编队卫星的姿态协同控制与输入时延的补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
编队卫星的姿态协同控制在合成孔径雷达成像和空基干涉测量等任务中起着重要的作用,近年来备受关注。而由于模型不确定性、外界干扰及星间通讯延迟等不利因素的存在,编队卫星在实际应用中难以得到满意的协同控制性能。本文研究了编队卫星的姿态协同控制理论和方法。论文主要内容如下:
     研究了主从模式下编队卫星的姿态协同控制方法。基于传统的单星姿态跟踪控制方法,设计了编队卫星的姿态协同控制器,并通过Lyapunov稳定性理论分析了控制器的稳定性。考虑到模型不确定性及外界干扰对卫星姿态的影响,基于滑模控制思想设计了独立于模型的鲁棒姿态控制器,并根据Barbalat引理的一个推论证明了所提出控制器对相应闭环系统的收敛性。
     基于上述控制方法,研究了编队卫星行为方式的姿态协同控制方法。在传统控制方法的基础上,通过引入相邻卫星姿态信息设计了姿态协同控制器,利用Lyapunov方法分析了编队系统的稳定性。考虑环境干扰力矩对卫星姿态的影响,在前述的鲁棒姿态控制器中引入邻近卫星的姿态信息设计了行为方式的姿态协同控制器,借助合适的Lyapunov函数及Barbalat引理的推论证明了编队系统闭环的稳定性。
     考虑了星间通讯时延的情况,利用神经网络的非线性拟合能力及预测能力,设计了输入时延的补偿器。针对输入姿态信息规律不变的情况,应用线性神经网络,设计了离线时延补偿器。考虑到当空间任务不同时,姿态运动规律也在变化。基于上述的离线时延补偿器,通过缩短样本集、实时更新样本和设定误差阈值的方法设计了在线预测的时延补偿器。
The recent decades have witnessed active studies in attitude coordination control of spacecraft formation flying (SFF) for its significant roles in missions such as synthetic-aperture radar imaging and space-borne interferometry. However, for the sake of the existence of the detrimental factors such as model uncertainties, external disturbances and time delays in communication links, the performance of coordination control is not always satisfactory. To solve this problem, the paper focuses on the theory and methods for attitude coordination control of SFF. The main contents of this dissertation are as follows:
     The coordinate attitude control problem for SFF in the Leader-follower mode is investigated. Based on the traditional tracking control methods for a single spacecraft, an attitude coordination controller for SFF is proposed, and the stability of the controller is analyzed. Considering the model uncertainties and external disturbances, a robust controller is applied, according to the corollary of Barbalat's lemma, the convergence of the system is proven theoretically.
     The study on coordinate attitude control for SFF in the behavior-based mode is also performed. Considering the attitude of the near-by spacecraft, an attitude coordination controller for SFF is designed, and the stability of the control system is analyzed by Lyapunov theory. In addition, based on the controller above, another controller which takes the external disturbances into consideration is proposed for behavior-based SFF, and also the convergence of the closed loop system is proven by the corollary of Barbalat's lemma.
     There always exist time delays in communication links, as for this problem, Artificial Neural Network (ANN) is used for its non-linear fitting and prediction capabilities. Focusing on the situations that the input attitude information is invariant, an offline time delays compensator is designed based on linear ANN. While, considering about the situations that the input attitude information is variant, by limiting the sample, refreshing the sample concurrently and setting threshold value of errors, an online time delays compensator is presented.
引文
1张玉锟.卫星编队飞行的动力学与控制研究.国防科技大学工学博士论文. 2002: 124-139
    2 Matthew C.VanDyke. Decentralized Coordinated Attitude Control of a Formation of Spacecraft. Virginia Polytechnic Institute and State University. 2004: 1-50
    3 Jonathan R.T.Lawton. A Behavior-Based Approach to Multiple Spacecraft Formation Flying. Brigham Young University. 2000: 67-102
    4 W.Ren, R.W.Beard. Formation Feedback Control for Multiple Spacecraft via Virtual Structures . IEE Proc.-Control Theory Appl. 2004, 151(3): 357-368
    5 P.K.C.Wang and F.Y.Hadaegh. Coordination and Control of Multiple Microspacecraft Moving in Formation. The Journal of the Astronautical Sciences. 1996, 44(3): 315-355
    6 P.Wang, F.hadaegh, K.Lau. Synchronized Formation Rotation and Attitude Control of Multiple Free-Flying Spacecraft. Journal of Guidance, Control, and Dynamics. 1999, 22(1): 28-35
    7 P.Wang, J.Yeh, F.Hadaegh. Sychronized Rotation of Multiple Autonomous Spacecraft with Rule-Based Controls: Experimental Study. Jounal of Guidance, Control, and Dynamics. 2001, 24(2): 352-359
    8韦娟,袁建平.编队飞行小卫星相对姿态控制研究.航天控制. 2002, (4): 16-20
    9苏罗鹏,李俊峰,高云峰.微型编队飞行相对姿态控制.清华大学学报(自然科学版). 2003, 43(5): 683-685
    10 J.Lawton, R.W.Beard, F.Y.Hadaegh. Elementary Attitude Formation Maneuvers via Leader-following and Behavior-based Control. AIAA Guidance, Navigation, and Control Conference and Exhibit. Denver Colorado. 2000:1-11
    11 J.Lawton, B.Young, R.Beard. Synchronized Multiple Spacecraft Rotations. Automatica. 2002, 38(8): 1359-1364
    12 R.Beard, J.Lawton, F.Hadaegh. A Feedback Architecture for Formation Control. IEEE Transactions on Control Systems Technology. 2001, 9(6): 777-790
    13 W.Ren and R.W.Beard. Virtual Structure Based Spacecraft Formation Controlwith Formation Feedback. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey California, 2002: 1-8
    14 John Ting-Yung Wen, Kenneth Kreutz-Delgado. The Attitude Control Problem. IEEE Transactions on Automatic control. 1991, 36(10): 1148-1162
    15 Yon-Ping Chen, Shih-Che Lo. Sliding-mode Controller Design for Spacecraft Attitude Tracking Maneuvers. IEEE Transactions on Aerospace and Electronic Systems. 1993, 29(4): 1328-1333
    16 Shih-Che Lo, Yon-Ping Chen. Smooth Sliding-mode Control for Spacecraft Attitude Tracking Maneuvers. Journal of Guidance, Control, and Dynamics. 1995, 18(6): 1345-1349
    17郑敏,费树岷.一类状态及输入均有区间变时滞的线性系统之镇定.控制理论与应用. 2008, 25(5): 956-958
    18 R. Luck, A. Ray. An Observer-based Compensator for Distributed Delays. Automatica. 1990, 26: 903-908
    19 Na Jing, Ren Xue-Mei, Huang Hong. Time-delay Positive Feedback Control for Nonlinear Time-delay Systems with Neural Network Compensation. ACTA Automatica Sinica. 2008, 34(9): 1196-1202
    20 Gene M. Belanger, Slava Ananyev, Jason L. Speyer. Decentralized Control of Satellite Clusters Under Limited Communication. Journal of Guidance, Control, and Dynamics. 2006, 29(1): 134-145
    21 Matias Garcia-Rivera, Antonio Barreiro. Analysis of networked control systems with drops and variable delays. Automatica. 2007, 43: 2054-2059
    22 Ki-Dong Lee. Delay Control for Non-Real-Time Data in Interactive Multimedia Satellite Networks. IEEE Communications Letters. 2004, 8(11): 665-667
    23郭伟.基于RBF神经网络的滞后系统广义预测控制.大连理工大学工学硕士学位论文. 2005: 8-30
    24张胜,刘红星,高敦堂,沈振宇,业苏宁. ANN非线性时间序列预测模型输入时延τ的确定.东南大学学报(自然科学版). 2002, 32(6): 905-908
    25 Huayi Li, Yingchun Zhang, Wenyi Qiang, Baohua Li. Relative Attitude Control in Satellite Formation Flying with Information Delay. Proceedings of the 6th World Congress on Intelligent Control and Automation. 2006, Dalian, China
    26马国兵,张楠.一种基于神经网络的机动目标轨迹预测方法.青岛理工大学学报, 2006, 27(5): 108-111
    27安凯,马佳光,傅承毓.运动目标位置预测模型.系统工程与电子技术, 2001, 23(12): 4-7
    28龙英睿.空间动目标预测跟踪研究.西安电子科技大学工学硕士学位论文. 2007: 20-33
    29邱占芝,张庆灵,刘明.有时延和数据包丢失的网络控制系统控制器设计.控制与决策. 2006, 21(6): 625-635
    30刘明,张庆灵,邱占芝.有时延和数据包丢失的网络控制系统反馈控制.系统工程与电子技术. 2007, 29(2): 262-268
    31谢得晓,韩笑冬,黄鹤,王执铨.有数据包丢失的网络控制系统H?状态反馈控制.系统工程与电子技术. 2009, 31(3): 629-633
    32 Jovan D.Boskovic, Sai-Ming Li, Raman K.Mehra. Robust Tracking Design for Spacecraft under Control Input Saturation. Journal of Guidance, Control, and Dynamics. 2004, 27(4): 627-633
    33赵建亚,马广富,李传江.卫星姿态跟踪的非线性PI控制器设计.控制工程. 2006, 13: 40-43
    34吕建婷,马广富,李传江.卫星姿态跟踪的模糊滑模控制器设计.吉林大学学报(工学版). 2007, 37(4): 955-958
    35陈刚,康兴无,乔洋,陈士橹.航天器相对大角度姿态跟踪非线性控制器设计.宇航学报. 2009, 30(2): 556-559
    36 L.T.Gruyitch, A. Kokosy. Robot control for robust stability with finite reachability time in the whole. Journal of Robotic Systems. 1999, 16(5): 263-283
    37 Emmanuel Moulay, Wilfrid Perruquetti. Finite time stability and stabilization of a class of continuous systems. Journal of Mathematical Analysis and Applications. 2006, 323: 1440-1443
    38 Ying Yang, Junmin Li, Guopei Chen. Finite-time stability and stabilization of nonlinear stochastic hybrid systems. Journal of Mathematical Analysis and Applications. 2009, 356: 338-345
    39 Emmanuel Moulay, Michel Dambrine, Nima Yeganefar, Wilfrid Perruquetti. Finite-time stability and stabilization of time-delay systems. Systems and Control Letters. 2008, 57: 561-566
    40 Yiguang Hong, Zhong-Ping Jiang. Robust Finite Time Control of Nonlinear Systems with Dynamic Uncertainty. American Control Conf. Minneapolis, Minnesota, USA. 2006
    41赵艳彬,王萍萍,王本利.刚体卫星姿态跟踪鲁棒变结构控制.航天制造技术. 2005, 4: 24-26
    42靳尔东.卫星编队飞行的姿态协同控制方法研究.哈尔滨工业大学工学硕士学位论文. 2005: 19-23, 41-49
    43 Jin Er-dong, Sun Zhao-wei. A New Simple PD-Like Robust Attitude Tracking Controller for Rigid Spacecraft. IMACS Multiconf. on“Computational Engineering in Systems Applications”. 2006, Beijing, China
    44 Raymond Kristiansen. Dynamic Synchronization of Spacecraft. Norwegian University of Science and Technology. 2008: 27-82
    45 Roberto Ambrosino. Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems. IEEE Transactions on Automatic Control. 54(4): 861-865
    46陆燕,杜继宏,李春文.延迟时间未知的时延系统神经网络补偿控制.清华大学学报(自然科学版). 1998, 38(9): 67-69
    47叶东.柔性卫星大角度快速机动稳定控制算法研究.哈尔滨工业大学工学硕士学位论文. 2009: 36-47
    48 Jean-jacques E. Slotine, Weiping Li.应用非线性控制.机械工业出版社. 2006: 67-84, 186-195
    49 Guang Q. Xing, Shabbir A. Parvez. Nonlinear Attitude State Tracking Control for Spacecraft. Journal of Guidance, Control and Dynamics. 2001, 24(3): 624-626
    50吕建婷,曹喜滨,高岱.卫星编队飞行的相对姿态控制.哈尔滨工业大学学报. 2010, 42(1): 9-12
    51王树明,夏国平.基于BP神经网络的飞行动态实时预测方法.北京航空航天大学学报. 2001, 27(6): 636-639
    52吕建婷,曹喜滨,高岱.编队飞行卫星的自适应姿态协同控制.宇航学报. 2009, 30(4):1516-1520
    53 Raymond Kristiansen, Per Johan Nicklasson. Spacecraft formation flying: A review and new results on state feedback control. Acta Astronautica. 2009, 65: 1537-1552

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700