控制力矩陀螺系统伺服控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以航天器姿态控制应用为课题背景,分析了控制力矩陀螺(CMG)伺服系统中,飞轮子系统高转速下稳速精度要求高,框架低转速下速率精度和平稳性要求高的特点,对CMG伺服系统中飞轮子系统与框架伺服系统进行了相应的控制分析,并设计实现了锁相环稳速系统。
     首先,本论文建立了CMG飞轮子系统数学模型,分析对比了PID、积分分离法与锁相环(PLL)控制方法,结合PLL稳速系统的实现,进行了系统设计与仿真。仿真分析表明锁相环控制采用10状态鉴频检相器的控制性能显著优于3状态鉴频检相器锁相环。
     其次,基于Stribeck摩擦模型,分析了摩擦力矩对CMG系统框架控制的影响,对于两种低速性能的补偿方法——高频振颤补偿方法与锁相环低速调速控制方法进行了可行性与有效性分析。
     随后,本文设计实现了锁相环控制系统,以10状态流的专用锁相环芯片UC3633为核心,以TL494芯片实现PWM信号生成与限流,以CPLD—EPM7064S实现换向等逻辑控制。实际系统的运行实验验证了所设计的系统功能均良好实现。
     最后,依据飞轮稳速系统的设计参数,进行了飞轮系统的稳速实验,在试验的两个转速设置点,锁相环电路稳速精度优于0.1%。同时根据实验现象,提出了锁相环飞轮稳速控制系统实现的改进建议。
Taking the background of the applications of spacecraft attitude control, the control moment gyro (CMG) servo system was analyzed in this thesis. For the features that the flywheel subsystem need high steady, high-precision speed control; frame run in low speed, require for high steady, high-precision speed control, corresponding control method was presented to control the flywheel and frame servo system. The traditional PID and other control methods were also analyzed to apply to flywheel and frame system.
     Firstly, this thesis established a mathematical model of CMG flywheel subsystem, compared the advantages and disadvantages of the PID, integral separation and phase-locked loop (PLL) control methods. Then the simulink model and corresponding simulation results of the three control methods was given. Demonstrated the feasibility of PLL control method used in flywheel subsystem.
     Secondly, Stribeck friction model was proposed to analyze the impact of friction torque on the CMG frame motor. And simulated the impact of the friction when frame motor in low-speed. Then dither-smoothed method and phase-locked loop low-speed control method were introduced to compensate friction, and analyzed the effectiveness of this method.
     Later, the paper designed and realized a phase-locked loop control system, used 10 states dedicated PLL chip UC3633 to be the part of the core control in the system, TL494 chip was used for PWM signal generate and CPLD-EPM7064S was used to achieve motor commutation logic. The actual system operation proves that the design functions are well realized.
     Finally, Based on the design parameters of the steady speed flywheel control system, experiments were done at different rotation speeds set point, phase-locked loop circuits have achieved a good steady speed control, steady speed accuracy error of less than 0.1%. Verified the validity of a phase locked loop control system. According to the experiments, Optimized step-down, regulate voltage circuit, using advanced angle compensation methods were recommended for improvement.
引文
1刘付成.控制力矩陀螺在卫星控制系统中的应用.国防科技大学硕士论文.2004.11:44~49
    2 Jerry L.Fausz,David J.Richie,Flywheel Simultaneous Attitude Control and Energy Storage Using a VSCMG Configuration.Proceedings of the 2000 IEEE International Conference on Control Applications Anchorage,Alaska,USA,September 25-27,2000:991~995
    3 Jasim Ahmed,Dennis S.Bernstein,Adaptive Control of a Dual-Axis CMG with an Unbalanced Rotor,Proceedings of the 37th IEEE Conference on Decision and Control Tampa,Florida USA,December 1998:4531~4536
    4张海.控制力矩陀螺控制电路研究与设计.沈阳工业大学硕士学位论文.2008.1:14—18
    5 Daniel Abramovitch.Phase-Locked Loops:A Control Centric Tutorial.To appear in the Proceedings of the 2002 ACC
    6李海涛,房建成.基于CMAC的CMG框架伺服系统摩擦补偿方法研究.系统仿真学报.2008.20:1887:1891
    7 Y.Kusuda,M.Takahashi,Design of Feedback Control System Using Nominal Inputs for Satellite Attitude Maneuver Using Control Moment Gyros,AIAA Guidance,Navigation,and Control Conference 10-13 August 2009.
    8姚嘉,刘刚,房建成.控制力矩陀螺用高速高精度无刷直流电机控制系统.微计算机.2005.21:3~5
    9薛峰,吴捷,锁相技术在电机调速系统中的应用.微电机.19998.32:26~32
    10 William S.phipps,Richard M.Duke,Michael J.harrison,A Novel Three-phase Software Phase-Locked loop, IEEE Trans.Ind.Electron.2006,27: 172~177
    11 Elizabeth Bradley,Using Chaos to Broaden the Capture Range of a Phase-locked Loop.IEEE.Fundamental Theory and application.1993,40: 808~818
    12 Youug Ho Sa,Keon Young Yi,Jin-Oh Kim,An Attitude Control and Stabilization of An Unstructured Object Using Balancing Beam,NewConstruction Mechinery, IEEE Trans.Ind.Electron.2001,39:792~797
    13李肃刚,杨志家.一种改进的全数字锁相环设计.微计算机信息.2005.21:42~44
    14吴云,王天施,杜明娟.积分分离法调节器直流调速系统研究.仿真技术.2009.25:241~243
    15陈鑫,邓小莺.Matlab环境下的全数字锁相环仿真模型.微电子学.2007.37:489~493
    16 A.W.Moore.Phase-Locked loops for motor-speed control[J].IEEE spectrum,April,1973:61-67.
    17 Tal J.Speed control by phase-locked servo systems—new possibilities and limitations[J].IEEE Transactions on Industrial Electronics and control Instrumentation,1977,24(1):118-125.
    18 Manmohan Mittal,Time Domain Modeling and Digital Simulation of Variable-Frequency AC Motor Speed Control Using PLL Technique. IEEE Transactions on Industry Applications.1983.19(2).174~179.
    19 Mahmut Reyhanoglu,Jasper van de Loo,State Feedback Tracking of a Nonholonomic Control Moment,45th IEEE CDC,SanDiego,USA,Dec. 13-15,2006:6156~6161
    20 Dong-Hee Lee,Jin-Woo Ahn.A Wide Range Speed Control Method of Compact High Speed BLDCM using PLL Approach.IEEE. Trans.on Automatic Control.2008:2784~2788
    21 SUN Guofu,GU Qitai,LIU Xuebin.Principle and Implementation of an MC4044-Baed Phase Locked Loop for Constant Speed Control.Tsinghua science and technology.2000.5(4):pp409~413
    22 Daniel Brown,Mason Peck.Energetics of Control Moment Gyroscopes as Joint Actuators.AIAA Guidance,Navigation and Control Conference and Exhibit.2009.32(6):1871~1883.
    23 R.E.Best,Phase-Locked Loops:Design,Simulation,and Application.New York:McGraw-Hill,third ed.,1997
    24 C.A.Karybakas,Theodore L.Laopoulos.Analysis of Unlocked and Acquisition Operation of a Phase-locked speed Control System. IEEE Transactions on Industrial Electronics,1997.44(1).138~140.
    25 Mark A.McEver,Donald J.Leo.Adaptive Low-authority ControlAlgorithms For Precision Space Structures.AIAA Space Technology Conference and Exposition,28-30 Sep.1999.
    26 B Armstrong-Helouvry, D Neevel, T Kusik. New Result in NPID Control:Tracking, Integral Control, Friction Compensation and Experimental Result. Proceedings of the 1999 IEEE International Conference on Robotics&Automation. 1999:837~842
    27王晓东,华清,夏宗夏,王少萍.负载模拟器中的摩擦力及其补偿控制.中国机械工程. 2003, 14(6):511~516
    28曾庆双,秦嘉川.转台伺服系统低速性能分析.中国惯性技术学报.2001.9(2):64~69.
    29 Yazdizadeh A, Khorasani K. Adaptive Friction Compensation Based On The Lyapunov Scheme. Proceedings of the IEEE International Conference on Control Applications, 1996:1060~1065
    30郭维城,毛雅丽,张陈,高红.飞轮系统数学模型建立方法的可行性分析.2008.4.274~276
    31蔡逢煌,杨富文,林鸿.改进型积分分离PID控制的设计.2003.9:41~42
    32李勋,赵旎.动态积分分离PID控制算法在LabVIEW中的实现,河南科技大学学报.2006.27:31~34
    33姜占才,二阶锁相环非线性捕获和非线性跟踪性能研究.电子科技.2004.3:31~34
    34周兆勇,李铁才,杜坤梅.单芯片永磁陀螺马达锁相稳速控制器的实现.电机与控制学报.2002.6(3):213~216.
    35肖龙,杨佩君,汤恩生.基于软件锁相环的电机速度控制系统.航天返回与遥感.2006.27(3):41~46.
    36 P E Dupont. Avoiding Stick-Slip through PD Control. IEEE Transactions on Automatic Control. 1994, 399(5):1094~1097
    37王广雄,何朕,控制系统设计,清华大学出版社,2008.
    38袭著燕,路长厚,潘伟,陈淑荣.带有摩擦前馈补偿的伺服控制器设计的研究.控制与检测.2006.12:33~37.
    39王毅,何朕,苏宝库.摩擦模型的Simulink仿真,电机与控制学报. 2004, 8(1):60-62
    40王京锋,孙纯祥.软件锁相环技术在陀螺用无刷直流电机高精度稳速控制中的应用.微电机.2006.39(2):64~68
    41张卯瑞,梅晓榕,庄显义.高精度液压伺服系统改善低速性能的几项措施.哈尔滨工业大学学报.1998.30:66~69
    42于达仁,徐基豫,孙林,用振颤信号克服液压调速系统中干摩擦影响的机理.汽轮机技术.1992,34:51~54
    43王广雄,苏宝库,高分辨率数字锁相回路的设计.自动化学报.1980.6:189~194
    44 Kuo-Kai SHYU,Yun-Yao Lee,Compensation and Control of Dither-Smoothed Nonlinearities.JSME International Journal.2006,49:512~519
    45 S. Lee, S. M. Tomizuka. Generalized Dither. IEEE Transactions on Information Theory. 1991, 37(1):50~56
    46张彤,王学武,光盘稳速锁相环伺服系统的分析.长春光学精密机械学院学报.1990.13:10~14
    47 J.A.Crawford,Frequency Synthesizer Design Hand-book.Norwood,MA 02062:Artech House,1994.
    48谢玉东,刘延俊,王勇,基于颤振效应的气动比例阀摩擦力补偿研究.震动与冲击.2008.27:107~110
    49 Hidekazu Machida,Michinobu Kambara,kohta Tanaka,Taisuke Yamochi,Fuminori Kobayashi.A PWM Motor Speed Contol System based on the Dual-Loop PLL.IEEE,ICROS-SICE international Joint Conference.2009:418~423
    50 Makoto Iwasaki, Tomohiro Shibata, Nobuyuki Matsui. Disturbance-observer-based Nonlinear Friction Compensation in Table Drive System. IEEE Transactions on Mechatronics. 1999, 4(1):3~8
    51 Young Ho Kim, Frank L. Lewis. Reinforcement Adaptive Learning Neura-net-based Friction Compensation Control for High Speed and Precision. IEEE Transactions on Control Systems Technology. 2000, 8(1):118~126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700