过驱动航天器推力器动态分配方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推力器在航天器轨道和姿态控制中具有重要作用,为确保航天器在轨可靠运行,传统设计模式通常是采用冗余推力器的推进系统,在控制过程中如何将期望的控制指令分配到冗余的、推力受限的各推力器是航天器控制系统设计时需要考虑的重要问题之一。动态控制分配方法能够在执行机构存在冗余的条件下,实现某一优化准则或约束下的优化分配,为冗余配置推力器动态分配问题提供了一条可行技术途径。本论文围绕基于动态控制分配的航天器推力分配问题展开研究,取得了如下创新性研究成果:
     针对推力器的工作特点,建立了推力分配问题的数学模型,在此基础上提出了一种适用于航天器推力分配的修正伪拟法。该方法首先利用伪逆法求解推力分配问题模型,给出推力器分配的初解;然后采用通过计算零空间向量及其修正参数实现对不满足推力器约束的初解修正,最终给出满足约束要求的推力器分配结果。最后,通过数学仿真验证了算法的可行性与有效性。由于该方法是一个代数求解过程,因此具有较高的计算效率,适合航天器在轨应用。
     针对基于推力器的轨道姿态一体化控制模式,将修正伪逆法用于轨道姿态一体化控制的期望控制力/力矩的动态分配,有效降低了控制任务的燃料消耗。为进一步降低燃料消耗,提出了轨控优先的控制模式,即首先对轨控力指令进行推力分配,由于推力器冗余配置,因此得到具有若干可行解的可行解集,然后在此可行解集中寻找能够生成尽可能接近期望姿控力矩的最优解,姿控力矩不足部分可由反作用飞轮等不消耗燃料的执行机构完成。建立了轨控优先的轨道姿态一体化控制推力分配的数学模型,给出了求解该问题的线性规划算法。通过数学仿真验证了算法的可行性和有效性。
     航天器编队系统寿命很大程度上取决于各航天器燃料消耗量,针对编队控制的燃料平衡问题,提出了基于控制分配思想的燃料平衡最优控制算法。针对双星编队系统定义了包含两星控制量之差的目标函数,采用哈密尔顿函数求解出考虑燃料平衡的双星编队最优控制算法,并针对控制能力约束进行了修正。最后通过六自由度数学仿真验证了燃料平衡最优控制算法的有效性。
The thruster plays an important role in the orbit and attitude control of a spacecraft. To make sure that the spacecraft could take a reliable operation in orbit, existing design method often adopt redundant configuration for the thruster system, one of the key issues during spacecraft control algorithm design is how to make the desired control directives assigned to the redundant thrusters whose thrusts are restricted. Control allocation method exists in the implementing agencies under the conditions of redundancy to achieve an optimal criterion or constrained optimal allocation, for the redundant thruster configuration provides a dynamic distribution channel enabling technologies. Based on this thesis, we carried out some study about the control allocation with the distribution of the spacecraft thrust, and the following innovative research results were obtained:
     Based on work characteristics of the thrusters, mathematical model about the integration control allocation problem is founded and a redistributed pseudoinverse algorithm which satisfies the orbital and attitude control demand were proposed. The first the pseudoinverse algorithm can compute the force and torque; and the second an redistributed algorithm is proposed by analyzing the null-space of the control effectiveness matrix, which may lead the thrusts into saturation. This method revises all the thrusts to the confine that thrusters could offer. At last taken simulation, the results validate the feasibility and effectiveness of those algorithms. The method is an algebraic solution process; it has high efficiency, suitable for application of the spacecraft on orbit.
     For the control of redundant thrusters which can be actuated both by the orbit control system and attitude control system, the algorithm mentioned above were taken to control the expected forces and torques. The simulation results validate the effectiveness of reducing fuel consumption. We propose a control allocation method that raised the priority of orbit control. This method allocates the expected orbit force at first, for the configuration design of redundant thrusters. There are many feasible solutions. From those feasible solutions, we find the optimal solution which is as close as possible to attitude control torque. The remaining expected torque is produced by reaction wheels. Mathematical model about orbit method of dynamic control priority is proposed to founded. And then we used linear method to solve this problem. Simulation results show that the algorithm has favorable dynamic performance and achieves its task.
     The lifetime of a formation flying mission not only depends on the individual spacecraft energy consumption but also on the energy consumed on each spacecraft with respect to others. To solve the problem of the balanced-energy consumption, an optimized balanced-energy algorithm, which is based on the technology of control allocation, is proposed. To solve the balanced-energy reconfiguration problem for formation flying system, we consider the Hamiltonian, and define the each thrust vector difference as an objective functional. At last 6 degree-of-freedom simulation is taken, The feasibility of control allocation applied to solve the balanced-energy control problem is further explored.
引文
1 W.C. Durham. Constrained Control Allocation. Journal of Guidance, Control, and Dynamics. 1993, 16(4):717~725
    2 T.I. Fossen, T.A. Johansen. A Survey of Control Allocation Methods for Ships and Underwater Vehicles. 14th Mediterranean Conference on Control and Automation, Ancona, Italy, 2006
    3杨恩泉,高金源.先进战斗机控制分配方法研究进展.飞行力学. 2005, 23(3):1~4
    4 W.C. Durham. Constrained Control Allocation: Three Moment Problem. Journal of Guidance, Control, and Dynamics. 1994, 17(2):330~336
    5 W.C. Durham. Attainable Moments for the Constrained Control Allocation Problem. Journal of Guidance Control, and Dynamics. 1994, 17(6):1371~1373
    6 K.A. Bordignon, W.C. Durham. Closed Form Solutions to the Constrained Control Allocation Problem. Journal of Guidance Control, and Dynamics. 1995, 18(5):1000~1007
    7 O. H?rkeg?rd. Dynamic Control Allocation Using Constrained Quadratic Programming. Journal of Guidance, Control, and Dynamics. 2004, 27(6):1028~1034
    8 M.N. Demenkov. Recofigurable Linear Control Allocation via Generalized Bisection. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005
    9李森,胡军.基于序列二次规划的推力矢量控制分配方法. Aerospace Control and Application, 2009, 04
    10 J.Jin. Modified Pseudoinverse Redistribution Methods for Redundant Controls Allocations. Journal of Guidance, Control, and Dynamics. 2005, 28(5):1076~1079
    11杨恩泉,高金源,李卫琪,多目标非线性控制分配方法研究, Acta Aeronautica Et Astronautica Sinica, 2008, 04
    12 Y. Ikeda, M. Hood and J. Boiling. Maximum Attainable Moment Space with L1 Optimization. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, 2001
    13李卫琪,魏晨等.受限控制直接分配新算法.北京航空航天大学学报. 2005, 31(11):1177~1180
    14范金华,马建军,郑志强,吕鸣.基于控制分配的过驱动系统稳定性设计方法综述, Journal of System Simulation, 2010, S1
    15 O. H?rkeg?rd, S. T. Glad. Resolving Actuator Redundancy—Optimal Control vs. Control Allocation. Automatica. 2005, 41(1):137~144
    16 J. M.Berg, K. D.Hammet, et al. An Analysis of the Destabilizing Effect of Daisy Chained Rate-limited Actuators. IEEE Transactions on Control Systems Technology. 1996, 4(2):171~176
    17 A.B. Page, M.L. Steinberg. High-fidelity simulation testing of control allocation methods. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, 2002
    18 G. Indiveri, G. Parlangeli. On Thruster Allocation, Fault Detection and Accommodation Issues for Underwater Robotic Vehicles. The 2nd IEEE-EURASIP International Symposium on Control, Communications, and Signal Processing, Marrakech, Morocco, 2006
    19 T.A. Johansen, T.P. Fuglseth, et al. Optimal Constrained Control Allocation in Marine Surface Vessels with Rudders. Control Engineering Practice, 2007, (in Press)
    20 J.M. Wang, J.M. Solis, R.G. Longoria. On the Control Allocation for Coordinated Ground Vehicle Dynamics Control Systems. Proc. of the 2007 American Control Conference,New York, USA, 2007
    21 H?rkeg?rd. Backstepping and Control Allocation with Applications to Flight Control. Ph.D. Dissertation. Link?ping University, 2003
    22 J.G. Bolling. Implementation of Constrained Control Allocation Techniques Using an Aerodynamic Model of an F-15 Aircraft. Master Thesis, Virginia Polytechnic Institute and State University, 1997
    23 M.D.Nelson, W.C. Durham. A Comparison of Two Methods Used to Deal with Saturation of Multiple, Redundant Aircraft Control Effectors. AIAA Paper 2002-4498, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 2002
    24陈怀民,徐奎,马松辉,吴成富.控制分配技术在无尾飞机纵向控制系统中的应用研究.西北工业大学学报. 2007, 25(2):199~203
    25 D. B. Ridgely, Y. Lee, and T. Fanciullo. Dual Aero/Propulsive Missile Control Optimal Control and Control Allocation. AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, 2006
    26 Y. Luo, A. Serrani, et al. Model-Predictive Dynamic Control Allocation Scheme for Reentry Vehicles. Journal of Guidance, Control and Dynamics. 2007, 30(1):100~113
    27 K.Bordignon, J.Bessolo. Control Allocation for the X-35B. Biennial International Powered Lift Conference and Exhibit, Williamsburg, Virginia, 2002
    28 M.A. Bolender, D.B. Doman, M.W. Oppenheimer. Application of Piecewise Linear Control Allocation to Reusable Launch Vehicle Guidance and Control. Proceedings of the International Conference on Advances in Control and Optimization of Dynamical Systems, Bangalore, India, 2007
    29 J.Jin, B.Park, et al. Attitude Control of a Satellite with Redundant Thrusters. Aerospace Science and Technology. 2006, 10(7):644~651
    30 P.A. Servidia, R.S. Pe?a. Spacecraft Thruster Control Allocation Problems. IEEE Transactions on Automatic Control. 2005, 50(2):245~249
    31 W. C. Durham, K. A. Bordignon. Multiple control effector rate limiting. Journal of Guidance, Control, and Dynamics. 1996, 19(1):30~37
    32 D.Enns. Control Allocation Approaches. AIAA Paper No. 98-4108, AIAA Guidance, Navigation, and Control Conference, Boston, MA, 1998
    33 K.A. Bordignon. Constrained Control Allocation for Systems with Redundant Control Effectors. Ph.D. Thesis, Virginia Polytechnic Institute and State University, 1996
    34 J. M.Buffmgton. Tailless Aircraft Control Allocation. AIAA Paper No. 97-3605, AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, Aug. 1997
    35 R. E. Beck. Application of Control Allocation Methods to Linear Systems with Four or More Objectives. PhD thesis, Virginia Polytechnic Institute and State University, 2002
    36 K.A. Bordignon, W.C. Durham. Null-Space Augmented Solutions to Constrained Control Allocation Problems. AIAA Guidance, Navigation and Control Conference, Baltimore, MD, 1995
    37 A.R. Teel, J.M.Buffington. Anti-Windup for an F-16’s Daisy Chain Control Allocate. AIAA-97-3606, 1997
    38 J. M. Buffington. Control Design and Analysis for Systems with Redundant Limited Controls. Ph.D. thesis, University of Minnesota, 1996
    39 W. C. Durham, J. Bolling and C. Hann. Simulator Implmentation of Direct Control Allocation Methods. AIAA Flight Simulation Technologies Conference, Baltimore, MD, 1995
    40 W.C. Durham. Computationally Efficient Control Allocation. Journal of Guidance, Control, and Dynamics. 2001, 24(3):519~524
    41 K.R. Scalera. A Comparison of Control Allocation Methods for the F-15 ACTIVE Research Aircraft Utilizing Real-Time Piloted Simulations. Masters Thesis, Virginia Polytechnic Institute and State University, 1999
    42 J. Petersen, M. Bodson. Fast Control Allocation Using Spherical Coordinates. AIAA Guidance, Navigation, and Control Conference, Portland, OR, 1999, pp. 1321~1330
    43 M.Bodson. Evaluation of Optimization Methods for Control Allocation. Journal of Guidance, Control, and Dynamics. 2002, 25(4):703~711
    44 W.C. Durham, J.G. Bolling, and K.A. Bordignon. Minimum Drag Control Allocation. Journal of Guidance, Control, and Dynamics. 1997, 20(1):190~193
    45 W. C.Durham. Efficient, Near-Optimal Control Allocation. Journal of Guidance, Control, and Dynamics. 1999, 22(2):369~372
    46 T. A. Johansen. Optimizing Nonlinear Control Allocation. IEEE Conf. Decision and Control, Nassau, Bahamas, 2004, pp. 3435~3440
    47杨凌宇,高金源,申功璋.飞行控制中的一种新型最优控制分配方法.北京航空航天大学学报. 2007, 33(5):572~576
    48 T.A. Johansen, T.I. Fossen, P. T?ndel. Efficient Optimal Constrained Control Allocation via Multiparametric Programming. Journal of Guidance, Control, and Dynamics. 2005, 28(3):506~515
    49 V.L. Poonamallee, D.B. Doman. A Nonlinear Programming Approach for Control Allocation. Proceeding of the 2004 American Control Conference, Boston. Massachusetts, 2004
    50 J.A.M. Petersen, M.Bodson. Constrained Quadratic Programming Techniques for Control Allocation. IEEE Transactions on Control Systems Technology. 2006, 14(1):91~98
    51沈景来,高金源.飞控系统受限控制量线性规划最优分配.飞行力学. 1999, 17(2):41~45
    52 J.D. Bo?kovi?, R.K. Mehra. Control Allocation in Overactuated Aircraft under Position and Rate Limiting. Proceedings of the American Control Conference, Anchorage, AK, 2002
    53 Page, M.Steinberg. Effects of Control Allocation Algorithms on a Nonlinear Adaptive Design. AIAA Paper No.99-4282, AIAA Guidance Navigation, and Control Conference, Portland, OR, 1999
    54 D.B. Doman, M.W. Oppenheimer. Improving Control Allocation Accuracy for Nonlinear Aircraft Dynamics. AIAA Paper No.2002-4667, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 2002
    55 D.W. Jung, M.H.Lowenberg, and C.D.C. Jones. Integration of Control Allocation Methods in Bifurcation Analysis Framework. AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, 2006
    56 K.P. Lindegaard, T.I. Fossen. Fuel-Efficient Rudder and Propeller Control Allocation for Marine Craft: Experiments with a Model Ship. IEEE Transactions on Control Systems Technology. 2003, 11(6):850~862
    57 C.S. Chin, M.W.S. Lau, et al. A Cascaded Nonlinear Heading Control with Thrust Allocation: An Application on an Underactuated Remotely Operated Vehicle. IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, 2006
    58 A.T. Simmons, A. S. Hodel. Control Allocation for the X-33 using Existing and Novel Quadratic Programming Techniques. Proceeding of American Control Conference, Boston, hlassachusetis, 2004
    59 S. Hodel, R.Callahan. Autonomous Reconfirgurable Control Allocation (ARCA) for Reusable Launch Vehicles. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 2002
    60宁国栋.可重复使用航天器再入动力学特性分析及制导控制研究.北京航空航天大学博士学位论文. 2007
    61王军.导弹气动力与直接侧向力复合控制方法研究.北京航空航天大学硕士学位论文. 2006
    62 M. Grassi, M. Pastena. Minimum Power Optimum Control of Microsatellite Attitude Dynamics. Journal of Guidance, Control, and Dynamics. 2000, 23(5):798~804
    63 E.M. Queen, L. Silverberg. Optimal Control of a Rigid Body with Dissimilar Actuators. Journal of Guidance, Control, and Dynamics. 1996, 19(3):738~740
    64 C.D. Hall, P. Tsiotras, H.J. Shen. Tracking Rigid Body Motion Using Thrusters and Momentum Wheels. Journal of the Astronautical Sciences. 2002, 50(3):311~323
    65 Z.W. Sun, Y.H. Geng, et al. The Combined Control Algorithm for Large-angle Maneuver of HITSAT-1 Small Satellite. Acta Astronautica 2004, 54(7):463~469
    66 Y. Choi, H. Bang, H. Lee. Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command. AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado USA, 2006
    67 F.Martel. Optimal Simultaneous 6 Axis Command of a Space Vehicle with a Precomputed Thruster Selection Catalogue Table. AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Montana USA, 2003, AAS 03-587
    68 R.S. Pe?a, R. Alonso, P. Anigstein. Robust Optimal Solution to the Attitude/Force Control Problem. IEEE Transaction on Aerospace and Electronic Systems. 2000, 36(3):784~792
    69 F. Ankersen, S.F. Wu. On Optimization of Spacecraft Thruster Management Function. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 2004
    70 Amirreza Rahmani, Mehran Mesbahi. Optimal Balanced-Energy Formation Flying Maneuvers Actuators. Journal of Guidance, Control, and Dynamics. 2006, 29(6)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700