I. Ali, G. Radice, J. Kim. Backstepping Control Design with Actuator TorqueBound for Spacecraft Attitude Maneuver[J]. Journal of Guidance Control and Dy-namics, 2010, 33(1):254–259.
    95周连文,周军.控制受限的挠性航天器大角度机动变结构控制[J].华北工学院学报,2004,25(4):246–249.
    96 Q. Hu. Adaptive Output Feedback Sliding-mode Manoeuvring and Vibration Con-trol of Flexible Spacecraft with Input Saturation[J]. IET Control Theory and Ap-plications, 2008, 2(6):467–478.
    97 Q. L. Hu. Robust Adaptive Sliding Mode Attitude Maneuvering and VibrationDamping of Three-axis-stabilized Flexible Spacecraft with Actuator SaturationLimits[J]. Nonlinear Dynamics, 2009, 55(4):301–321.
    98胡庆雷,马广富,姜野.控制受限航天器时变滑模姿态控制[J].哈尔滨工业大学学报,2008,40(9):9530–9535.
    99 Q. L. Hu. Variable Structure Maneuvering Control with Time-varying Sliding Sur-face and Active Vibration Damping of Flexible Spacecraft with Input Saturation[J].Acta Astronautica, 2009, 64(11-12):1085–1108.
    100 Ho., J. Y. L. Direct Path Method for Flexible Multibody Spacecraft Dynamics[J].J. Spacecraft, 1977, 2:102–110.
    101 P. W. Likins. Dynamic Analysis of System of Hinge-connected Rigid Bodies withNon Rigid Appendages[J]. Int. J. Solids and Structures, 1973, 9(12):1473–1487.
    102 R. K. Cavin, A. R. Dusto. Hamilton’s Principle: Finite Element Methods and Flex-ible Body Dynamics[J]. AIAA J., 1977, 15(12):1684–1690.
    103洪嘉振,潘振宽.柔性多体航天器动力学[J].宇航学报, 1992, 4:59–67.
    104 R. J. Gugan. Reduction of Stiffness and Mass Matrices[J]. AIAA JOURNAL, 1965,39(2):380–386.
    105章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,1998.
    106 M. Krstic, I. Kanellakopoulos, P. V. Kokotovic. Nonlinear and Adaptive ControlDesign[M]. NewYork: Wiley, 1995.
    107 J. E. Slotine, W. Li.应用非线性控制[M].北京:机械工业出版社, 2006.
    108 R. Sepulchre, M. Jankovic, P. V. Kokotoiv. Constructive Nonlinear Control[M].London: Springer, 1996.
    109冯纯伯,张侃健.非线性系统的鲁棒控制[M].北京:科学出版社, 2004.
    110李士勇.模糊控制.神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996.
    111赵雪萍.基于bp网络的容错控制的研究[D].郑州:郑州大学, 2005.
    112 B. Igelnik, Y. H. Pao. Stochastic Choice of Basis Functions in Adaptive Func-tion Approximation and the Functional-link Net[J]. IEEE Transactions on NeuralNetworks, 1995, 6(6):1320–1329.
    113王莉,王庆林. Backstepping设计方法及应用[J].自动化博览, 2004:57–61.
    114 K. S. Kim, Y. Kim. Robust Backstepping Control for Slew Maneuver Using Non-linear Tracking Function[J]. IEEE Transactions on Control Systems Technology,2003, 11(6):822–829.
    115 S. N. Singh, W. Yim. Nonlinear Adaptive Backstepping Design for Spacecraft At-titude Control Using Solar Radiation Pressure[C]. Proceedings of the IEEE Con-ference on Decision and Control, Las Vegas, NV, United states, 2002:1239–1244.
    116 Q. L. Hu. Robust Adaptive Backstepping Attitude and Vibration Control with L-2-gain Performance for Flexible Spacecraft under Angular Velocity Constraint[J].Journal of Sound and Vibration, 2009, 327(3-5):285–298.
    117 J. Y, Q. Hu. Adaptive Backstepping Fault-tolerant Control for Flexible Spacecraftwith Unknown Bounded Disturbances and Actuator Failures[J]. ISA Transactions,2010, 49(1):57–69.
    118郑敏捷,徐世杰.采用退步方法设计的航天器姿态倾斜机动控制[J].北京航空航天大学学报,2007,33(10):1233–1236.
    119 L. L. Show, J. C. Juang. Satellite Large Angle Tracking Control Design: ThrusterControl Approach[C]. Annual American Control Conference (ACC 2003), Denver,Co, 2003:1098–1103.
    120 E. D. Jin, Z. W. Sun. Robust Controllers Design with Finite Time Convergence forRigid Spacecraft Attitude Tracking Control[J]. Aerospace Science and Technology,2008, 12(4):324–330.
    121管萍,陈家斌.挠性卫星的自适应模糊滑模控制[J].航天控制, 2005, 22(4):62–67.
    122 P. C. Chen, A. C. Huang. Adaptive Multiple-surface Sliding Control of HydraulicActive Suspension Systems Based on the Function Approximation Technique[J].Journal of Vibration and Control, 2005, 11(5):685–706.
    123 H. J. Xu, P. A. Ioannou. Robust Adaptive Control of Linearizable Nonlinear SingleInput Systems with Guaranteed Error Bounds[J]. Automatica, 2004, 40(11):1905–1911.
    124 Q. L. Hu. Sliding Mode Maneuvering Control and Active Vibration Damping ofThree-axis Stabilized Flexible Spacecraft with Actuator Dynamics[J]. NonlinearDynamics, 2008, 52(3):227–248.
    125 A. M. Zou, K. D. Kumar. Adaptive Attitude Control of Spacecraft without Veloc-ity Measurements Using Chebyshev Neural Network[J]. Acta Astronautica, 2010,66(5-6):769–779.
    126胡庆雷,肖冰,马广富.带有干扰的挠性卫星非线性姿态输出反馈控制[J].动力学与控制学报,2009,7(4):379–384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700