DWI及磁共振动态对比增强在鉴别肌骨系统良恶性病变中的应用价值
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨弥散加权成像及磁共振动态对比增强在鉴别肌骨系统良、恶性病变中的应用价值。
     材料和方法
     1.选取有完整MRI资料且经病理证实的肌骨病变患者62例(良性29例,恶性33例),62例均行常规MRI和DWI检查,其中47例(良性22例,恶性25例)行DCE-MRI检查,将全部病例按病理结果分为良性病变组和恶性病变组。
     2.采用Siemens Sonata 1.5T超导MR成像仪,应用单激发回波平面成像序列(SH-EPI)行DWI检查,应用三维快速梯度回波T1加权磁共振成像序列(3D-VIBE)行DCE-MRI检查,分别于DWI和DCE-MRI图像上测量ADC值、SEE、Slope值、DER,判断TIC类型,采用受试者操作特征(ROC)曲线选择良恶性病变鉴别诊断的阈值,计算各参数对病变潜在恶性估计的敏感度、特异度和准确度。统计学分析均使用统计软件SPSS 17.0完成。
     结果
     1.良、恶性两组病变的ADC值结果对比62例病例中,良、恶性两组病变的ADC值分别为(179.95±21.21)×10-5mm2/s和(112.48±16.08)×10-5mm2/s(p<0.05);利用ROC曲线得出,以115.43×10-5mm2/s为阈值,ADC值对病变潜在恶性评估的敏感度、特异度、准确度分别为69.7%、93.1%和80.65%。
     2.良、恶性两组病变的TIC类型结果对比47例病例中,TIC类型呈Ⅲ型者25例:恶性24例(96%),良性1例(4%);呈Ⅱ型者15例:恶性1例(6.67%),良性14例(93.33%);呈Ⅰ型者共7例,均为良性。若以Ⅲ型为恶性病变,Ⅰ、Ⅱ型均视为良性病变为诊断标准,则TIC类型对病变潜在恶性评估的敏感度、特异度、准确度分别为96%、95.45%、95.74%。
     3.良、恶性两组间SEE、Slope值、DER结果对比良、恶性两组间SEE、Slope值、DER分别为194.70±23.58、327.3±24.21(p<0.05);1.1469±0.1678%/s、3.0501±0.6069%/s(p<0.05);0.1636±0.03970、0.2244±0.0362(p>0.05)。利用ROC曲线得出,以227.7为阈值,SEE对病变潜在恶性评估的敏感度、特异度、准确度分别为80%、70%、75.56%;以1.2923%/s为阈值,Slope值诊断恶性病变的敏感度、特异度、准确度分别为96.0%、72.7%、85.11%。
     结论
     1.DWI在肌骨系统病变良恶性鉴别诊断中有一定的价值。
     2.DCE-MRI各参数中,DER在良、恶性两组间比较无统计学意义;SEE、Slope值及TIC类型中,TIC类型对肌骨病变潜在恶性评估准确度最高,最有价值。
     3.本研究中,DCE-MRI对肌骨系统病变良、恶性的鉴别诊断价值较DWI高。
     4.良、恶性病变间ADC值有一定交叉,DCE-MRI亦存在小部分重叠,联合应用DCE-MRI与DWI,能提高诊断的准确度和特异度。
The Application of DWI and DCE-MRI in Differentiating Benign Musculoskeletal Masses from Malignant Ones
     Objective To assess the diagnostic potential of DWI and DCE-MRI in differentiating benign from malignant musculoskeletal masses.
     Methods
     1.62 patients with musculoskeletal diseases (29 cases of benign and 33 cases of malignant) were selected, which have complete MRI data. Routine MR examination and DWI was performed on 62 patients and DCE-MRI was performed on 47 patients (22 cases of benign and 25 cases of malignant) using Siemens Sonata 1.5T MR scanner. All the patients were divided into benign and malignant groups by pathology.
     2. ADC value is measured on DWI and SEE, Slope value, DER and TIC type were gained on DCE-MRI. Receiver operating characteristic (ROC) curve was used to select the threshold to calculate the sensitivity, specificity and accuracy. Statistical analyses were completed by using SPSS 17.0.
     Results
     1. In 62 Cases, the ADC values of two groups were (179.95±21.21)×10-5mm2/s, (112.48±16.08)×10-5mm2/s (p<0.05).Using 115.43×10-5mm2/s as the threshold, the diagnostic sensitivity, specificity, and accuracy were 69.7%,93.1%,80.65%, respectively.
     2. In 47 patients,Ⅲcurve was found in 25 cases(malignant for 24 and benign for 1),Ⅱcurve in 15 cases(malignant for 1 and benign for 14) andⅠcurve in 7 cases(all were benign). AsⅢcurve was considered malignant andⅠ,Ⅱcurve were regarded as benign, the diagnostic accuracy of TIC type was 95.74%.
     3. SEE, Slope value and DER in benign and malignant group were 194.70±23.58,327.3±24.21(p<0.05);1.1469±0.1678%/s,3.0501±0.6069%/s(p<0.05); 0.1636±0.03970,0.2244±0.0362(p>0.05), respectively. Using 227.7 as the threshold, the diagnostic sensitivity, specificity, and accuracy of SEE were 80%,70%,75.56%. And the diagnostic sensitivity, specificity, and accuracy of Slope value were 96.0%, 72.7%,85.11% using 1.2923%/s as the threshold.
     Conclusion
     1. DWI is valuable in the differential diagnosis of benign and malignant musculoskeletal lesions.
     2. In all the parameters of DCE-MRI, DER was not valuable in differentiating benign and malignant musculoskeletal lesions. SEE, Slope value and type in the TIC to TIC types was the most valuable parameter in DCE-MRI.
     3. In general, DCE-MRI was more valuable than DWI in differentiating benign from malignant musculoskeletal masses.
     4. To highly suspicious musculoskeletal lesions, DCE-MRI combining with DWI lead to higher diagnostic accuracy.
引文
[1]Tzika AA, Zarifi MK, Goumnerova L, et al. Neuroimaging in pediatric brain tumors:Gd-DTPA-enhanced, hemodynamic, and diffusion MR imaging compared with MR spectroscopic imaging[J]. Am J Neuroradiol,2002,23(2):322-333.
    [2]Geirnaerdt MJ, Hogendoorn PC, Bloem JL, et al. Cartilaginous tumors:fast contrast-enhanced MR imaging[J]. Radiology,2000,214(2):539-546.
    [3]Kajihara M, Sugawara Y, Sakayama K, et al. Evaluation of tumor blood flow in musculo-skeletal lesions:dynamic contrast-enhanced MR imaging and its possibility when monitoring the response to preoperative chemotherapy-work in progress[J]. Japan Radiological Society 2007,25(3):94-105.
    [4]Lang P, Honda G, Roberts T, et al. Musculoskeletal neoplasm:perioneoplastic edema versus tumor on dynamic post contrast MR imaging with spatial mapping of instantaneous enhancement rates[J]. Radiology,1995,197(3):831-839.
    [5]靳激扬,杨世埙,许建荣,等.动态增强磁共振成像对肌肉骨骼系统肿瘤性质鉴别的定量研究[J].中华放射学杂志,1999,33(9):588-591.
    [6]Thomas DL, Lythgoe MF, Pell GS, et al. The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging[J]. Phys Med Biol, 2000,45(8):R97-138.
    [7]Le Bihan D. Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging:a closer step toward the"holy grail"of tissue characterization?[J]. Radiology,1998,207(2):305-307.
    [8]Spuentrup E, Buecker A, Adam G, et al. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body[J]. Am J Roentgenol,2001,176(2):351-358.
    [9]Chen S, Ikawa F, Kurisu K, et al. Quantitative MR evaluation of intracranial epidermoid tumors by fast fluid-attenuated inversion recovery imaging and echo-planar diffusion-weighted imgaing[J]. Am J Neuroradiol,2001,22?:1089-1096.
    [10]Baur A, Reiser MF. Diffusion-weighted imaging of the musculoskeletal system in humans[J]. Skeletal Radiol,2000,29(10):555-562.
    [11]Chan JH, Peh WC, Tsui EY, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients[J]. Br J Radiol,2002,75(891):207-214.
    [12]Herneth AM, Friedrich K, Weidekamm C, et al. Diffusion weighted imaging of bone marrow pathologies[J]. Eur J Radiol,2005,55(1):74-83.
    [13]Baur A, Dietrich O, Reiser M. Diffusion weighted imaging of bone marrow: current status[J]. Eur Radiol,2003,13(7):1699-1708.
    [14]Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of celluarity in gliomas[J]. J Magn Reson Imaging,1999,9(1):53-60.
    [15]Ducatman BS, Emery ST, Wang HH. Correlation of histological grade of breast Carcinoma with cytological features on fine-needle aspiration of the breast[J]. Mod Pathol,1993,6(5):539-543.
    [16]王霄英,丁建平,周良平,等.前列腺癌的MR扩散成像初步研究[J].中华放射学杂志,2005,39(11):1207-1209.
    [17]Herneth AM, Philpp MO, Naude J, et al. Vertebral metastases:assessment with apparent diffusion coefficient[J]. Radiology,2002,225(3):889-894.
    [18]Brasch RC. New directions in the development of MR imaging contrast media[J]. Radiology,1992,183(1):1-11.
    [19]Verstraete KL, DE Deene Y, Roels H, et al. Benign and malignant musculoskeletal lesions:dynamic contrast-enhanced MR imaging-parametric "first-Pass" images depict tissue vascularization and perfusion [J]. Radiology,1994, 192(3):835-843.
    [20]丁庆国,胡春洪,郭亮,等.MRI静态增强方式在肌骨系统良恶肿块中的鉴别诊断价值[J].放射学实践,2003,18(2):110-112.
    [21]Muller TB, Haraldseth O, Jones RA, et al. Combined perfusion and diffusion-weighted magnetic resonance imaging in a rat model of reversible middle cerebral artery occlusion imaging in a rat model of reversible middle cerebral artery occlusion[J]. Stroke,1995,26(6):451-457.
    [22]Nagele T, Petersen D, Klose U, et al. Dynamic contrast enhancement of intracranial tumors with snapshot-FLASH MR imaging[J]. Am J Neuroradiol,1993, 14(1):89-98.
    [23]Ross JS, Delamarter R, Hueftle MG, et al. Gadolinium-DTPA-enhanced MR imaging of the postoperative lumbar spine:time course and mechanism of enhancement[J]. Am J Neuroradiol,1989,152(4):825-834.
    [24]Folkman J, Beckner K. Angiogenesis imaging[J]. Academic Radiology,2000,7 (10):783-785.
    [25]Delorme S, Knopp MV. Non-invasive vascular imaging:assessing tumor vascularity[J]. Eur Radiol,1998,8(4):517-527.
    [26]过哲,张晶,梁伟,等,骨巨细胞瘤的动态增强MRI与1H-MR波谱研究[J].中国医学影像技术,2008,24(10):1490-1492.
    [27]Jain RK. Transport of molecules in the tumor interstitium:A review[J]. Cancer Res.1987,47(12):3039-3051.
    [28]Wang CK, Li CW, Hsieh TJ, et al. Characterization of bone and soft-tissue tumors with in Vivo 1H MR Spectroscopy:Initial Results[J]. Radiology,2004,232(2): 599-605.
    [29]Oka K, Yakushiji T, Sato H, et al. Ability of diffusion-weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors[J]. Journal of MRI,2008,28(5):1195-1200.
    [30]Ward R, Caruthers S, Yablon C, et al. Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients[J]. Am J Neuroradiol,2000,174(3):731-734.
    [31]Sah PL, Sharma R, Kandpal H, et al. In vivo proton spectroscopy of giant cell tumor of the bone[J]. Am J Neuroradiol,2008,190(2):W133-139.
    [32]Erlemann R, Reiser MF, Peter PE, et al. Musculoskeletal neoplasms:static and dynamic Gd-DTPA enhanced MR imaging[J]. Radiology,1989,171(3):767-773.
    [33]Schellinger D, Lin CS, Fertikh D, et al. Normal lumbar vertebrae:anatomic, age, and sex variance in subjects at proton MR spectroscopy-initial experience[J]. Radiology,2000,215(3):910-916.
    [34]Schaefer PW, Grant RE, Gonzalez RG, et al. Diffusion-weighted MR imaging of the brain (Review)[J]. Radiology,2000,217(2):331-345.
    [35]Schellinger D, Lin CS, Hatipoglu HG, et al. Potential value of vertebral proton MR spectroscopy in determining bone weakness[J]. Am J Neuroradiol,2001,22(8): 1620-1627.
    [1]Thomas DL, Lythgoe MF, Pell GS, et al. The measurement of diffusion and perfusion in biological systems using magnetical resonance imaging[J]. Phy Med Biol, 2000,45(8):97-138.
    [2]Muller TB, Haraldseth O, Jones TB, et al. Combined perfusion and diffusion-weighted Magnetic Resonance Imaging in a rat model of reversible middle cerebral artery occusion[J]. Stroke,1998,29(3):451-458.
    [3]Siewert B, Schlaug G, Edelman RR, et al. Comparison of EPISTAR and T2*-weighted gadolinium-enhanced perfusion imaging in patients with acute cerebral ischemia[J]. Neurology,1999,50(3):673-679.
    [4]Kuhl CK, Bieling H, Gieseke J, et al. Breast neoplasms T2* susceptibility-contrast, first-pass perfusion MR imaging[J]. Radiology,1997; 202(1):87-95.
    [5]Verstraete KL, Deene YD, Roels H, et al. Benign and malignant musculoskeletal lesion:dynamic contrast-enhanced MR imaging-parametric "first-pass" imaging depict tissue vascularization and perfusion[J]. Radiology,1994,192(3):835-843.
    [6]Shinkwin MA, Lenkinki PE, Daly JM, et al. Integrated magnetic resonance imaging and phosphorous spectroscopy of soft tissue tumors[J]. Cancer,1991,77(7): 1849-1858.
    [7]Negendank W. Studies of human tumors by MRS[J]. NMR Biomed,1998,11(2): 303-324.
    [8]Baur A, Reiser MF. Diffusion-weighted imaging of the musculoskeletal system in humans[J]. Skeletal Radiol,2000,29(10):555-562.
    [9]Chan JH, Peh WC, Tsui EY, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients[J]. Br J Radiol,2002,75(891):207-214.
    [10]Herneth AM, Friedrich K, Weidekamm C, et al. Diffusion weighted imaging of bone marrow pathologies [J]. Eur J Radiol,2005,55(1):74-83.
    [11]Baur A, Dietrich O, Reiser M, et al. Diffusion weighted imaging of bone marrow: current status[J]. Eur J Radiol,2003,13(7):1699-1708.
    [12]Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of celluarity in gliomas[J]. Magn Reson Imaging,1999,9(1):53-60.
    [13]Ducatman BS, Emery ST, Wang HH, et al. Correlation of histological grade of breast Carcinoma with cytological features on fine-needle aspiration of the breast[J]. Mod Pathol,1993,6(5):539-543.
    [14]王霄英,丁建平,周良平,等.前列腺癌的MR扩散成像初步研究[J].中华放射学杂志,2005,11(21):1207-1209.
    [15]Baur A, Stbler A, Bruning R, et al. Diffusion-weighted MR imaging of bone marrow:differentiation of benign versus pathologic compression fractures[J]. Radiology,1998,207(2):349-356.
    [16]Herneth AM, Philpp MO, Naude J, et al. Vertebral metastases:assessment with apparent diffusion coefficient[J]. Radiology,2002,225(3):889-894.
    [17]Chan JH, Mulkern RV, Schwartz RB, et al. In re-characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging[J]. Am J Neuroradiol,2003,24(7):1489-1490.
    [18]Nagata S, Nishimura H, Uchida M, et al. Usefulness of diffusion-weighted MRI in differentiating benign from malignant musculoskeletal tumors[J]. Nippon Igaku Hoshasen Gakkai Zasshi,2005,65(1):30-36.
    [19]QI Zi hua, LI Chuan fu, et al. Application study of 3T MR functional imaging in patient with musculoskeletal tumors[J]. Chinese Medical Journal 2009; 122(1):39-43.
    [20]孟悛非,马玲,陈应明,等,EPI-DWI-ADC图对确定恶性骨肿瘤髓内浸润范围的价值[J].中国CT和MRI杂志,2003,1(1):46-51.
    [21]Kiyoshi Oka, Toshitake Yakushiji, Hiro Sato, et al. Ability of diffusion-weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors[J]. Journal of MRI,2008,28(5):1195-1200.
    [22]Schellinger D, Lin CS, Hatipoglu HQ et al. Potential value of vertebral proton MR spectroscopy in determining bone weakness[J]. Am J Neuroradiol,2001,22(8): 1620-1627.
    [23]Schellinger D, Lin CS, Fertikh D, et al. Normal lumbar vertebrae:anatomic, age, and sex variance in subjects at proton MR spectroscopy-initial experience[J]. Radiology,2000,215(3):910-916.
    [24]周春香,孟俊非,陈应明,等.磁共振氢质子波谱在下肢骨-软组织疾病中应用初探[J].临床放射学杂志,2003,12(16):1035-1038.
    [25]Wang CK, Li CW, Hsieh TJ, et al. Characterization of bone and soft-tissue tumors with in Vivo 1H MR Spectroscopy:Initial Results[J]. Radiology,2004,232(2): 599-605.
    [26]Fayad LM, Bluemke DA, Mccarthy EF, et al. Musculoskeletal tumors:use of proton MR spectroscopic imaging for characterization[J]. Journal of Magn Reson Imaging,2005,23(1):23-28.
    [27]Fayad LM, Barker PB, Jacobs MA, et al. Characterization of musculoskeletal lesions on 3-T proton MR spectroscopy[J]. Am J Roentgenol,2007,188(6):1513-1520.
    [28]Sah PL, Sharma R, Kandpal H, et al. In vivo proton spectroscopy of giant cell tumor of the bone[J]. Am J Roentgenol,2008,190(2):133-139.
    [29]Peter S, Laurrence G, David C, et al. Specificity of choline metabolite for in vivo diagnosis of breast cancer using'HMRS at 1.5T[J]. Eur Radiol,2005,15(2):1037-1043.
    [30]丁庆国,胡春洪,郭亮,等.MRI静态增强方式在肌骨系统良恶肿块中的鉴别诊断价值[J].放射学实践,2003,18(2):110-112.
    [31]Folkman J, Beckner K. Angiogenesis imaging[J]. Academic Radiology,2000, 7(10):783-785.
    [32]Delorme S, Knopp MV. Non-invasive vascular imaging:assessing tumor vascularity[J]. Eur Radiol.1998; 8(4):517-527.
    [33]Gwyther SJ. New imaging techniques in cancer management[J]. Ann Oncol,2005, 16(Suppl2):ii63-ii70.
    [34]郁万江,杜湘坷.动态多层面MR T1WI灌注成像鉴别良恶性肌骨病变[J].中国医学影像技术,2005,21(6):937-940.
    [35]Knopp MV, Tengg-Kobligk HV, Choyke PL, et al. Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring[J]. Molecular Cancer Therapeutics,2003,2(4):419-426.
    [36]Van Rijswijk CS, Geirnaedrt MJ, Hogendoorn PC, et al. Soft-tissue tumors:value of static and dynamic gadopentetate dimeglumine-ehnnaced MR imaging in prediction of malignancy[J]. Radiology,2004,233(2):493-502.
    [37]De Schepper AM, De Beuckeleer L, Vandevenne J, et al. Magnetic resonance imaging of soft-tissue tumors[J]. Eur Radiol,2000,10(2):213-223.
    [38]Erlemann R, Reiser MF, Peters PE, et al. Musculoskeletal neoplasm's:static and dynamic Gd-DTPA enhanced MR imaging[J]. Radiology,1989,171(3):767-773.
    [39]Lbiicher M, Bmed L, Schenk JP, et al. Characteristic perfusion pattern of osseous giant cell tumor in dynamic contrast-enhanced MRI[J]. Radiology,2001,41(7): 577-582.
    [40]Jain RK. Transport of molecules in the tumor interstitium[J]. Cancer Res,1987, 47(12):3039-3051.
    [41]Ma LD, Frassica FJ, McCarthy EF, et al. Benign and malignant musculoskeletal masses:MR imaging differentiation with rim-to-center differential enhancement ratios[J]. Radiology,1997,202(3):739-744.
    [42]Lewin M, Bredow S, Sergeyev N, et al. In vivo assessment of vascular endothelial growth factor-induced angiogenesis[J]. Int J Cancer,1999,83(6):789-802.
    [43]Baur A, Huber A, Arbogast S, et al. Diffusion-weighted imaging of tumor recurrences and post therapeutical soft-tissue changes in humans[J]. Eur Radiol,2001, 11(5):828-833.
    [44]Kvistad KA, Rydland J, Vainio J, et al. Breast lesions:evaluation with dynamic contrast-enhanced T1-weighted MR imaging and with T2-weighted first-pass perfusion MR imaging[J]. Radiology,2000,216(2):545-553.
    [45]Shah GV, Gandhi D, Mukherji SK, et al. Magnetic resonance spectroscopy of head and neck neoplasm's[J]. Top Magn Reson Imaging,2004,15(2):87-94.
    [46]Tuncbilek N, Karakas HM, Okten OO, et al. Dynamic contrast enhanced MRI in the differential diagnosis of soft tissue tumors[J]. Eur J Radiol,2005, 53(3):500-505.
    [47]Tacikowska M. Dynamic magnetic resonance imaging in soft tissue tumors-assessment of the diagnostic value of tumor enhancement rate indices[J]. Med Sci Monit,2002,8(4):MT53-57.
    [48]Rock JP, Scarpace L, Hearshen D, et al. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis[J]. Neurosurgery,2004,54(5):1111-1117.
    [49]Gupta RK, Sinha U, Cloughesy TF, et al. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma[J]. Magn Reson Med,1999,41(1):2-7.
    [50]Jacobs MA, Barker PB, Argain P, et al. Combined dynamic contrast enhanced breast MR and proton spectroscopic imaging:a feasibility study[J]. J Magn Reson Imaging,2005,21(1):23-28.
    [51]Huang W, Fisher PR, Dulaimy K, et al. Detection of breast malignancy: diagnostic MR protocol for improved specificity[J]. Radiology,2004,232(2):585-591.
    [52]Mardor Y, Kaplan O, Sterin M, et al. Noninvasive real-time monitoring of intracellular cancer cell metabolism and response to lonidamine treatment using diffusion weighted proton magnetic resonance spectroscopy[J]. Cancer Res,2000, 60(18):5179-5186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700