趋磁细菌AMB-1培养条件优化及磁小体变化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
趋磁细菌(Magnetotactic bacteria)的研究是国际微生物学研究热点之一。趋磁细菌体内含有纳米单磁畴的氧化铁/硫化铁(Fe3O4或Fe3S4)晶体,称为磁小体。由于趋磁细菌营养条件要求苛刻,在环境中需要微好氧条件,且营养类型属于化能自养,使得培养趋磁细菌时常遇到问题。
     本研究首先通过正交试验优化趋磁细菌AMB-1菌株培养条件,在培养条件铁源为奎尼酸铁0.02 mmol/L,装瓶量75% ,pH值6.7,温度25℃时,AMB-1 OD600达到0.440(1.166×109 cells/ml)。同时运用磁收集传代法,使带有磁小体的AMB-1细胞比例占95%以上(Cmag值稳定在1.9-2.0)。
     在AMB-1具有较好的生物量,同时又具有较好的含磁小体细胞比例后,研究磁小体的变化过程。通过透射电镜观察磁小体变化过程,发现培养24 h细菌体内已有较小晶体形成(平均27 nm,n=188)且沿长轴分布;48 h晶体长大(平均43 nm,n=203)且形成分段链沿长轴排列;72 h晶体进一步成熟(平均50 nm,n=191)仍以分段链沿长轴排列;随后细菌逐渐衰亡磁小体变小,168 h可见部分自溶细菌中仍有磁小体链(平均37 nm,n=186);192 h细菌自溶磁小体链(平均33 nm,n=184)分散到环境中。
     通过透射电镜在细胞水平上研究趋磁细菌细胞分裂时发现,磁小体在细菌分裂时采用两种分离方式:一种为磁小体分配到两个子细胞;另一种为磁小体只分配到一个子细胞。无磁小体的子细胞,在随后的生长过程又分为两种情况:一种为细胞逐渐产生磁小体,另一种为不再产生磁小体。这种现象的发现,解释了随着传代次数的增多,细菌磁性有所下降的原因(Cmag值降低)。
     在对趋磁细菌磁小体合成机制的研究中,常使用基因敲除的办法获得缺陷型,并与野生型对比进行研究。但是,利用基因敲除获得缺陷型不仅操作繁琐并且所得缺陷型不稳定。本研究利用特殊的磁富集传代法,先将带有磁小体的菌体收集并连续传代,筛选获得了高磁菌株;利用这种方法,收集不含磁小体的菌体并连续传代,筛选获得了无磁菌株。
     趋磁细菌磁小体在医疗、环保等领域具有广阔应用价值,但是目前由于趋磁细菌难以大规模培养,并且磁小体纯化存在成本高等原因,将磁小体真正实际应用尚有一段距离。通过研究磁小体在趋磁细菌中的变化过程发现,AMB-1菌株在培养192 h后自溶,并且磁小体随着细胞的破碎释放到环境中去。
Magnetotactic bacteria research is hot spot in microbiology field. Magnetotactic bacteria have nano single-domain magnetite/greigite (Fe3O4/Fe3S4), which are called magnetosome. There are problems in culturing magnetotactic bacteria bacause they need chemo-autolithotrophic and microaerobic growth conditions.
     Growth conditions of Magnetospirillum magneticum AMB-1 were optimized by orthogonal experimental design. When culture conditions were chosen with ferric quinine 0.02 mmol/L, 75% volume, pH 6.7 and 25℃, OD600 values reached 0.440 (1.166×109 cells/ml). AMB-1 cells were all collected by magnet before inoculation. After magnetic enrichment and cultivation for several times, Cmag values of AMB-1 reached 1.9-2.0 steadily.
     The process of magnetosome assembling was studied after optimization, that AMB-1 had high production with many magnetosomes. During cultivating process, magnetosomes were characterized by Transmission Electron Microscope (TEM). As a result, smaller crystals (average 27 nm, n=188) were observed in bacteria after 24 h incubation. Over 48 h, the size of crystals increased (43 nm, n=203) and MS formed several chains arranging along major axes. After 72 h, crystals maturated (50 nm, n=191) and after 168 h, part-autolyzing bacteria with magnetosomes can be detected. Over 192 h, the bacteria autolyzed and magnetosomes were released to the media.
     There were tow ways of magnetosome chain separating modes in dividing AMB-1 cells. One is symmetric separation into the daughter cells. The other is asymmetric separation and only one daughter cell was heritor of the magnetosomes. Part of non-magnetosome daughter cells might produce magnetosomes later. These phenomena explained why magnetism of magnetotactic bacteria decreased with more multiplications (Cmag value decreased).
     Method of deleting some kind of genes was usually used in research of magnetosomes synthesis. Comparing wild strain with gene mutation strain can find out the function of the gene. However, this method need many steps and the strain of mutation can not inherit stably. Special method of magnetic cells collected to inoculation was used to screen out strains with and without magnetosomes. Such kind of strains was obtained, and they could inherit stably.
     Magnetosomes have applying valve in medical treatment, environmental protecting etc. However, it is a long way to put magnetosomes to application. Because magnetotactic bacteria are difficult to culture, and costs of pure magnetosomes are high. During the investigating process of magnetosome assembling, magnetosomes were set free after 192 h culture.
引文
Acosta-Avalos D., Wajnberg E., Oliveira P. S., Leal I., Farina M., and Esquivel D. M. S.. Isolation of magnetic nanoparticles from Pachycondyla Marginata ants. The Journal of Experimental Biology, 1999, 202:2687-2692
    Albrecht M., Janke V., Sievers S., et al.. Scanning force microspy study of biogenic nanoparticles for medical applications. Journal of Magnetism and Magnetic Materials, 2005, 290-291(1):269-271
    Amemiya Y., Arakaki a., Staniland S. S., Tanaka T., and Matsunaga T.. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials, 2007, 28:5381-5389
    Arakaki A., Webb J., and Matsunaga T.. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. The Journal of Biological Chemistry, 2003, 278(10):8745-8750
    Bahaj A. S., and James P. A. B., Characterisation of magnetotactic bacteria using image processing technique. IEEE Transactions on Magnetics, 1993, 29(6):3385-3387
    Balkwill D. L., Maratea D., and Blakemore R. P.. Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology, 1980, 141(3):1399-1408
    Bazylinski D. A., Frankel R. B. and Jannasch H. W. Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature, 1988, 334(11):518-519
    Bazylinski D. A., Heywood B. R., Mann S., et al.. Fe3O4 and Fe3S4 in a bacterium. Nature, 1993, 366:218
    Bazylinski D. A., Garratte-Reed A. J., and Frankel R. B.. Electron-microscopic studies of magnetosomes in magnetotactic bacteria. Microscopy Research Technology, 1994, 27:389-401
    Bazylinski D. A.. Synthesis of the bacterial magnetosome: the making of a magnetic personality. Internatl Microbiol. 1999, 2(2):71-80
    Bazylinski D. A., Schlezinger D. R., Howes B. H., et al.. Occurrence and distribution of diverse populations of magnetic protists in a chemically stratified coastal salt pond. Chemical Geology, 2000, 169(3):319-328.
    Bzaylinski D. A., Dean A. J., Williams T., J., Long L. K., Middleton S. L., and Dubbels B. L.. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol, 2004a, 182(5):373-387
    Bazylinski D. A. and Frankel R. B.. Magnetosome formation in prokaryotes. Narure Reviews Microbiology, 2004b, 2(3):217-230
    Blakemore R. P.. Magnetotactic bacteria. Science, 1975, 190:377-379
    Blakemore R. P., Maratea D., and Wolfe R. S.. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. Journal of Bacteriology, 1979, 140(2):720-729
    Blakemore R. P., Frankel R. B., Kalmijn A. J.. South-seeking magnetotactic bacteria in the Southern hemisphere. Nature, 1980, 236:384-385
    Blakemore R. P., Short K. A., Bazylinski D. A., Rosenblatt C., and Frankel R. B., Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiology Journal, 1985, 4(1):53-71
    Boles L. C. and Lohmann K. J.. True navigation and magnetic maps in spiny lobsters. Nature, 2003, 421:60-63
    Burgess J. G., Kawaguchi R., Sakaguchi T., Thornhill R. H., and Matsunaga T.. Evolutionary Relationships Among Magnetospirillum Strains Inferred from Phylogenetic Analysis of 16S-rRNA Sequnces. Journal of Bacteriology, 1993, 175: 6689-6694
    Calugay R. J., Miyashita H., Okamura Y., and Magsunaga T.. Siderophor production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiology Letters, 2003, 218(2):371-375
    Calugay R. J., Takeyama H., Mukoyama D., Fukuda Y., Suzuki T., Kanoh K., and Matsunaga T.. Catechol siderophore excretion by magnetotactic bacterium Magnetospirillum magneticum AMB-1. Journal of Bioscience and Bioengineering, 2006, 101(5):445-447
    Clemett S. J., Thomas-Keprta K. L., Shimmin J., Morphew M., McIntosh J. R.,
    Bazylinski D. A., Kirschvink J. L., Wentworth S. J., McKay D. S., Vali H., Gibson Jr. E. K., and Romanek C. S.. Crystal morphology of MV-1 magnetite. American Mineralogist, 2002, 87(11-12):1727-1730
    Cox B. L., Popa R., Bazylinski D. A., et al.. Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiology Journal, 2002, 19:387-406
    Davila A. F., Fleissner G., Winklhofer M., and Petersen N.. A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Physics and Chemistry of the Earth, 2003, 28:647-652
    de Henestrosa A. R. F., Cu?é J., Mazón G., Dubbels B. L., Bazylinski D. A., and Barbé J.. Characterization of a new lexA binding motif in the marine magnetotactic bacterium strain MC-1. Journal of Bacteriology, 2003, 185(15):4471-4482
    de Long E. F., Frankel R. B., and Bazylinski D. A.. Multiple evolutionary origins of magnetotaxis in bacteria. Science, 1993, 259:803-806
    Devouard B., Pósfai M., Hua X., Bazylinski D. A., Frankel R. B., and Buseck P. R.. Magnetite from magnetotactic bacteria: size distributions and twinning. American Mineralogist, 1998, 83:1387-1398
    Donaghay P. L., Rines H. M., and Sieburth J. M.. Simultaneous sampling of fine scale biological, chemical and physical structure in stratified waters. Arch. Hydrobiol. Beih. Ergebn. Limnol., 1992, 36:97-108
    Dubbels B. L., DiSpirito A. A., Morton J. D., Semrau J. D., Neto J. N. E., and Bazylinski D. A.. Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology, 2004, 150(Pt9):2931-2945
    Dunin-Borkowski R. E., McCartney M. R., Frankel R. B., et al.. Magnetic microstructure of magnetotactic bacteria by electron holography. Science, 1998, 282:1868-1870
    Dunin-Borkowski R. E., McCartney M. R., Pósfai M., Frankel R. B., Bazylinski D. A., and Buseck P. R.. Off-axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1. European Journal of Mineralogy, 2001, 13(4):671-684
    Dunn J. R., Fuller M., Zoeger J., et al.. Magnetic material in the human hippocampus. Brain Res. Bull., 1995, 36(2):149-153
    Eden P. A., Schmidt T. S., et al.. Phylogenetic analysis of Aquaspirillwn magnetotacticum using polymerase chain reaction-amplifed 16S rRNA-specific DNA. International Journal of Systematic Bacteriology, 1991, 41:324-325
    Ei-Jaick L. J., Acosta-Avalos D., de Souza Esquivel D. M., Wajnberg E., and Linhares M. P.. Electron paramagnetic resonance study of honeybee Apis mellifera abdomens. Eur. Biophys. J., 2001, 29(8):579-586
    Farina M., Esquivel D. M. S., and Lins de Barros H. G. E.. Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature, 1990, 343:256-258
    Fassbinder J. W. E., Stanjek H., Vail H., et al.. Occurrence of magnetic bacteria in soil. Nature, 1990, 343:161-163
    Fbrahim-Nesbat F, Tiedemann S, Albrecht S, et al.. Electron microscopical studies of poplar clones inoculated with Xanthomonas populi subsp.populi. Eur. J. For. Path, 1990, 20(6-7):367-375
    Feriats F., Keim C. N., Kachar B., Farina M., and Lins U.. Envelope ultrastructure of uncultured naturally occurring magnetotactic cocci, Fems Microbiology Letters, 2003, 219:33-38
    Flies C. B., Peplies J., and Schuler D.. Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Applied and Environmental Microbiology. 2005, 71:2723-2731
    Frankel R. B., Blakemore R. P., and Wolfe R. S.. Magnetite in freshwater magnetotactic bacteria. Science, 1979, 203:1355-1356
    Frankel R. B., Blakemore R. P., Torres de Araujo F. F., et al.. Magnetotactic bacteria at the geomagnetic equator. Science, 1981, 212:1269-1270
    Frankel R. B., Papaefthymiou G., Blakemore R. P., and O’brien W.. Fe3O4 precipitation in magnetotactic bacteria. Biochimica et Biophysica acta, 1983, 763 :147-159
    Frankel R. B.. Magnetic guidance of organisms. Annual Reviews of Biophysics and Bioengineer, 1984, 13:85-103
    Frankel R. B., Bazylinski D. A., Johnson M. S., and Taylor B. L.. Magneto-aerotaxis in marine coccoid bacteria. Biophysical Journal, 1997, 73:994-1000
    Friedmann E. I., Wierzchos J., and Ascaso C., et al.. Chains of magnetite crystals in the meteorite ALH84001 Evidence of biological origin. Natl. Acad. Sci., 2001, 98(5):2176-2181
    Fukuda Y., Okamura Y., Takeyama H., and Matsunaga T.. Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Letters, 2006, 580:801-812
    Fukumori Y., Oyanagi H., Yoshimatsu K., Noguchi Y., and Fujiwara T.. Enzymatic iron oxidation and reduction in magnetite synthesizing Magnetospirillum magnetotacticum. Journal de Pysique IV, 1997, C1:659-662
    Glasauer S., Lan gley S., Beveridge T. J., et al.. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science, 2002, 295:117-119
    Gorby Y. A., Beveridge T. J., and Blakemore R. P.. Characterization of the bacterial magnetosome membrane. Journal of Bacteriology, 1988, 170(2):834-841
    Gould J. L., et al.. Bees have magnetic remanance. Science, 1978, 201:1026-1028
    Grünberg K., Wawer C., Tebo B. M., and Schüler D.. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Applied and Environmental Microbiology, 2001, 67(10):4573-4582
    Grünberg K., Müller E.-C., Otto A., Reszka R., Linder D., Kube M., Reinhardt R., and Schüler D.. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Applied and Envrionmental Microbiology, 2004, 70(2):1040-1050
    Guerin W. F. and Blakemore R. P.. Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Applied and Environmental Microbiology, 1992, 58(4):1102-1109
    Guerinot M. L.. Microbial iron transport. Annual Review of Microbiology, 1994, 48:743-772
    Hanzlik M., Heunemann C., et al.. Superparamagnetic magnetite in the upper-beak tissue of homing pigeons. Biometals, 2000, 13:325-331
    Hergt R., Hiergeist R., Zeisberger M., Schüler D., Heyen U., Hilger I., and Kaiser W. A.. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. Journal of Magnetism and Magnetic Materials, 2005, 293:80-86
    Kawaguchi R., Burgess J. G., Sakaguchi T., Takeyama H., Thornhill R. H., Matsunaga T.. Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the δ-Proteobacteria. FEMS Microbiology Letters, 1995, 126:277-282
    Keim C. N., Abreu F., Lins U., de Barros H. L., and Farina M.. Cell organization and ultrastructure of a magnetotactic multicellular organism. Journal of Structural Biology, 2004a, 145:254-262
    Keim C. N., Martins J. L., Abreu F., Rosado A. S., de Barros H. L., Borojevic R., Lins U., and Farina M.. Multicellular life cycle of magnetotactic prokaryotes. FEMS Microbiology Letters, 2004b, 240(2):203-208
    Keim G. N., Solórzan G., Farina M., and Lins U.. Intracellular inclusions of uncultured magnetotactic bacteria. International Microbiology, 2005, 8:111-117
    Kirschvink J. L. and Lowenstam. Mineralization of chiton teech: pales magnetic, sedimentologc, and biologic implications of organic magnetite. Earth. Plan. Sci. Lett., 1978, 44:193-204
    Klaus-Joerger T, Joerger R, Olsson E, et al.. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. TRENDS in Biotechnology, 2001, 19(1):15-20
    Kobayashi A., Kirschvink J. L., Nash C. Z., Kopp R. E., Sauer D. A., Bertani L. E., Voorhout W. F., and Taguchi T.. Experimental observation of magnetosome chain collapse in magnetotactic bacteria: sedimentological, paleomagnetic, and evolutionary implications. Earth and Planetary Science Letters, 2006, 245(3-4):538-550
    Komeili A., Vali H., Beveridge T., and Newman D. K.. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl. Acad. Sci. USA, 2004, 101(11):3839-3844
    Komeili A., Li Z., Dianne K., and Jensen G. J.. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science, 2006, 131: 242-246
    Komeili A.. Molecular mechanisms of magnetosome formation. Annual Review of Biochemistry, 2007, 76(1):27.1-27.16
    Kuznetsov A A, Filippov V I, Alyautdin R N, et al.. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. Journal of Magnetism and Magnetic Materials, 2001, 225(1-2): 95-100
    Lee M. C. S., Miller E. A., Goldberg J., Orci L., and Schekman. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol.. 2004, 20:87-123
    Light P. and Salmon M.. Geomagnetic orientation of loggerhead sea turtles: Evidence for an inclination compass. J. Exp. Biol., 1993, 182:1-10
    Linford N., Linford P., and Platzman E.. Dating environmental change using magnetic bacteria in archaeological soils from the upper Thames Valley, UK. Journal of Archaeological Science, 2005, 32(7):1037-1043
    Lins U. and Farina M.. Magnetosome size distribution in uncultured rod-shaped bacteria as determined by electron microscopy and electron spectroscopic imaging. Microscopy Research and Technique. 1998, 42:459-464
    Lins U., Freitas F., Kein C. N., and Farina M.. Electron spectroscopic imaging of magnetotactic bacteria: magnetosome morphology and diversity. Microscopy and Microanalysis, 2000, 6(5):463-470
    Lins U., Freitas F., Keim C. N., de Barros H. L., Esquivel D. M. S., and Farina M.. Simple homemade apparatus for harvesting uncultured magnetotactic microorganisms. Brazilian Journal of Microbiology, 2003, 34:111-116
    Lins U., McCartney M. R., Farina M., Frankel R. B., and Buseck P. R.. Habits of magnetosome crystals in coccoid magnetotactic bacteria. Applied and Environmental Microbiology, 2005, 71(8):4902-4905
    Liu Y. L., Gao M. Y., Dai S. Y., Peng K. F., and Jia R. F.. Characterization of magnetotactic bacteria and their magnetosomes isolated from Tieshan iron ore in Hubei Province of China. Materials Science and Engineering C, 2006, 26:597-601
    Lovley D. R., Stolz J. F., Nord G. L., et al.. Anaerobic production of magnetite by a dissimflatory iron-reducing microorganism. Nature, 1987, 330:252-254
    Mandernack K. W., Bazylinski D. A., Shanks III W. C., and Bullen T. D.. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science, 1999, 285:1892-1896
    Maher B. A. and Taylor R. M.. Formation of ultra-fine grained magnetite in soils. Nature, 1988, 336:368-370
    Mann S., Frankel R. B., and Blakemore R. P.. Structure, morphology and crystal growth of bacterial magnetite. Nature, 1984, 310:405-407
    Mann S., Sparks N. H. C., Frankel R. B., et al.. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 1990, 343:258-260
    Maratea D. and Blakemore R. P.. Aquaspirillum magnetotaccticum sp. nov., a magnetic spirillum.. Int. J. Syst. Bacteriol.. 1981, 31 :452-455
    Matsuda T., Endo J., Osakabe N., et a1.. Morphology and structure of biogenic magnetite particles. Nature, 1983, 302:411-412
    Matsunaga T., Sakaguchi T., and Tadokoro F.. Magnetite formation by a magnetic bacterium capable of growing aerobically. Applied Microbiology Biotechnology, 1991, 35:651-655
    Matsunaga T., Tsujimura N., and Kamiya S.. Enhancement of magnetic particle production by nitrate and succinate fed-batch culture of Magnetospirillum sp. AMB-1. Biotechnology Techniques, 1996, 10(7):495-500
    Matsunaga T.. Genetic analysis of magnetic bacteria. Meterials Science and Engineering C, 1997, 4(4):287-289
    Matsunaga T. and Takeyama H.. Biomagnetic nanoparticle formation and application. Supramolecular Science, 1998, 5(3-4):391-394
    Matsunaga T., Sato R., Kamiya S., Tanaka T., and Takeyama H.. Chemiluminescence enzyme immunoassay using ProteinA-bacteria magnetite complex. Journal of Magnetism and Magnetic Materials, 1999, 194:126-131
    Matsunaga T., Arakaki A., and Takahoko M.. Preparation of luciferase-bacterial magnetic particle complex by artificial integration of MagA-luciferase fusion protein into the bacterial magnetic particle membrane. Biotechnol Bioeg, 2002, 77(6):614-618
    Matsunaga T., Ueki F., Obata K., Tajima H., Tanaka T., Takeyama H., Goda Y., and Fujimoto S.. Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conjugated to bacterial magnetic particles. Analytica Chimica Acta, 2003a, 475(1-2):75-83
    Matsunaga T and Okamura Y.. Genes and proteins involved in bacterial magnetic particle formation. TRENDS in Microbiology, 2003b, 11(11):536-541
    Matsunaga T., Okamura Y., Fukuda Y., Wahyudi A. T., Murase Y., and Takekyama H.. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum magneticum AMB-1. DNA Research, 2005, 12(3):157-166
    Mckay D. S., Gibson E. K. Jr, Thomas-Keprta K. L., Vali H., et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 1996, 273:924-930
    Meldrum F. C., Mann S., Heywood B. R., Frankel R. B., and Bazylinski D. A.. Electron-microscopy study magnetosomes in cultured coccoid magnetotactic bacterium. Proceedings of the Royal Society of London Series B-Biological Sciences, 1993, 251(1332):231-236
    Moench T. T. and Konetzka W. A.. A Novel method for isolation and study of a magnetotactic bacterium. Archives of Microbiology, 1978, 119:203-212
    Moench T. T.. Bilophococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus. Antonie van Leeuwenhoek, 1988, 54:483-496
    Mora C. V., Davison M., Wild J. M., and Walker M. M.. Magnetoreception and its trigeminal mediation in the homing pigeon. Nature, 2004, 432:508-511
    Moskowitz B. M., Frankel R. B. Flanders P. J., Blakemore R. P., and Schwartz B. B.. Magnetite properties of magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 1988, 73:273-288
    Nakamura C., Sakaguchi T., Kudo S., Burgess G., Sode K., and Matsunaga T.. Characterization of iron uptake in the magnetic bacterium Aquaspirillum sp. AMB-1, Applied Biochemistry and Biotechnology, 1993, 39-40:169-176
    Nakamura C., Burgess J. G., Sode K., and Matsunaga T.. An iron-regulated gene, magA, encoding an iron transport protein of magnetospirillum sp. strain AMB-1. The Journal of Biological Chemistry, 1995a, 270(47):28392-28396
    Nakamura C., Kikuchi T., Burgess J. G., and Matsunaga T.. Iron-regulated expression and membrane localization of the magA protein in Magnetospirillum sp. strain AMB-1. J. Biochem., 1995b, 118:23-27
    Nakamura C., Burgess J. G., Sode K., and Matsunaga T.. Analysis of a gene, magA, required for magnetite biomineralization in the bacterium Magnetospirillum sp. AMB-1. Bulletin of the Oceanographic Institute, 1995c, 14(2):121-126
    Neilands J. B.. A brief history of iron metabolism. BioMetals, 1991, 4(1):1-6
    Noguchi Y., Fujiwara T., Yoshimatsu K., and Fukumori Y.. Iron reductase for magnetite synthesis in the magnetotactic bacteria Magnetospirillum magnetotacticum. Journal of Bacteriology, 1999, 181(7):2142-2147
    Ogura M., Kato M., et al.. Magnetic particles in chum salmon (oncorhynchus keta): extraction and transmission electron microscopy. Can. J. Zool., 1992, 70:874-877
    Okamura Y., Takeyama H., and Matsunaga T.. A magnetosome-specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. The Journal of Biological Chrmistry, 2001, 276(51):48183-48188
    Okamura Y., Takeyama H., Sekine T., Sakaguchi T., Wahyudi A. T., Sato R., Kamiya S., and Matsunaga T.. Design and application of a new cryptic-plasmid-based shuttle vector for Magnetospirillum magneticum. Applied and Environmental Microbiology, 2003, 69(7):4274-4277
    Okuda Y., Denda K., and Fukumori Y.. Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene, 1996, 171:99-102
    Okuda Y. and Fukumori Y.. Expression and characterization of a magnetosome-associated protein, TPR-containing MAM22, in Escherichia coli. FEBS Letters, 2001, 491:169-173
    Ota H., Arakaki A., Tanaka T., Takeyama H., and Matsunaga T.. Single nucleotide mismatch analysis using oligonucleotide probes synthesized on bacterial magnetic particle. Biomolecular Engineering, 2003, 20:305-309
    Paoletti L. C. and Blakemore R. P.. Hydroxamate production by Aquaspirillum magnetotacticum. Journal of Bacteriology, 1986, 167(1):73-76
    Petersen N., Dobeneck T. V., and Vali H.. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature, 1986, 320:611-615
    Pósfai M., Buseck P. R., Bazylinski D. A., and Frankel R. B.. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science, 1998a, 280:880-883
    Pósfai M., Moskowitz B. M., Arató B., Schüler D., Flies C., Bazylinski D. A., and Frankel R. B.. Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth and Planetary Science Letters, 2006, 249:444-455
    Proksch R. B., Sch?ffer T. E., Moskowitz B. M., Dahlberg E. D., Bazylinski D. A., and Frankel R. B.. Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium. Appl. Phys. Lett., 1995, 66(19):2582-2584
    Ricci J. C. D., Woodford B. J., Kirschvink J. L., and Hoffmann M. R.. Alteration of the magnetic properties of Aquaspirillum magnetotacticum by a pulse magnetization technique. Applied and Environmental Microbiology, 1991, 57(11):3248-3254
    Richter M., Kube M., Bazylinski D. A., Lombardot T., Gl?ckner F. O., Reinhardt R., and Schüler D.. Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. Journal of Bactreiology, 2007, 189(13):4899-4910
    Rudner D. Z., Pan Q., and Losick R.M.. Evidence that subcellular localization of a bacterial membrane protein in achieved by diffusion and capture. Proc. Natl. Acad. Sci. USA, 2002, 99(13):8701–8706
    Sakaguchi T., Burgess J. G., and Matsunaga T.. Magnetite formation by a sulphate reducing bacterium. Nature, 1993, 365:47-49
    Sakaguchi T., Tsujimura N., and Matsunaga.. A novel method for isolation of magnetic bacteria without magnetic colletion using magnetotaxis. Journal of Microbiological Methods, 1996, 26:139-145
    Sakaguchi T., Arakaki A., and Matsunaga T.. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. International Journal Systematic and Evolutionary Microbiology, 2002, 52(Pt1):215-221
    Scheffel A., Gruska M., and Faivre D., et al.. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature, 2006, 440:110-114 Scheffel A. and Schüler D.. The acidic repetitive domain of the Magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly. Journal of Bacteriology, 2007, 189(17):6437-6446
    Schleifer K. H., Schüler D., Spring S., Weizeneger M., Amann R., Ludwig W., and K?hler M., The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov., and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov.. System. Appl. Microbiol., 1991, 14:379-385
    Schübbe S., Kube M., Scheffel A., Wawer C., Heyen U., Meyerdierks A., Madkour M. H., Mayer F., Reinhardt R., and Schüler D.. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. Journal of Bacteriolgoy, 2003, 185(19):5779-5790
    Schüler D., Uhl R., and B?uerlein E.. A simple light scattering method to assay magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiology Letters, 1995, 132:139-145
    Schüler D. and Baeuerlein E.. Iron-limited growth kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol, 1996, 166:301-307
    Schüler D. and Baeuerlein E.. Iron transport and magnetite crystal formation of the magnetic bacterium Magnetospirillum gryphiswaldense. Journal de Physique IV, 1997, C1:647-650
    Schüler D.. Formation of magnetosomes in magnetotactic bacteria. J. Molec. Microbiol. Biotechnol., 1999, 1(1):79-86
    Schüler D. and Frankel R. B.. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol, 1999, 52:464-473
    Schultheiss D. and Schüler D.. Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol, 2003, 179:89-94
    Schultheiss D., Kube M., and Schüler D.. Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Applied and Environmental Microbiology, 2004, 70(6):3624-3631
    Schultheiss D., Handrick R., Jendrossek D., Hanzlik M., and Schüler D.. The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein(phasin) in Magnetospirillum gryphiswaldense. Journal of Bacteriology, 2005, 187(7):2416-2425
    Schultheiss-Grassi P. P., Wessiken R., and Dobson J.. TEM observation of biogenic magnetite extracted from the human hippocampus. Biochim. Biophys. Acta, 1998, 1426:212-216
    Schultheiss-Grassi P. P. and Dobson J.. Magnetic analysis of human brain tissue. BioMetals., 1999, 12:67-72
    Scott E. R.. Origin of carbonate-magnetite-sulfide assembleages in Martian meteorite ALH84001. J. Geophys. Res. 1999, 104(E2):3803-3813
    Seong S. and Park T. H.. Bacrterium, Magnetospirillum sp. AMB-1, and implications as toxicity measurement. Biotechnology and Bioengineering, 2001, 76(1):11-16
    Simmons S. L., Sievert S. M., Frankel R. B., Bazylinski D. A., and Edwards J. K.. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Applied and Environmental Microbiology, 2004, 70 (10): 6230-6239
    Simmons S. L., Bazylinski D. A., and Edwards K. J.. South-seeking magnetotactic bacteria in the Nortern hemisphere. Science, 2006, 311:371-374
    Sparks N. H. C., Mann S., Bazylinski D. A., Lovley D. R., Jannasch H. W., and Frankel R. B.. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium. Earth and Planetary Science Letters, 1990, 98(1):14-22
    Spring S., Amann R., Ludwig W., Schieifer K.-H., Van Gemerden H., and Petersen
    N.. Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Applied and Environmental Microbiology, 1993, 59(8):2397-2403
    Spring S., Schleifer K. H.. Diversity of magnetotactic bacteria. System and Applied Microbiology, 1995a, 18:147-153
    Spring S., Amann R., Ludwig W., et al. Phylogenetic analysis of uncultured magnetotactic bacteria from the alpha-subclass of Proteobacteria. Systematic and Applied Microbiology, 1995b, 17: 501-508
    Spring S., Lins U., Amann R., Schleifer K.-H., Ferreira L. C. S., Esquivel D. M. S., and Farina M., Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes. Archives of Microbiology, 1998, 169:136-147
    Spring S., Schulze R., Overmann J., and Schleifer K. H.. Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiology Reviews, 2000, 24:573-590
    Stolz J. F., Chang S. B. R., and Kirschvink J. L.. Magnetotactic bacteria and single domain magnetite in hemipelagic sediments. Nature, 1986, 321:849-850
    Suzuki H., Tanaka T., Sasaki T., Nakamura N., Matsunaga T., and Mashiko S.. High-resolution magnetic force microscope images of a magnetic particle chain extracted from magnetic bacteria AMB-1. Jpn. J. Appl. Phys., 1998, 37:1343-1345
    Suzuki T., Okamura Y., Calugay R. J., Takeyama H., and Matsunaga T.. Global gene expression analysis of iron-inducible genes in Magnetospirillum magnetium AMB-1. Journal of Bacteriology, 2006, 188(6):2275-2279
    Suzuki T., Okamura Y., Arakaki A., Takeyama H., and Matsunaga Tadashi.. Cytoplasmic ATPase involved in ferrous ion uptake from magnetotactic bacterium Magnetospirillum magneticum AMB-1. FEBS Letters, 2007, 581(18):3443-3448
    Taoka A., Yoshimatsu K., Kanemori M., and Fukumori Y.. Nitrate reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum MS-1: purification and sequence analyses. Can. J. Microbiol., 2003, 49:197-206
    Tenforde T. S.. Electroreception and magnetoreception in simple and complex organisms. Bioelectromagnetics, 1989, 10:215-221
    Thomas-Keprta K. L., Clemen S. J., and Bazylinski D. A., et al.. Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc. Natl. Acad. Sci. USA, 2001, 98(5):2164-2169
    Thornhill R. H., Burgess J. G., Sakaguchi T., and Matsunaga T.. A morphological classification of bacteria containing bullet-shaped magnetic particles. FEMS Microbiology Letters, 1994, 115:169-176
    Thornhill R. H., Burgess J. G., and Matsunaga T.. PCR for direct detection of indigenous uncultured magnetic cocci in sediment and phylogenetic analysis of amplified 16S ribosomal DNA. Applied and Environmental Microbiology, 1995, 61(2):495-500
    Ullrich S., Kube M., Schübbe S., Reinhardt R., and Schüler D.. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. Journal of Bacteriology, 2005, 187(21):7176-7178
    Urban J. E.. Adverse effects of microgravity on the magnetotactic bacterium Magnetospirillum magnetotacticum. Acta Astronautica, 2000, 47(10):775-780
    Vali H. and Kirschvink J. L.. Magnetofossil dissolution in a palaeomagnetically unstable deep-sea sediment. Nature. 1989, 339(6221):203-206
    Vali H., Weiss B., Li Y. L., Sears S. K., Kim S. S., Kirschvink J. L., and Zhang C. L. L.. Formation of tabular single-domain magnetite induced by Geobacter metallireduces GS-15. PNAS, 2004, 101(46):16121-16126
    Wahyudi A. T., Takeyama H., Okamura Y., Fukuda Y., and Matsunaga T.. Characterization of aldehyde ferredoxin oxidoreductase gene defective mutant in Magnetospirillum magneticum AMB-1. Biochemical and Biophysical Research Communications, 2003, 303(1):223-229
    Walker M. M., Kirschvink J. L., Chang S.-B. R., and Dizon A. E.. A Candidate magnetic sense organ in Yellowfin Tuna, Thunnus albacares. Science, 1984, 224:751-753
    Walcott C.. Pigeons have magnets. Science, 1979, 205:1027-1029
    Waleh N. S.. Functional expression of Aquaspirillum magnetotacticum genes in Escherichia coli K12. Mol. Gen. Genet., 1988, 214:592-594
    Komeili A.. Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc. Natl. Acad. Sci. USA, 2004, 101(22):8281-8284
    Williams T. J., Zhan C. L., Scott J. H., and Bazylinski D. A.. Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Applied and Environmental Microbiology, 2006, 72:1322-1329
    Winklhofer M., Abracado L. G., Davila A. F., and Keim C. N.. Magnetic optimization in a multicellular magnetotactic organism. Biophysical Journal, 2007, 92(2):661-670 Yamanaka H. T. T. and Fukumori Y.. Purification and properties of a “cytochrome a1”-like hemoprotein from a magnetotactic bacterium, Aquaspirillum magnetotacticum. Biochim. Biophys. Acta, 1993, 1158:237-243
    Wu X. L., Zhong W., Gao S. Y., Qi X. H., Tang N. J., Jiang H. Y., and Du Y. W.. Long magnetic nanochains assembled by magnetotactic bacteria in a directional field. Pricm 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-5, 2005, 457-479:2411-2414
    Xiao Z. J., Lian B., Chen J., and Teng H. H.. Design and application of the method for isolating magnetotactic bacteria. Chinese Journal of Geochemistry, 2007, 26(3):252-258
    Yamazaki T., Oyanagi H., Fujiwara T. and Fukumori Y.. Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum: a novel cytochrome cd, with Fe(II):nitrite oxidoreductase activity. Eur. J. Biochem., 1995, 233:665–671
    Yang C. D., Takeyama H., and Matsunaga T.. Iron feeding optimization and plasmid stability in production of recombinant bacterial magnetic particles by Magnetospirillum magneticum AMB-1 in fed-batch culture. Journal of Bioscience and Bioengineering, 2001a, 91(2):213-216
    Yang C. D., Takeyama H., Tanaka T., and Matsunaga T.. Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme and Microbial Technology, 2001b, 29(1):13-19
    Yoshino T., Takahashi M., Takeyama H., Okamura Y., Kato F., and Matsunaga T.. Assembly of G protein-coupled receptors onto nanosized bacterial magnetic particles using Mms16 as an anchor molecule. Applied and Envrionmental Microbiology, 2004, 70(5):2880-2885
    Yoshino T. and Matsunaga T.. Efficient and stable display of functional proteins on bacterial magnetic particles using Mms13 as a novel anchor molecule. Applied and Environmental Microbiology, 2006, 72(1):465-471
    Zhang C. L., Vali H., Romanek C. S., Phelps T. J., and Liu. S. V.. Formation of single-domain magnetite by a thermophilic bacterim. American Mineralogist, 1998, 83:1409-1418
    Zhao L. Z., Wu D., Wu L. F., Song T.. A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer. Journal of Biochemical and Biophysical Methods, 2007, 70(3):377-383
    陈明杰,卫扬保.铁(Ⅲ)对趋磁细菌 WD-1 菌株分泌铁螯合物活性的影响. 武汉大学学报(自然科学版), 1998, 44(4):474-476
    范国昌,钱凯先,李荣森,贾蓉芬.磁杆菌 HMB-1 的磁小体特性及其合成条件的研究.生物学杂志.1998a, 15(5):11-14
    范国昌,钱凯先.趋磁细菌及其磁小体的研究与应用.生物技术通报, 1998b, 2:24-28
    高梅影,戴顺英,刘艳丽,彭可凡,贾蓉芬.从武汉印染厂废水淤泥中分离出的趋磁细菌的生长与磁小体形成过程.应用与环境生物学报, 2004, 10(2):194-196
    何跃明,吕新生,艾中立,纪树荣.恶性肿瘤的磁靶向热疗.国外医学. 2003, 23(2):96-100
    贾蓉芬,彭先芝,蔡宗毅,戴润芝.广东湛江泥炭层中趋磁细菌的发现.第四纪研究, 1999, 3:285
    贾蓉芬,彭先芝,高梅影,戴顺英.中国黄土剖面趋磁细菌的组成特征与生态意义.岩石矿物学杂志, 2001, 20(4):428-432
    姜伟,卫扬保.趋磁细菌 WD-1 的超微结构及批量培养方法.微生物学通报, 2001, 28(3):75-78
    姜伟,赵德华,李颖,田节生,王珍芳,李季伦.固氮条件下 Greifswald 磁螺菌的深层培
    养及其固氮活性调节.科学通报, 2002, 47(22):1722-1725
    姜伟,付刚,李颖.细菌内磁纳米粒研究-细菌内磁纳米粒的特性及应用.中国医学工程杂志, 2003, 11(6):59-62
    姜伟,田杰生,李颖,李季伦.趋磁细菌的特点及其纳米磁小体合成条件.中国农业科技导报, 2007, 9(3):24-31
    蒋应平,孙津生,王艳红.趋磁性细菌的培养及其对Pb2+吸附的研究.化学工业与工程, 2007, 24(4):283-286
    李峰,李颖,姜伟,王珍芳,李季伦.趋磁螺菌遗传操作体系的建立及磁小体缺失突变株的筛选.微生物学报, 2004, 44(4):440-444
    李峰,李颖,姜伟,王珍芳,李季伦.Magnetospirillum gryphiswaldense MSR-1 磁小体缺失突变株 NM4 Tn5 侧翼序列的克隆及功能分析.中国科学(C 辑), 2005, 35(4):349-358
    李道季,黄大吉.长江口外氧的亏损.中国科学(D 辑), 2002, 32(8):686-694
    李荣森,范国昌,贾蓉芬,高梅影,戴顺英,林本海.黄土剖面中趋磁细菌及其磁小体的初步研究.地球化学, 1996, 25(3):251-254
    刘信.向磁微生物的开发和利用.微生物学通报, 1991,18(3):188-189
    潘永信,邓成龙,刘青松,Petersen N.,朱日祥.趋磁细菌磁小体的生物矿化作用和磁学性质研究进展.科学通报, 2004, 24(49):2505-2510
    彭先芝,贾蓉芬,李荣森,戴顺英,刘东生.黄土-古土壤序列中趋磁细菌分布和磁小体形成的古环境.科学通报, 2000, 45(增刊):710-712
    彭先芝,贾蓉芬.西峰与段家坡黄土剖面中有机质的特征及古环境信息.地理科学, 2001, 1:36-40
    彭先芝,贾蓉芬,李荣森,戴顺英,刘东生.趋磁细菌及磁小体对黄土-古土壤序列磁化率贡献的模拟实验研究.第四纪研究, 2002, 22(2):188-194
    任茂明,王艳红,李鑫钢,孙津生.趋磁细菌对含重金属Cr3+废水的吸附研究.昆明理工大学学报, 2004, 29(1):97-99,107
    任修海.细菌磁的生物技术开发和利用.生物学杂志. 1995, 1:30-31
    阮颖,谭周进,任文辉,刘春林.趋磁细菌的分离研究.湖南农业大学学报, 1998,24(3):238-240
    舒浩华,王艳红,孙津生,白明.趋磁性细菌-磁场处理含镍废水的研究.离子交换与吸附, 2005, 21(4):265-269
    王小柯,赵露泽,宋涛,池振明,吴龙飞.脉冲磁场对趋磁螺细菌 AMB-1 磁小体形成及相关基因表达的影响.高技术通讯, 2007, 17(4):412-417
    王艳红,孙津生.MTB 培养基富集培养的活性污泥对重金属离子的生物吸附.化学工业与工程, 2005, 22(4):255-258
    卫扬保,张洪霞,姜伟,邱金凤.趋磁细菌研究?.武昌东胡水体趋磁细菌WD-1的分离.武汉大学学报(自然科学版), 1994a, 6:115-120
    卫扬保,姜伟.趋磁细菌研究Ⅱ.趋磁细菌 WD-1 的生长和磁小体的合成条件. 武汉大学学报(自然科学版), 1994b, 6:121-127
    吴小玲,都有为.淡水趋磁球菌的研究.物理学报. 1999a, 48(增刊):304-308
    吴小玲,都有为.一种趋磁弧菌及其磁小体特性的研究.南京大学学报(自然科学), 1999b, 35(6):745-749
    吴小玲,钟伟,都有为.一株G-球形趋磁细菌的发现与表征. 南京大学学报(自然科学), 1999c, 35(4):430-435
    武振华,孙津生,宋慧平,李鑫钢.趋磁细菌(MTB吸附Pd2+的实验研究.离子交换与吸附, 2006, 22(5):385-391
    谢昕,卫扬保,杨清平.趋磁细菌 WD-1 同工酶分析.氨基酸和生物资源, 1998, 20(4):19-21,54
    阎桂林,梁里明,谢昕,卫扬保.河南双河油田第四纪沉积物(土壤)中趋磁细菌的发现.地球科学-中国地质大学学报, 1995, 2:166-167
    俞大绂,李季伦.微生物学(第二版),北京:科学出版社, 1985
    张三慧.活的磁小体.大学物理. 1991, 10(4):30-31
    张宏绪.磁性细菌微粒在传感器上的应用.传感器技术, 1991, 5:24-26
    章勇良,卫扬保,杨清香.趋磁细菌研究Ⅳ.好氧趋磁细菌 HM-1 的分离及其生物学特性研究. 武汉大学学报(自然科学版), 1997, 43(6):775-780

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700