航天器姿态控制系统仿真平台的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器仿真技术作为现代航天工程的关键技术,是实现航天器所担负航天任务的重要保证。因此,在姿态确定、姿态控制和姿态动力学等建模基础上,建立高性能的航天器姿态控制仿真系统是航天器控制系统设计的重要内容。
     本文对航天器姿态控制仿真系统进行了深入的研究,主要内容如下:
     首先,对航天器姿态控制系统进行了整体的研究,总结了其中组件的性能指标、发展状况和类型信息等经验知识。此外,根据实际需求,重点对部分常用的组件进行了数学建模。
     其次,制定了航天器姿态控制仿真系统的接口规范,建立了组件仿真模型,并通过计算实例对比分析了数学模型与仿真模型的误差,验证了仿真模型的有效性。
     最后,采用组件技术建立了航天器姿态控制系统仿真平台,并根据对地定向的近地圆轨道卫星仿真任务的要求,利用仿真平台建立了该仿真任务对应的卫星姿态控制仿真系统,验证了仿真平台的可行性。
As a key technology of modern space engineering, spacecraft simulation technology is a significant guarantee to accomplish the space tasks of spacecrafts. Therefore, based on the modeling of attitude determination, attitude control and attitude dynamics, the main content of spacecraft control system design is to establish a high-performance simulation system of spacecraft attitude control.
     An in-depth research on the simulation platform of spacecraft attitude control system has been done in this paper, and its contents are as follows.
     Firstly, an overall analysis has been made on the spacecraft attitude control system in this paper. The performance data, development situation, type information and other design information of the components in the control system are summed up. In addition, this part also focuses on the mathematical modeling of part of the components that are often used according to actual need.
     Secondly, the interface standards of the simulation system for spacecraft attitude controlling are formulated, and the simulation models of the components are established. By analyzing the errors resulting from comparing the mathematical model and simulation model in real calculation examples, we can verify the validity of the simulation model.
     Finally yet importantly, with the help of component technology, I establish the simulation platform for the spacecraft attitude control system. In addition, according to the simulation task requirements of near-earth satellites with circular orbit that move around the earth, we can set up the simulation system for satellite attitude controlling according to real simulation tasks, and then verify the feasibility of the simulation platform.
引文
1徐庚保,曾莲芝.航天仿真技术的现状及展望.计算机仿真. 2003:8~10.
    2伏洪勇,林宝军,杨新.基于HLA/pRTI的卫星姿轨控系统仿真研究.系统仿真学报. 2006, (18):768~770.
    3见永刚,王志强,张斌,林宝军.基于OMNeT++的卫星姿态控制系统仿真.航天控制. 2008, 26(2):56~59.
    4 James Rumbaugh, Ivor Jacobson, Grady Booch. The unified modeling language user guide. Addison-Wesley Longman. 1999:5~6.
    5 Simulation Interoperability Standards Committee (SISC) of the IEEE Computer Society. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)–IEEE Std 1516-2000, 1516.1-2000, 1516.2-2000. New York: Institute of Electrical and Electronics Engineers, Inc. 2000.
    6符于江.程序设计中结构化方法和面向对象方法的比较.电脑知识与技术. 2008, (7):451~453.
    7周彦,戴剑伟. HLA仿真程序设计.北京:电子工业出版社. 2002:5~7.
    8高志会. HLA/RTI仿真平台的设计与实现.北京邮电大学硕士论文. 2006:10~12.
    9 DMSO HLA Rules 1.3, August 1996. http://www dmso. Mil.
    10孙世霞,黄柯棣. RTI性能测试分析.系统仿真学报. 2005, (17):909~913.
    11 The Institute of Electrical and Electronics Engineers, Inc. IEEE P1516/D5: Draft Standard for Modeling and Simulation(M&S)High Level Architecture (HLA)-Framework and Rules. March 2000:1~5.
    12何文会.航天器仿真平台与数据库设计.国防科学技术大学硕士论文. 2007:17~36.
    13 STK/VO User’s Manual Analytieal Graphies. hic.325 Teehnolo Drive. PA 19355.
    14 Sheila R Marsha, RalPhe C Patric. STK/PL Astrodamies & utilities. Analytieal Graphics. 2007:22~24.
    15 F.L.Markley. Attitude Determination Using Vector Observations and the Singular Value Decomposition. The journal of the Astronautical Sciences. 2006, 36(3):245~258.
    16 JSIMS. Joint Simulation System Federation Object Model.Version 7.1. http://www.jsims.mil/. 2002.
    17 Lv Pin, Zhang Jin-fang. Multi-channel Visual Simulation for DistributedSimulation System. Journal of System Simulation, 2007, 19(6):1291~1295.
    18 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA): Framework and Rules (IEEE Std 1516-2000). USA: The Institute of Electrical and Electronics Engineers, Inc. 2000.12.
    19史扬,金士尧,凌云翔,胡华平.基于HLA框架的新一代分布交互仿真.计算机工程与科学. 1999,21(3):28~33.
    20 Kirk Reinholtz. The ZIPSIM Series of High Pcrformancc, High Fidelity Spacecraft Simulators. http://trs-new.jpl.nasa.gov/dspace/handle/2014/33938. 2004.
    21 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA): Federate Interface Specification (IEEE Std 1516.1-2000). USA: The Institute of Electrical and Electronics Engineers, Inc. 2001.
    22 IEEE Recommended Practice for High Level Architecture (HLA) Federation Development and Execution Process (FEDEP) (IEEE Std 1516.3-2003). USA: The Institute of Electrical and Electronics Engineers, Inc. 2003.4.
    23 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA): Object Model Template (OMT) Specification (IEEE Std 1516.2-2000). USA: The Institute of Electrical and Electronics Engineers, Inc. 2001.3.
    24 Lane Christopher, Axelrad Penina. Formation Design in Eccentric Orbits Using Linearized Equations of Relative Motion. Journal of Guidance, Control and Dynamics, 2006, 1(29).
    25章仁为.卫星轨道姿态动力学与控制.北京航空航天大学出版社,1998:137~312.
    26贺勇军.多卫星系统综合建模与仿真环境的设计与实现.计算机仿真. 2004, (21): 28~31.
    27齐欢,王小平.系统建模与仿真.清华大学出版社, 2004:8~36.
    28 A.D.Narasimhalu, Guest Editor. Speacial Issue on Content based Retrieval. ACM Multinedia System. 2005,2(3):111~124.
    29何丽,胡以华.红外地球敏感器的技术发展趋势.传感器与微系统. 2006, 25 (7):4~6.
    30潘旺华,廖英,赵健康.基于红外地平仪的航天器姿态确定技术.计算机仿真. 2005, 22(9):40~43.
    31魏春岭,张洪华.编队飞行卫星相对轨道的自主确定算法.航天控制, 2003, 3: 41-47.
    32马彦峰,边炳秀.液化气体推进剂在微小卫星推进系统中的应用.空间控制技术与应用. 2008, 34(2): 59-64.
    33朱仁璋,尹艳,汤溢.空间交会N次推力机动状态方程及控制算法.宇航学报, 2005, 26(2): 206-211.
    34周军.航天器控制原理.西北工业大学出版社. 2001:113~134.
    35李国勇,张翠平,郭红戈,曲兵妮.最优控制理论及参数优化.北京:国防工业出版社, 2006: 58~73.
    36 Clohessy W H, Wiltshrie R S. Terminal Guidance System for Satellite Rendezvous. Journal of the Aerospace Sciences, 1960, 27: 653-658, 674.
    37 William A. Podgrski, et al. Gyol-less Attitude Detemination and Control System for Advanced Enviromental Satellites. AIAA-82-1614. 1982.
    38徐晓云.卫星轨道姿态动力学仿真软件平台研究与开发.清华大学硕士论文. 2002:8~9.
    39宋其江,王日新,徐敏强.基于HLA的深空探测系统仿真平台.系统仿真学报. 2008, (20):905~909.
    40刘暾,赵均.空间飞行器动力学.哈尔滨工业大学出版社. 2003:155~160.
    41杨大明.空间飞行器姿态控制系统.哈尔滨工业大学出版社. 2000:100~158.
    42 Wertz James R. Autonomous Navigation and Autonomous Orbits Control in Planetary Orbits as a Means of Reducing Operations Cost. 5th International Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations Pasadena, CA 2003.
    43钱勇.高精度三轴稳定卫星姿态确定和控制系统研究.西北工业大学博士论文. 2002:94~96.
    44孙宝祥,赵健翔,李宝绶.摆动扫描地球敏感器数学模型及飞行试验结果.航天控制. 2000, (2):40~45.
    45黄圳圭.航天器姿态动力学.国防科技大学出版社. 1997:59~78.
    46刘海棠,王凤梅.微型惯性测量组合姿态测试系统.研究与开发. 2004, (9):14~17.
    47 ISI. MATRIXx Version 6.X Document. Integrated System Inc. 1998.
    48邵维忠,杨芙清.面向对象的系统分析.清华大学出版社. 1998:15~16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700