高轨目标交会轨道机动策略规划
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统分析了高轨目标交会飞行任务的轨道机动策略,对各飞行阶段进行了研究分析。高轨目标交会的飞行轨道一般可分为两类:一类是被动飞行轨道,该阶段的飞行时间占据了整个交会飞行任务的大部分。第二类是主动飞行轨道,该阶段需通过主动控制,使轨道按预设定的飞行路径执行飞行任务,第二类轨道正是本文研究的重点。
     对于被动飞行轨道,只需进行考虑摄动影响的无控轨道动力学仿真。该飞行阶段虽然未进行轨道控制,但在实际工程中,轨道的摄动影响不可忽视,尤其对于高轨交会飞行任务,被动飞行轨道具有飞行时间长对摄动影响敏感的特点,这将在很大程度上影响交会飞行各被动飞行阶段间的主动飞行轨道的控制策略。因此,在本文的轨道机动规划策略研究中,被动飞行轨道是与主动飞行轨道的控制策略息息相关的。
     对于主动飞行轨道的轨道机动策略,本文采用了工程上常用的方法:首先得出脉冲变轨策略,然后基于脉冲变轨策略给出有限推力变轨策略。因此本文主动飞行轨道的变轨策略将分为脉冲变轨和有限推力变轨两部分。脉冲变轨策略是基于高轨目标交会任务全过程的,它考虑了燃料消耗的最优性;而有限推力变轨策略的目标是使推力控制的主动飞行轨道尽量逼近脉冲变轨所得到的标称目标轨道,其主要考虑因素是轨道机动的轨控精度。
     最后本文通过全轨道动力学仿真,验证了基于高轨目标交会飞行任务的轨道机动策略是可行的。
This paper systematically analysis the orbital maneuver strategy of high target orbit rendezvous mission on each flight phase. The flight path about the high target orbit rendezvous mission can be generally divided into two categories: One is the coast flight phase. The time of this flight phase occupies most of the rendezvous mission. The second category is the powered flight phase, required by active control during the stage and the orbital flight path will set by the implementation of pre-mission. The second flight phase is the focus of this paper.
     For coast flight phase, the orbital dynamics simulation is without active control only to consider the impact of perturbation. The orbital flight phase, while not controlling, but in practical engineering, orbital perturbations can not be neglected. Especially for high-orbit rendezvous mission, the coast flight phase has a long flight time and it is sensitive to the perturbation, which will greatly impact the orbital control strategy of the powered flight phase which is between the coast flight phases. Therefore, to the orbit maneuver planning strategy in this study, the coast flight phase is closely related to the orbital control strategies during the coast flight phase.
     For powered flight phase of the orbit maneuver, in this paper, the common strategy is to get guidance impulse and perform it by use of finite thrust strategy. So this strategy will be divided into impulse strategy and finite thrust strategy. Impulse strategy is based on the whole process of high-orbit targets rendezvous mission, and the optimization of fuel consumption is considered in this issue. For the finite thrust strategy, its objective is to promote the orbit controlled by the finite thrust approach to the nominal target orbit which is obtained by the impulse. The main consideration is the orbital control precision of orbit maneuver.
     Finally, through the whole orbital dynamics simulation, based on the high target orbit rendezvous mission, the verification of the orbital maneuver strategy is feasible.
引文
1潘科炎,王旭东.航天器交会对接技术.中国军事百科全书:军事航天技术分册条目.北京:军事科学出版社,1991
    2朱仁璋.航天器交会对接技术.国防工业出版社,2007
    3 Wigbert Fehse. Automated Rendezvous and Docking of Spacecraft. Cambridge University Press, 2003
    4林来兴.空间交会对接技术.国防工业出版社,1995
    5 B.Govin, W.Fehse. Guidance and Attitude Control During the Final Approach of an Autonomous Rendezvous Process. LAF 83-359,1983
    6林来兴.四十年空间交会对接技术的发展.航天器工程. 2007(7):70-77
    7潘科炎,王旭东.空间站在轨技术(一)—空间的交会与对接.航天控制. 1983(3)
    8帅氦.国外空间站发展简况.中国航天. 2003(10):79-80
    9闻新,王秀丽,邓宝忠.美国试验小卫星XSS-11系统.中国航天. 2006(7):22-
    25
    10闻新,李东江.美国自主交会技术验证卫星.中国航天.2006(12):31-34.
    11林来兴.美国“轨道快车”计划中的自主空间交会对接技术[J].国际太空,2005(2):23-27
    12范建峰.国外太空站技术的进展和借鉴.太空战专辑(1),1986
    13 Zimpfer D. Autonomous Rendezvous, Capture and In-Space Assembly: Past, Present and Future, in 1st Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, Florida,2005
    14 Matsumoto T. Development of the Proximity Communication System (PROX) on ISS for H-II Transfer Vehicle (HTV) Rendezvous and Proximity Operation, in 21st International Communication Satellite Systems Conference and Exhibit. Yokohama. Japan. 2003
    15 Jean-Sebasiten Ardaens and Simone D.Amico. Spaceborne Autonomous Relative Control System for Dual Satellite Formations [J]. Journal of Guidance Control and Dynamics. 2009,32(6), 1859-1870
    16陈伟玉,李立杰.自动运输飞行器与国际空间站交会[J].飞行器测控学报. 2003,22(1):91-94
    17王永志,王丹阳.同步通信卫星的发射.国防工业出版社,2006
    18 W.Hohmann, Die Erreichbarkeit der Himmelsk orper, Oldenbourg, Munich,1925
    19 B.Barrar. An Analytic Proof that the Hohmann-Type Transfer is the True Minimum Two-Impulse Transfer. Astronautica Acta. 1963(9):1-11
    20 R.F. Hoelker. The Bi-Elliptical Transfer Between Coplanar Circular Orbits. In Advances in Ballistic Missiles and Space Technology Company, 1959
    21 W.H. Clohessy and R.S. Wiltshire. Terminal Guidance System for Satellite Rendezvous [J]. Journal of Aerospace Sciences, 1960(27):653-658
    22 Edelbaum. Minimum Impulse Transfer in the Near Vicinity of a Circular Orbit [J]. AIAA Journal, 1967,5(1):66-73
    23 Prussing J E. Optimal Four-Impulse Time-Fixed Rendezvous in the Vicinity of a Circular Orbit [J]. AIAA Journal,1970,8(7):1221-1228
    24 Prussing J E. Optimal Two-and-Three-Impulse Time-Fixed Rendezvous in the Vicinity of a Circular Orbit [J]. AIAA Journal,1970,8(7):1221-1228
    25 Kasdin, N. J. and Gurfil, P. Canonical Modeling of Relative Spacecraft Motion via Epicyclic Orbital Elements, AIAA 2003-5591
    26 Schaub, H. RelativeOrbit. Geometry Through Classical Orbit Element Differences [J] Journal of Guidance, Control, and Dynamics, 2004,27(5):839–848
    27 D’Amico.S. Relative Orbital Elements as Integration Constants of the Hill’s Equations, DLR, TN 05-08, Cologne, Germany, 2005
    28 Jezewiski D.J. and Donaldson J.D. An Analytic Approach to Optimal Rendezvous Using Clohessy-Wiltshire Equations[J]. Journal of the Astronautical Sciences, 1979,27(3):293-310
    29 Prussing J E. A Class of Optimal Two-Impulse Rendezvous Using Mutiple-Revolution Lambert Solutions. Advances in the Astronautical Sciences, Univelt. Inc. San Diego, CA, 2000(106)
    30 Haijun Shen, Panagiotis Tsiotras. Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions [J]. Journal of Guidance Control and Dynamics, 2003,26(1)
    31 L.A. Rider, Characteristic Velocity for Changing the Inclination of a Circular Orbit to the Equator. ARS Journal , No. 1,1959(29)
    32 J. P. Marec, Optimal Space Trajectaries , Elsevier Scientific Publishing Company,1979
    33 K.G. Eckel. Optimal Transfer between non-coplanar elliptical Orbits, Acta Astronautica, 1962(8):177-192
    34杨嘉墀.航天器轨道动力学与控制.中国宇航出版社,1995
    35 Lawden D F. Optimal Trajectories for Space Navigation. Butterworths, London,1963
    36 Carter T.E. Fuel-Optimal Maneuvers of a Spacecraft Relative to a Point Circular Orbit [J]. Journal of Guidance Control and Dynamics, 1984, 7(6):710-716
    37 Carter T.E. New Form for the Optimal Rendezvous Equations Near A Keplerian Orbit [J]. Journal of Guidance Control and Dynamics, 1990, 13(1):188-191
    38 Carter T.E. and Brient J. Fuel-Optimal Rendezvous for Linearized Equations of Motion [J]. Journal of Guidance Control and Dynamics, 1992, 15(6):1411-1416
    39 Robbins H M. An Analytical Study of the Impulsive Approximation. AIAA J,1966(8):1417-1423
    40 M.H. Kaplan, and Wei yuan. Yang, Finite Burn Effects on Ascent Stage Performance. Journal of Astronautial Sciences. 1982(4): 403-414
    41 R.G.. Melton. Optimal Burn Scheduling for Low-Thrust Orbital Transfers. Journal of Guidance Control and Dynamics, 1989(12):13-18
    42赵旭,李果,李铁寿.基于递推二次规划算法的燃料最优有限推力远地点变轨.航天控制,1997(2):23-28
    43章仁为.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998
    44张玉祥.人造卫星测轨方法.国防工业出版社,2007
    45朱仁璋,汤溢,李颐黎等.航天器交会飞行设计方法研究[J].中国空间科学技术, 2006,26(1):1-8
    46韩京清.自抗扰控制技术.国防工业出版社,2009
    47张云彤.固体远地点发动机点火控制.中国空间科学技术,1990,2
    48李铁寿.静止卫星倾角控制的最优策略.中国空间科学技术,1990(1):36-44
    49张云彤.赤道同步卫星轨道倾角摄动.中国空间科学技术,1981,1
    50 R.R Bate.航天动力学基础.吴鹤鸣,李肇杰译.北京航空航天大学出版社,1989
    51 M.H. Kaplan.空间飞行器动力学与控制.凌福根译.科学出版社,1981
    52罗亚中.空间最优交会路径规划策略研究[D].国防科学技术大学,2007
    53荆武兴.空间飞行器有限推力轨道控制和大角度姿态机动控制[D].哈尔滨工业大学,1994
    54荆武兴.基于交会概念的最省燃料共面有限推力轨道转移方法.哈尔滨工业大学学报,1997,8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700