大丽轮枝菌毒力基因的筛选与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大丽轮枝菌属子囊真菌可导致600多种双子叶植物引发黄萎病,对农业生产连年造成重大经济损失,其中包括多种重要经济作物如棉花,橄榄,番茄,草莓等。目前人们对大丽轮枝菌的致病机理了解甚少,而筛选和鉴定大丽轮枝菌关键致病因子是揭示大丽轮枝菌致病分子机理的重要前提。随着基因组和蛋白组研究新技术的快速发展,为高效系统的筛选和鉴定大丽轮枝菌致病相关基因提供了有利条件。
     本研究基于大丽轮枝菌基因组数据,选择了坏死及乙烯诱导蛋白(NEP)家族为大丽轮枝菌候选致病相关的基因进行深入的功能研究。从VdG1菌株基因组中获得NEP家族的8个基因VdNEP1至VdNEP8.其中VdNEP6基因编码256个氨基酸,包含一个保守基序GHRHDWE,研究认为含有该保守序列的基因可影响植物细胞质膜的通透性,并能触发植物细胞的防卫反应从而诱导细胞坏死反应。VdNEP6基因在20株不同棉产区收集到的大丽轮枝菌菌株中具有较多的非同义SNP突变,该基因在不同菌株中较高的变异性表明其可能与大丽轮枝菌致病毒力相关。同时信号肽活性检测实验表明VdNEP6为胞外分泌蛋白。但是VdNEp6基因敲除突变株的致病力及生长表型与野生型菌株VdG1均无明显差异。利用PVX载体PGR107通过农杆菌介导的VdNEP6在烟草中的瞬时转化实验结果表明该基因不能够诱导植物细胞的坏死反应。实验结果表明VdNEP6基因不能够引发植物细胞的坏死反应且与大丽轮枝菌致病力没有直接相关性。
     基于前期大丽轮枝菌比较分泌蛋白组数据,获得了大量高效应答棉花组织的糖基水解酶家族蛋白,表明该类蛋白与大丽轮枝菌致病力具有潜在的相关性。本研究挑选了10个在棉花组织培养条件下高效诱导表达的CAZy基因,并对其毒力功能进行了初步的鉴定。对10个CAZy基因进行了全长克隆,并利用PVX介导的烟草瞬时表达系统检测了10个基因的细胞诱导坏死及抑制坏死效应。结果显示这些基因均不能够诱导烟草叶片细胞的坏死反应,然而其中的两个基因(VDG1_0.3897和VDG1_0.3197),分别预测为角质酶和羟肽酶Y,能够有效的抑制细胞凋亡调节蛋白BAX及VdNEP1激发子蛋白所诱导的细胞死亡。该实验结果表明两个候选基因可能通过调节寄主的免疫反应从而增强病原菌的致病力。基因表达分析显示两个候选基因在棉花组织诱导培养基中能够被强烈的诱导表达,说明了其在参与大丽轮枝菌侵染过程中可能发挥的作用,值得进一步深入研究。
     此外,为了揭示大丽轮枝菌特异定殖于植物维管束组织机理,通过比较基因组学对14种已经测序的植物病原真菌(维管束和非维管束病害真菌)基因组数据进行了比较分析。参试的真菌分为三组,分别为粪壳菌(Fusarium graminearum, F. oxysporum, Verticilium dahliae, V. albo-atrum, Neurospora crassa, Magnaporthe grisea and Chaetomium globosum),散囊菌(Aspergillus nidulans and A. terreus)和榷舌菌(Botrytis cinerea)。大规模序列比对分析结果显示有57个基因特异存在于大丽轮枝菌中。将57个基因在已报道的135个真菌基因组中进行深入的比对分析发现,有5个基因高度特异的存在于典型植物维管束病害真菌中,如大丽轮枝菌(V. dahliae),尖孢镰刀菌(Fusarium oxysporum)及黑白轮枝菌(V. albo-atrum)。这5个基因被分别命名为VdVSl, VdVS2, VdVS3, VdVS4, VdVS5。基因表达分析表明,在大丽轮枝菌侵染棉花过程中,5个维管束相关基因能够被显著地诱导表达。其中将野生型菌株VDGh1.991中VdVS3和VdVS5敲除后并不影响菌落的生长状况及孢子的产生,但与野生型相比这两个基因的突变株的致病力显著下降,表明VdVS3和VdVS5在大丽轮枝菌侵染寄主过程中发挥重要作用。因此对VdVS3和VdVSS基因功能的进一步研究对于揭示大丽轮枝菌及维管束病害真菌的致病机理具有重要的意义。
     综上所述,该研究发现了一些与大丽轮枝菌致病相关的靶标基因,进一步的基因功能鉴定将会大大增进大丽轮枝菌和维管束真菌病害致病机理的研究。
The Ascomycete fungus Verticillium dahliae Klebahn causes vascular wilt disease across over600plant species, including many high-value crops, such as cotton, olive, tomato, strawberry, etc. Due to less understanding of pathogenesis mechanism, Verticillium wilt is still a chronic economic problem in crop production, causing great losses in annual crop yields. To address this issue, screening and identification of pathogenicity-related factors is a key step to further decipher the mechanism of pathogenicity in V. dahliae. Accompanied by rapid development of omics techniques, including genomics and proteomics, which enable us to obtain a big data and screen the critical and useful information fastly and systematically.
     In this study, based on V. dahliae genome data, the gene family of Necrosis and ethylene-inducing protein (NEP) that may contribute to virulence was selected for in-depth functional characterization. More specifically, we identified eight VdNEP genes in the genome of VdGl, a V. dahliae strain isolated from cotton, designated as VdNEP1to VdNEP8. Of which, VdNEP6gene, encoding a secreted protein of256amino acids, contains a conserved heptapeptide motif GHRHD WE that is important in plasma membrane permeability and accordingly assisting triggering of plant defense response through damaging plant cells causing leaf necrosis. Especially, VdNEP6showed a high ratio of non-synonymous SNPs among twenty V. dahliae isolates which were collected from different cotton production fields, revealing their potential roles in pathogenesis in cotton V. dahliae. Functional validation of the signal peptide indicated that VdNEP6exactly located in extracellular. However, gene disruption of VdNEP6using homologous recombination and Agrobacterium tumefaciens mediated transformation (ATMT) techniques can not affect the pathogenicity, growth and conidiation of the wild type strain VdGl. Transient expression assay carried by Potato virus X (PVX) vector pGR107revealed that VdNEP6was neither involved in cell death induction nor suppression activity. Thus, we suggested that VdNEP6has no direct effect in cotton V. dahliae strain, since it failed to affect reducing the virulence of the wild type and no clear host cell death pattern was accomplished.
     Based on the quantitative analysis between the V. dahliae secretomes that were induced or non-induced by cotton tissue extract, numerous CAZy proteins showed a high sensitivity to cotton tissue, revealing their potential roles contributing to virulence in V. dahliae. Ten of CAZy genes that showed high expression level in the cotton tissue induced secretome were selected for functional characterization on virulence. To test cell death induction or suppression activities, ten of CAZy genes were cloned and transiently expressed in tobacco leaves via PVX (Potato virus X)-mediated expression system. The results indicated that none of genes can induce cell death in tobacco, whereas two genes including a putative cutinase and a Carboxypeptidase Y genes (VDG1_0.3897and VDG1_0.3197) can effectively suppress cell death triggered both by apoptosis regulator BAX and VdNEP1elicitor that known to trigger necrosis on cotton leaves. The suppression ability of the candidates suggested that the two genes may play potential roles in V. dahliae pathogenesis and possibly enhance the virulence through the regulation of host immunity. In addition, gene expression analysis indicated that the two candidate genes showed a strong induction in V. dahliae when cultivated in the medium with cotton tissue extract. Through homologous recombination, the gene knock-out mutants without the cutinase VDG1_0.3897candidate gene was successfully obtained. The disease assay of the mutant on cotton is in progress.
     In addition, to disclose why the V. dahliae specifically colonize in plant vascular niches, we conducted a comparative genomics among14sequenced plant pathogenic fungi including vascular and non-vascular pathogens. The tested fungi are ascomycetes and belong to three classes, including Sordariomycetes (Fusarium graminearum, F. oxysporum, Verticilium dahliae, V. albo-atrum, Neurospora crassa, Magnaporthe grisea and Chaetomium globosum), Eurotiomycetes (Aspergillus nidulans and A. terreus) and Leotiomycetes (Botrytis cinerea). The data revealed57genes that are specific to vascular wilt fungus Verticilium dahliae (VDGhl.991). In-depth comparative analysis of these57genes among the reported135fungal genomes further revealed five genes, namely, VdVS1to VdVS5that showed high presence ratio in vascular related fungal genomes such as V. dahliae, Fusarium oxysporum and V. albo-atrum but not in non-vascular related pathogens. Further gene expression analysis indicated that five vascular-related genes of V. dahliae can be strongly induced by cotton tissue, an in vitro interaction system between V. dahliae and cotton. Gene disruption of VdVS3and VdVS5in V. dahliae wild-type strain VDGhl.991did not affect the growth and sporulation but caused virulence reduction on cotton compared with the wild type strain, indicating that VdVS3and VdVS5may play important roles in V. dahliae pathogenicity. Further functional characterization of these vascular-related candidate genes may facilitate our understanding on the pathogenicity mechanism of vascular infected fungal pathogens.
     In summary, this study provided the target genes related to pathogenicity in V. dahliae, further functional investigation may greatly enhance the exploration of pathogenesis mechanism of this vascular-parasitic fungus.
引文
1. Abe A., Tonozuka T., Sakano Y. and Kamitori S. Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. Journal of Molecular Biology 2004,335:811-822.
    2. Abuodeh RO, Orbach MJ, Mandel MA, Das A, and Galgiani JN. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. Journal of Infectious Diseases 2000,181:2106-2110.
    3. Agrios G. N. (2005). Plant Pathology. Burlington, MA:Elsevier Academic Press
    4. Ahoonmanesh, A. Principles of Plant Disease Control. Isfahan University of Technology 2007, 391pp. (in Farsi). Alalouf O., Balazs Y., Volkinshtein M., Grimpel Y., Shoham G. and Shoham Y. A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus Journal of Biological Chemistry 2011,86:41993-42001
    5. Al-Shukri M. M. 1969. The predisposition of cotton plant to Verticillium and Fusarium wilt diseases by some major environmental factors. Journal of Botany U. A. R.12:13-25
    6. Altschul S.F., Madden,T.L., Schaffer,A.A., Zhang.J., Zhang,Z., Miller,W. and Lipman,D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 1997,25:3389-3402
    7. Andersen PC, Brodbeck BV. Diurnal and temporal changes in the chemical profile of xylem exudate from Vitis rotundifolia. Physiologia Plantarum 1989,75:63-70.
    8. Annis, S. L., and Goodwin, P. H. Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. European Journal Plant Pathology 1997,103:1-14.
    9. Antje B., Christian F., Cornelia H., Bjorn S., Rainer B., Wilhelm S. Ivo F. and Christian A. V. secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat heat infection. Plant Pathology Review 2014, DOI:10.1104/pp.
    10.Armstrong, G. M., and Armstrong, J. K. Nonsusceptible hosts as carriers of wilt Fusariam. Phytopathology 1948, 38:808-826
    11.Atkinson, G. F. Some diseases of cotton.3. Frenching. Bull. Ala. Agricultural Experiments Station 1892,41:19-29
    12. Bailey, B.A. Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 1995,85:1250-1255.
    13. Bailey, B.A., Apel-Birkhold, P.C., Akingbe, O.O., Ryan, J.L., O'Neill, N.R. and Anderson, J.D. Nepl protein from Fusarium oxysporum enhances biological control of opium poppy by Pleospora papaveracea. Phytopathology 2000, 90:812-818.
    14. Baker, E. A. Chemistry and morphology of plant epicuticular waxes.:The Plant Cuticle. D. F. Cutler, K. L. Alvin, and C. E. Price, eds. Academic Press, New York 1982, P:139-166
    15.Baker, K.F. and S.H. Smith. Dynamics of seed transmission of plant pathogens. Annual Review Phytopathology 1966,14:311-332.
    16. Barral P, Suarez C, Batanero E, Alfonso C, Alche JD, Rodriguez-Garcia MI, Villalba M, Rivas G, Rodriguez R. An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination. Biochemistry Journal 2005,390:77-84
    17. Barras, F., van Gijsegem, F. and Chatterjee, A.K. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annual Review Phytopathology 1994,32:201-234.
    18. Baxter L., Tripathy., Ishaque N., Boot N., Cabral A., Kemen E., Thines M., Ah-Fong A., Anderson R., Badejoko W. et al. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 2010,330:1549-1551.
    19. Bell A. A. Diseases of Cotton. Chapter 3.4. In: WC Smith JT Cothern, eds. Cotton: origin, History, Technology and Production. John Wiley and Sons, Inc New York, USA 1999, Pp 553-593.
    20. Benson,D.A., Karsch-Mizrachi, I., Lipman,D.J., Ostell,J. and Wheeler,D.L. GenBank: update. Nucleic Acids Research 2004,32:23-26.
    21. Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.-M., Challis, G.L., Thomson, N.L., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C.W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.-H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M.-A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B.G., Parkhill, J. and Hopwood, D.A. Complete genome sequence of the model actinomycete Streptomyces coelicolorA3. Nature 2002,417:141-147.
    22.Bertozzi, C. R. and Kiessling, L. L. Chemical glycobiology. Science 2001,291:2357-2364.
    23. Bhat RG, Subbarao KV. Host range specificity in Verticillium dahliae. Phytopathology 1999, 89:1218-1225.
    24. Bidochka MJ, Burke S, Ng L. Extracellular hydrolytic enzymes in the fungal genus Verticillium: adaptations for pathogenesis. Canadian Journal of Microbiology 1999,45:856-864.
    25. Bindschedler LV, Sanchez P, Dunn S, Mikan J, Thangavelu M, Clarkson JM, Cooper RM. Deletion of theSNPltrypsin protease from Stagonospora nodorumreveals another major protease expressed during infection. Fungal Genetic Biology 2003,38:43-53
    26. Bishop CD, Cooper RM. Ultrastructure of vascular colonization by fungal wilt pathogens. II. Invasion of resistant cultivars. Physiology and Plant Pathology 1984,24:277-289.
    27. Blaise D. Yield, boll Distribution and Fiber Quality of Hybrid Cotton (Gossypium hirsutum L.) as influenced by Organic and Modern Methods of Cultivation. Journal of Agronomy and Crop Science 2006,192:248-256.
    28.Boneca IG. The role of peptidoglycan in pathogenesis. Current Opinion Microbiology 2005, 8:46-53
    29. Boraston, A. B., B. W. McLean, J. M. Kormos, M. Alam, N. R. Gilkes, C. A. Haynes, P. Tomme, D. G. Kilburn, and R. A. J. Warren. Carbohydrate-binding modules: diversity of structure and function 1999, p.202-211. In H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson (ed.), Recent advances in carbohydrate bioengineering. Royal Society of Chemistry, Cambridge, United Kingdom.
    30. Boraston, A. B., Bray, E. Burn, A. L. Creagh, N. Gilkes, M. Guarna, E. Jervis, P. Johnson, J. Kormos, L. McIntosh, B. McLean, L. Sandercock, P. Tomme, C. Haynes, A. Warren, and D. Kilburn. The structure and function of cellulose binding domains 1998, p.139-146. In M. Claeyssen, W. Nerinkx, and K. Piens (ed.), Carbohydrate from Trichoderma reesei and other microorganisms. Royal Society of Chemistry, Cambridge, United Kingdom.
    31. Boraston, A. B., D. N. Bolam, H. J. Gilbert, and G. J. Davies. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochemistry Journal 2004, 382:769-781.
    32.Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycotransferases based on amino acids sequences similarities. Biochemistry Journal 1997, 326:929-39
    33. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B:The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 2009,37(Database issue):D233-D238.
    34. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research 2009, 37:233-238.
    35.Chen D, Wu XZ, Wen ZY. Sulfated polysaccharides and immune response: Promoter or inhibitor? Panminerva Med 2008,50:177-183
    36. Chen, X., Stone, M., Schlagnhaufer, C., & Romaine, C. P. A fruiting body tissue method for efficient Agrobacterium transformation of Agaricus bisporus. Applied and Environmental. Microbiology 2000,66:4510-4513.
    37. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma LJ, Danchin EG, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnar I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, Vanetten HD: The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genetics 2009,5(8):e1000618
    38. Combier JP, Melayah D, Raffier C, Gay G & Marmeisse R. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiology Letter 2003, 220:141-148.
    39.Coutinho PM, Deleury E, Davies GJ, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. Journal Molecular Biology 2003,328:307-17
    40. Coutinho, J. B., N. R. Gilkes, D. G. Kilburn, R. A. J. Warren, and R. C. Miller, Jr. The nature of the cellulose-binding domain effects the activities of a bacterial endoglucanase on different forms of cellulose. FEMS Microbiology Letter 1993,113:211-217.
    41. Coutinho,P.M. and Henrissat,B. Carbohydrate-active enzymes:an integrated database approach. In Gilbert,H.J., Davies,G., Henrissat,H. and Svensson. B. (eds), Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge 1999, pp.3-12
    42. Couturier M, Navarro D, Olive C, Chevret D, Haon M, Favel A, Lesage-Meessen L, enrissat B, Coutinho PM, Berrin JG: Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 2012,13:57.
    43. Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ. Agrobacterium-mediated transformation of Fusarium circinatum. Mycology Research 2001,105:259-264. doi: 10.1017/S0953756201003872.
    44.Cummings JH, Stephen AM. Carbohydrate terminology and classification. European Journal of Clinical Nutrition 2007,61:5-18
    45. Cunnac, S., Lindeberg, M., and Collmer, A. Pseudomonas syringae type Ⅲ secretion system effectors: Repertoires in search of functions. Current Opinion of Microbiology 2009,12:53-60.
    46. Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, dam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, Munsterkotter M, Nelson D, O'donnell K, Ouellet T, Qi W, Quesneville H, Roncero MI, Seong KY, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao J, Birren BW, Kistler HC:The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 2007,317(5843):1400-1402.
    47. Daniel, G., Sergio, S. and Romina, R. S. Carbohydrate-binding domains: multiplicity of biological roles. Applied Microbiology and Biotechnology 2010,85:1241-1249
    48. Davies GJ, Gloster TM, Henrissat B:Recent structural insights into the expanding world of carbohydrate-active enzymes. Current Opinion of Structural Biology 2005,15:637-645.
    49. Davies GJ, Sinnott ML: Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. Biochemistry Journal 2008,1-5. doi:10.1042/BJ20080382 (online only).
    50. de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Natural Biotechnology 1998,16:839-842. doi: 10.1038/nbt0998-839.
    51. de Jonge, R., and Thomma, B. P. H. J. Fungal LysM effectors—extinguishers of host immunity? Trends Microbiology 2009, 17:151-157.
    52. de Jonge, R., van Esse, H. P., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., van der Krol, S., Shibuya, N., Joosten, M. H. A. J., and Thomma, B. P. H. J. Conserved fungal LysM effector Ecp6 prevents chitin triggered immunity in plants. Science 2010,329:953-955.
    53. de Jonge, R., van Esse, H. P., Maruthachalam, K., Bolton, M. D., Santhanam, P., Saber, M. K., Zhang, Z., Usami, T., Lievens, B., Subbarao, K. V., and Thomma, B. P. H. J.2012. Tomato immune receptor Vel recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceeding of Natural Academic Science 2012, U.S.A.109:5110-5115.
    54. Dean, R. A.1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 35:211-234.
    55. DeJong, J. C., McCormack, B. J., Smirnoff, N., and Talbot, N. J. Glycerol generates turgor in rice blast. Nature 1997,389:244-245
    56. Dickman, M.B., Park, Y.K., Oltersdorf, T., Clemente, T. and French, R. Abrogation of disease development in plants expressing animal apoptotic genes. Proceeding of Natural Academic Science 2001, USA,98,6957-6962.
    57. DiPietro A, Huetas-Gonzalez MD, A Gutierrez-Corona JF, Martinez-Cadena G, Meglecz E, Roncero MIG. Molecular characterization of a subtilase from the vascular wilt fungus Fusarium oxysporum. Molecular Plant-Microbe Interaction 2001,14:653-662.
    58. Dobinson KF. Genetic transformation of the vascular wilt fungus Verticilium dahliae. Canadian Journal of Botany 1995,73:710-715.
    59. Dobinson KF, Tenuta GK, Lazarovits G. Occurrence of race 2 of Verticillium dahliae in processing tomato fields in southwestern Ontario. Cangyadian Journal of Plant Pathol 1996,18: 55-58.
    60. Doerks.T., Bairoch,A. and Bork,P. Protein annotation: detective work for function prediction. Trends Genetics 1998,14,248-250.
    61. Dong, S., Kong, G., Qutob, D., Yu, X., Tang, J., Kang, J., Dai, T., Wang, H., Gijzen, M., and Wang, Y. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Molecular Plant-Microbe Interaction 2012,25:896-909.
    62. Donghul L., Allson M. and Kleth J. Molecular evidence that the extracellular cutinase Pbcl is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape. MPMI 2003,16:545-552.
    63. Douaiher MN, Nowak E, Durand R, Halama P, Reignault P: Correlative analysis of Mycosphaerella graminicola pathogenicity and cell wall-degrading enzymes produced in vitro: the importance of xylanase and polygalacturonase. Plant pathology 2007, 56(1):79-86.
    64. Eddy,S.R. Multiple alignment using hidden Markov models. In Proc. Intl Conf. International Systemic Molecular Biology 1995,3:114-120.
    65.Elliott, J.A. Cotton-wilt, a seed-borne disease. Journal of Agricultural Research 1923,23:387-394
    66.Elmer, W.H. Seeds as vehicles for pathogen importation. Biological Invasions 2001,3:263-271
    67. Felix M, Diana I, Shaolin C, David BW. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnology and Bioengineering 2008, 100:1066-1077
    68. Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., Felix, G., Kemmerling, B., Krzymowska, M. and Nurnberger, T. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant Journal 2002,32:375-390.
    69. Fitzpatrick DA, Logue ME, Stajich JE, Butler G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology 2006, 6:99.
    70. Fradin EF, Zhang Z, Ayala JCJ, Castroverde CDM, Nazar RN. Genetic dissection of Verticillium wilt resistance mediated by tomato vel. Plant Physiology 2009,150:320-332.
    71. Fradin, E. F., and Thomma, B. P. H. J. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. alboatrum. Molecular Plant Pathology 2006,7:71-86.
    72.Gabius H. J. Biological information transfer beyond the genetic code:The sugar code. Naturwissenschaften 2000,87:108-121
    73.Gagneux P, Varki A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 1999,9:747-755
    74. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B: The genome sequence of the filamentous fungus Neurospora crassa. Nature 2003,422(6934):859-868.
    75. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW: Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 2005,438(7071):1105-1115.
    76. Garas, N.A.,Wilhem, S. and Sagen, J.E. Relationship of cultivar resistance to distribution of Verticillium dahliae in inoculated cotton plants and to growth of single conidia on excised stem segments. Phytopathology 1986,76:1005-1010.
    77. Garber, R. H., Jorgenson, E. C., Smith, S., and Hyer, A. H. 1979. Interaction of population levels of Fusarium oxysporum f. sp. vasinfectum and Meloidogyne incognita on cotton. Journal of Nematology 1979,11:133-137
    78. Ge F., Liu X., Ding Y., Wang X., Zhao Y. Life-table of Helicoverpa armigera in northern China and characters of population development in southern and northern China. Chinese Journal of Applied Ecolog 2003,14:241-45
    79. Gijzen, M., Nurnberger, T. Nepl-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 2006,67:1800-1807.
    80. Go"rlach JM, Van Der Knaap E, Walton JD. Cloning and targeted disruption of MLG1, a gene encoding two of three extracellular mixed-link glucanases of Cochliobolus carbonum. Appl Env Microbiology 1998,64:385-391.
    81.Grogan, R. G., Ioannou, N., Schneider, R. W., Sall, M. A., and Kimble, K. A. Verticillium wilt on resistant tomato cultivars in California. Virulence of isolates from plants and soil and relationship of inoculum density to disease incidence. Phytopathology 1979,69:1176-1180
    82. Gurlebeck, D., Jahn, S., Gurlebeck, N., Szczesny, R., Szurek, B., Hahn, S., Hause, G., and Bonas, U. Visualization of novel virulence activities of the Xanthomonas type Ⅲ effectors AvrBs1, AvrBs3 and AvrBs4. Molecular Plant Pathology 2009,10:175-188.
    83. Haas, B., et al. Genome sequence and comparative analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009,461:393-398.
    84.Harris, D. C., and Yang, J. R. The relationships between the amount of Verticillium dahliae in soil and the incidence of strawberry wilt as a basis for disease risk prediction. Plant Pathology 1996,45:106-114
    85. Hayes R, Vallad GE, Subbarao KV. 2007. The inheritance of resistance to race 1 isolates of Verticillium dahliae in lettuce (Abst.) Hortscience 2007,42:896.
    86. Hayes RJ, Vallad GE, Qin Q-M, Grube RC, Subbarao KV. Variation for resistance to Verticillium wilt in lettuce (Lactuca sativa L.). Plant Disease 2007,91:439-445.
    87. Henrissat B:A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochemistry Journal 1991,280:309-316.
    88. Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L. and Mornon, J. P. Cellulase families revealed by hydrophobic cluster analysis. Gene 1989,81:83-95.
    89. Henrissat,B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemistry Journal 1991,280 (Pt 2),309-316.
    90. Henrissat,B. and Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemistry Journal 1993,293 (Pt 3):781-788.
    91. Henrissat,B. and Bairoch, A. Updating the sequence-based classification of glycosyl hydrolases. Biochemistry Journal 1996,316 (Pt 2):695-696.
    92.Hillocks, R. J. Cotton Diseases. CAB. International, Wallingford, UK 1992,415
    93. Holloway, P. J. Structure and histochemistry of plant cuticular membranes: An overview: The Plant Cuticle. D. F. Cutler, K. L. Alvin. and C. E. Price, eds. Academic Press, New York 1982,. P:1-32
    94. Huitema, E., Bos, J. I. B., Tian, M., Win, J., Waugh, M. E., and Kamoun, S. Linking sequence to phenotype in Phytophthora-plant interactions. Trends Microbiology 2004, 12:193-200.
    95.Iozzo RV. Matrix proteoglycans: From molecular design to cellular function. Annual Review of Biochemistry 1998,67:609-652
    96. Isaac, S. Plants as an Environment. Fungal-Plant Interactions. London: Chapman & Hall 1992, pp.75-146.
    97. Jacobs, K.A., et al. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 1997,198:289-296
    98. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 2006,443:818-822.
    99. Jarvis, M.C., Threlfall, D.R. and Friend, J. Potato cell wall olysaccharides—degradation with enzymes from Phytophthora infestans. Journal of Experimental Botany 1981,32:1309-1319.
    100. Jennings, J.C., Apel-Birkhold, P.C., Bailey, B.A. and Anderson, J.D. (2000) Induction of ethylene biosynthesis and necrosis in weed leaves by a Fusarium oxysporum protein. Weed Sci. 48,7-14.
    101. Jennings, J.C., Apel-Birkhold, P.C., Bailey, B.A. and Anderson, J.D. Induction of ethylene biosynthesis and necrosis in weed leaves by a Fusarium oxysporum protein. Weed Science 2000, 48:7-14.
    102. Jennings, J.C., Apel-Birkhold, P.C., Mock, N.M., Baker, C.J., Anderson, J.D. and Bailey, B.A. Induction of defense responses in tobacco by the protein Nepl from Fusarium oxysporum. Plant Science 2001,161:891-899.
    103. Jordan, V. W. Verticillium wilt of strawberry, cultivar reaction and effect on runner health and production. Plant Pathology 1974, 23:8-13
    104. Jores, J., Lewin, A. and Appel, B. Cloning and molecular characterization of a unique hemolysin gene of Vibrio pommerensis sp. nov. development of a DNA probe for the detection of the hemolysin gene and its use in identification of related Vibrio spp. from the Baltic sea. FEMS Microbiology Letters 2003, 229:223-229.
    105. Kamoun, S., Klucher, K.M., Coffey, M.D. and Tyler, B.M. (1993) A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Molecular Plant-Microbe Interaction 1993, 6:573-581.
    106. Kamoun, S., van West, P., Vleeshouwers, V.G.A.A., de Groot, K.E. and Govers, F. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF-1. Plant Cell 1998,10:1413-1425.
    107. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Muller O, Perlin MH, Wosten HA, de Vries R, Ruiz-Herrera J, Reynaga-Pena CG, Snetselaar K, McCann M, Perez-Martin J, Feldbrugge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, Gonzalez-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Munch K, Rossel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Hauser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schluter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Giildener U, Munsterkotter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW: Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 2006,444(7115):97-101.
    108. Kawazu T, Nakanishi Y, Uozumi N, Sasaki T, Yamagata H, Tsukagoshi N, Udaka S. Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa beta-amylase. Journal Bacteriology 1987,169:1564-1570
    109. Kikot GE, Hours RA, Alconada TM: Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum:a review. Journal Basic Microbiology 2009, 49(3):231-241.
    110. Kikot GE, Hours RA, Alconada TM:Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum:a review. Journal Basic Microbiology 2009,49(3):231-241.
    111. King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM:Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnology Biofuels 2011,4:4.
    112. Kjemtrup, S., Nimchuk, Z., and Dangl, J.L. Effector proteins of phytopathogenic bacteria: Bifunctional signals in virulence and host recognition. Current Opinion in Microbiology 2000,3: 73-78.
    113. Kleene, R. and Berger, E. G. The molecular and cell biology of glycosyltrans-ferases. Biochimica et Biophysica Acta 1993,1154:283-325
    114. Klein, R.D., Gu, Q., Goddard, A., and Rosenthal, A. Selection for genes encoding secreted proteins and receptors. Proceedings of National Academy of Sciences USA 1996,93:7108-7113.
    115. Klosterman S. J., Atallah Z. K., Vallad G. E., Subbarao K. V. Diversity, pathogenicity and management of Verticilium species. Annual Review of Phytopathology 2009,47:39-62.
    116. Klosterman S. J., Subbarao K. V., Kang S., Veronese P., Gold S. E., Thomma B. P., Chen Z., Henrissat B., Lee Y. H., Park J., Garcia-Pedrajas M. D., Barbara D. J., Anchieta A., de Jonge R., Santhanam P., Maruthachalam K., Atallah Z., Amyotte S. G., Paz Z., Inderbitzin P., Hayes R. J., Heiman D. I., Young S., Zeng Q., Engels R., Galagan J., Cuomo C. A., Dobinson K. F., and Ma L. J. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathology 2011,7:e1002137.
    117. Knox JP. Revealing the structural and functional diversity of plant cell walls. Current Opinion in Plant Biology 2008,11:308-313
    118. Koch, W., Wagner, C. and Seitz, H.U. Elicitor-induced cell death and phytoalexin synthesis in Daucus carota L. Planta 1998,206:523-532.
    119. Kochman, J.K., L.J. Swan, W. O'Neill and S. Bentley. Detection, persistence and control of Fusarium oxysporum f. sp. vasinfectum in cotton seed in Australia 2003,185-190.
    120. Kolattukudy, P. E. Cutinases from fungi and pollen, in: Lipases. B. Borgstrom and H. Broakman, eds. Elsevier Amsterdam 1984, P:471-504.
    121. Kulkarni, G.S. Studies in the wilt disease of cotton in the Bombay presidency. Indian Journal of Agricultural Sciences 1934, 4:976-1045
    122. Lagaert S, Belien T, Volckaert G: Plant cell walls: Protecting the barrier from degradation by microbial enzymes. Seminars in Cell and Developmental Biology 2009, 20(9):1064-1073
    123. Lagiere, R. Possibilites de transmission de la fusariose du cotonnier (F. vasinfectum Atk.) par les graines. Coton Fibres Trop. 1952,15:146-148
    124. Laine,R. A. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05_10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 1994, 4:759-767.
    125. Lairson, L. L., Henrissat, B., Davies, G. J. and Withers S. G. Glycosyltransferases:structures, functions and mechanisms. Annual review 2008,77:521-555.
    126. Lebeda, A., Luhova, L., Sedlarova, M., and Jancova, D. The role of enzymes in plant-fungal pathogens interactions—Review. Journal of Plant Diseases Protocols 2011,108:89-111.
    127. Lee, S.J., Kelley, B.S., Damasceno, C.M., St John, B., Kim, B.S., Kim, B.D., and Rose, J.K. A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Molecular Plant Microbe Interaction 2006, 19:1368-1377.
    128. Leger St. R. J. Joshi L. and Roberts D. W. adaptation of proteases and carbohydrases of saprophytic phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 1997.143:1983-1992.
    129. Lichtenthaler FW: Carbohydrates as renewable raw materials: a major challenge of green chemistry. In Methods and reagents for green chemistry: an introduction. Edited by Tundo P, Perosa A, Zecchini F. Hoboken, NJ: J. Wiley 2007,23-63.
    130. Limo'n, M. C., E. Margolles-Clark, T. Benitez, and M. Penttila. 2001. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiological Letters 2001,198:57-63.
    131. Logan, C. MacDonald and Bryan W. Berger. A polysaccharide lyase from Stenotrophomonas maltophilia with unique, pH-regulated substrate specificity. Journal of Biological Chemistry 2013,3:289(1):312-25
    132. Longhi, S., and Cambillau, C. Structure-activity of cutinase, a small lipolytic enzyme. Biochimica and Biophysica Acta 1999, 1441:185-196.
    133. Lu X, Sun J, Nimtz M, Wissing J, Zeng A-P, Rinas U: The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microbial Cell Factories 2010,9(1):23
    134. Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., Rathjen, J.P., Bendahmane, A., Day, L., and Baulcombe, D.C. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO Journal 2003,22:5690-5699.
    135. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010,464:367-373.
    136. Mace, M. E., Bell, A. A. and Beckman, C. H. Fungal Wilt Disease of Plant Academic Press. New York 1981,640pp.
    137. Marie-Line Garron and Miroslaw Cygler. Structural and Mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 2010,20 (12):1547-1573.
    138. Marth JD, Grewal PK. Mammalian glycosylation in immunity. National Review of Immunology 2008,8:874-887
    139. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D:Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnology 2004,22(6):695-700
    140. Mattinen, L., Tshuikina, M., Mae, A., and Pirhonen, M. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Molecular Plant-Microbe Interaction 2004,17:1366-1375.
    141. Mayer, A.M., Staples, R.C. and Gil-ad, N.L. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 2001,58,33-41.
    142. McGee, D.C. Epidemiological approach to disease management through seed technology. Annual Review of Phytopathology 1995,33:445-466
    143. Miao WG, Wang X, Li M, Song C, Wang Y, Hu D, Wang J. Genetic transformation of cotton with a harpin-encoding gene HpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biology 2010,10:67.
    144. Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M., & Kang, S. Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology 2001,91:172-180.
    145. Murphy C, Powlowski J, Wu M, Butler G, Tsang A: Curation of characterized glycoside hydrolases of fungal origin. Database (Oxford) 2011, doi:10.1093/database/bar020.
    146. Murphy JM, Walton JD. Three extracellular proteases from Cochliobolus carbonum: cloning and targeted disruption of ALP1. Molecular Plant-Microbe Interaction 1996, 9:290-297.
    147. Mythreye K, Blobe GC. Proteoglycan signaling co-receptors: Roles in cell adhesion, migration and invasion. Cell Signal 2009,21:1548-1558
    148. Nelson, A.J., Apel-Birkhold, P.C. and Bailey, B.A. (1998) Sequence announcement. Plant Molecular Biology 1998,38:911-912.
    149. Nnudo, E. C., and Harrison, M. D.1979. The relationship between Verticillium albo-atrum inoculum density and potato yield. Am. Potato Journal 1979,56:11-25
    150. Nurnberger T. Signal perception in plant pathogen defense. Cell Molecular Life Sciences 1999,55:167-182.
    151. Ospina-Giraldo MD, Griffith JG, Laird EW, Mingora C: The CAZyome of Phytophthora spp: a comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora. BMC Genomics 2010,11:525.
    152. Ottmann C., Luberacki B., Kufner I., Koch W., Brunner F., Wayand M., Mattinen L., Pirhonen M., Anderluh G., Seitz H. U., Nurnberger T., and Ocking C. A common toxic mediates microbial attack and plant defense. Proceeding of National Academic Sciences. U. S. A.2009,106:10359-10364.
    153. Paplomatas, E. J., Bassett, D. M., Broome, J. C., and DeVay J. E. Incidence of Verticillium wilt and yield losses of cotton cultivars s (Gossypium hirsutum) based on soil inoculum density of Verticillium dahliae. Phytopathology 1992,82:1417-1420
    154. Parthasarathy Santhanam, H. Peter van Esse, Isabell Albert, Luigi Faino, Thorsten Nurnberger and Bart P.H.J. Thomma. Evidence for Functional Diversification within a Fungal NEP1-Like Protein Family. PMPP 2013.
    155. Pegg G. F. Pathogenesis in vascular disease of plants. E. C. Tjamos and C. Beckman (ed.). Vascular wilt disease of plants. Springer, Berlin, Germany 1989,51-94.
    156. Pegg G. F., 1989. Pathogenesis in vascular disease of plants. P,51-94 in E. C. Tjamos and C. Beckman (ed.). Vascular wilt disease of plants. Springer, Berlin, Germany.
    157. Pegg, G. F., and Brady, B. L. Verticillium Wilts. CABI Publishing, New York 2002.
    158. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H: Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Natural biotechnology 2007,25(2):221-231.
    159. Pemberton, C. L., and Salmond, G. P. C. The Nepl-like proteins: A growing family of microbial elicitors of plant necrosis. Molecular Plant Pathology 2004,5:353-359.
    160. Pemberton, C. L., Whitehead, N. A., Sebaihia, M., Bell, K. S., Hyman, L. J., Harris, S. J., Matlin, A. J., Robson, N. D., Birch, P. R., Carr, J. P., Toth, I. K., and Salmond, G. P. Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium. Molecular Plant-Microbe Interaction 2005,18:343-353.
    161. Qutob, D., Kamoun, S. and Gijzen, M. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant Journal 2002, 32:361-373.
    162. Ramsay, J. R., Multani, D.S. and Lyon, B. R.. RAPD-PCR Identification of Verticilium dahliae Isolates with Differential Pathogenicity on Cotton. Australian Journal of Agricultural Research 1996,47:681-693.
    163. Rho, H. S., Kang, S., & Lee, Y. H. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Molecules and Cells 2001,12:407-411.
    164. Rioux D, Nicole M, Simard M, Ouellette GB. Immunocytochemical evidence that secretion of pectin occurs during gel (Gum) and tylosis formation in trees. Phytopathology 1998, 88: 494-505.
    165. Rogers, L. M., Flaishman, M. A., and Kolattukudy, P. E. Cutinase gene disruption in Fusarium solani f. sp. pisi decreases its virulence on pea. Plant Cell 1994,6:935-945.
    166. Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A. and Dwek, R. A. Glycosylation and the immune system. Science 2001,291:2370-2376.
    167. Sambrook, J., and Russell, D.W. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor, NY:Cold Spring Harbor Laboratory) 2001.
    168. Santhanam P. and Thomma BP. Verticillium dahliae Sgel differentially regulates expression of candidate effector genes. Molecular Plant-Microbe Interaction, 2013.26(2):249-256.
    169. Sarkar P, Bosneaga E, Auer M. Plant cell walls throughout evolution: Towards a molecular understanding of their design principles. Journal of Experimental Botany 2009, 60:3615-3635
    170. Schaefer L, Schaefer R. M. Proteoglycans: From structural compounds to signaling molecules. Cell Tissue Research 2010,339:237-246
    171. Schnathorst, W. C. 1981. Life cycle and epidemiology of Verticillium. Fungal Wilt Diseases of Plants. M. E. Mace, A. A. Bell, and C. H. Beckman, eds. Academic Press, Inc., New York 1981,81-111
    172. Scott-Craig JS, Panaccione DG, Pocard J-A, Walton JD. The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonumis encoded by a 15.7-kilobase open reading frame. Journal of Biological Chemistry 1992, 267:26044-26049
    173. Seelanan, T., Schnabel, A., and Wendel, J. F. Congruence and consensus in the cotton tribe. Systemic Botany 1997, 22:259-290
    174. Sharon N: The conquest of the last frontier of molecular and cell biology. Foreword Biochimie 2001,83:555-555.
    175. Singlton, L. L., Miral, J. D. and Rush, C. M. Methods for Research on Soilborn phytopathologenic Fungi. American Phytopathological Society, St. Minnesota 1992,265p.
    176. Sinnott, M. L. Catalytic mechanisms of enzymic glycosyl transfer. Chemistry Review 1990, 1171-1202
    177. Skamnioti P, Furlong RF, Gurrl SJ: The fate of gene duplicates in the genomes of fungal pathogens. Communicative & Integrative Biology 2008, 1(2):196-198.
    178. Skamnioti P, Gurr SJ: Cutinase and hydrophobin interplay: A herald for pathogenesis? Plant Signal Behaviour 2008,3(4):248-250.
    179. Skamnioti P, Gurr SJ: Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. The Plant Cell Online 2007,19(8):2674-2689.
    180. Smith C. W. Cotton (Gossypium hirsutum L.). Chapter 6. In: Crop Production: Evolution, History, and technology. John Wiley and Sons, Inc., New York 1995, Pp 287-349.
    181. Smith C. W. Production statistics. Chapter 3.1. In: WC Smith, JT Cothern, eds. Cotton: Origin, History, Technology and Production. John Wiley and Sons, Inc. 1999, pp 435-449.
    182. Smith, S. N., and Snyder, W. C. Germination of Fusarium oxysporum chlamydospores in soils favorable and unfavorable to wilt establishment. Phytopathology 1972, 62:273-277
    183. St. Leger RJ, Joshi L, Roberts DW. Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 1997,143:1983-1992.
    184. Staats, M., van Baarlen, P., Schouten, A., and van Kan, J. A. L. Functional analysis of NLP genes from Botrytis elliptica. Molecular Plant Pathology 2007,8:209-214.
    185. Stahl, D. J., and Schafer, W. Cutinase is not required for fungal pathogenicity on pea. Plant Cell 1992,4:621-629.
    186. Stahl, D. J., Theuerkauf, A., Heitefuss, R., and Schafer, W. Cutinase of Nectria haematococca (Fusarium solani f. sp. pisi) is not required for fungal virulence or organ specificity on pea. Molecular Plant-Microbe Interaction 1994,.7:713-725
    187. Stergiopoulos, I., Kourmpetis, Y. A., Slot, J. C., Bakker, F. T., De Wit, P. J., and Rokas, A. In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins. Molecular Biology and Evolution 2012, 29:3371-3384.
    188. Subramanian, C. V. Soil conditions and wilt diseases in plants with special reference to Fusarium vasinfectum on cotton. Proceedings of Indian Academy of Sciences 1950,31:67-102
    189. Sun J., Chen B. Cotton. Beijing: Agricultural Press 1999.
    190. Takami, H., Nakasone, K., Hirama, C., Takaki, Y., Masui, N., Fuji, F., Nakamura, Y. and Inoue, A. An improved physical and genetic map of the genome of alkaliphilic Bacillus sp. C-125. Extremophiles 1999,3:21-28.
    191. Takken, F., and Rep, M. The arms race between tomato and Fusarium oxysporum. Molecular Plant Pathology 2010,11:309-314.
    192. Taubenhaus, J.J. and W.N. Ezekiel. Seed transmission of cotton wilt. Science 76:61-62 Chiu, W.F. and Y.H. Chang. 1982. Advances of science of plant protection in the People's Republic of China. Annual Review of Phytopathology 1932,20:71-92
    193. Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JHD, Glass NL: Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proceeding of National Academic Science 2009,106(52):22157-22162
    194. Torto, T., Li, S., Styer, A., Huitema, E., Testa, A., Gow, N.A.R., van West, P., and Kamoun, S. EST mining and functional expression assays identify extracellular effector proteins from Phytophthora. Genome Research 2003,13:1675-1685.
    195. Tunlid A. and Talbot N. J. Genomics of parasitic and symbiotic fungi. Current Opinion of Microbiology 2002,5:513-519.
    196. Tyler, B.M. Molecular basis of recognition between Phytophthora pathogens and their hosts. Annual Review of Phytopathology 2002,40:137-167.
    197. Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. Journal of Biological Chemistry 2005,280:28492-28497
    198. Vallad, G. E., and Subbarao, K. V. Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae. Phytopathology 2008, 98:871-885.
    199. Vallad, G. E., Bhat, R. G., Koike, S. T., Ryder, E. J., and Subbarao, K. V. Weedborne reservoirs and seed transmission of Verticillium dahliae in lettuce. Plant Diseases 2005,89:317-324.
    200. Van der Hoorn, R.A., Laurent, F., Roth, R., and De Wit, P.J. Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Molecular Plant Microbe Interaction 2000,13:439-446.
    201. Varki A: Essentials of glycobiology.2nd edition. Cold Spring Harbor, N.Y.:Cold Spring Harbor Laboratory Press; 2009.
    202. Veit, S., Worle, J.M., Nurnberger, T., Koch, W. and Seitz, H.U. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in Carrot, Arabidopsis and Tobacco. Plant Physiology 2001,127:832-841.
    203. Venisse, J.-S., Mainoy, M., Faize, M., Paulin, J.-P. and Brisset, M.-N. Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Molecular Plant-Microbe Interaction 2002,15:1204-1212.
    204. Vogel J: Unique aspects of the grass cell wall. Current Opinion in Plant Biology 2008, 11(3):301-307.
    205. Wade Abbott, D., Elizabeth Ficko-Blean, Alicia Lammerts van Bueren, Artur Rogowski, Alan Cartmell, Pedro M. Coutinho, Bernard Henrissat, Harry J. Gilbert, and Alisdair B. Boraston. Analysis of the Structural and Functional Diversity of Plant Cell Wall Specific Family 6 Carbohydrate Binding Modules. Biochemistry 2009,48:10395-10404.
    206. Wang J. Y., Cai Y., Gou J. Y., Mao Y. B., Xu Y. H., Jiang W. H. and Chen X. Y. VdNEp, elicitor from Verticilium dahliae induces cotton plant wilting. Applied and Environmental Microbiology 2004,4989-4995.
    207. Wang, B., Dale, M. L., and Kochman, J. K. Studies on a pathogenicity assay for screening cotton germplasms for resistance to Fusarium oxysporum f. sp. vasinfectum in the glasshouse. Australian Journal of Experimental Agriculture 1999,39:967-974
    208. Wang, J.Y., Cai, Y., Gou, J.Y., Mao, Y.B., Xu, Y.H., Jiang, W.H., Chen, X.Y.,2004. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Applied and Environmental Microbiology. 70,4989-4995.
    209. Wells, L., Vosseller, K. and Hart, G. W. Glycosylation of nucleotoplasmic proteins:signal transduction and O-GlcNAc. Science 2001,291:2376-2378.
    210. Wendel, J. F., and Albert, V. A., Phylogenetics of Cotton Genus (Gossypium L.): Character-State weighted Parsimony analysis of Chloroplast DNA restriction site data and its Systemic and Biogeographic Implications. Systemic Botany 1992,17:115-143.
    211. Wheeler, T. A., Madden, L. V., Rowe, R. C., and Riedel, R. M. Modeling of yield loss in potato early caused by Pratylenchus penetrans and Verticillium dahliae. Journal of Nematology 1992,24:99-102.
    212. Wickens, G.M. Fusarium wilt of cotton: seed husk a potential means of dissemination. Cotton Growers Review 1964,41:23-26
    213. Wilhelm, S. Longevity of Verticillium wilt fungus in the laboratory and the field. Phytopathology 1955,45:180-181
    214. Xia Z., Achar P. N., and Gu B. Vegetative compatibility groupings of Verticilium dahliae from cotton in mainland China. European Journal of Plant Pathology 1998,104:871-876.
    215. Xiao, C. L., and Subbarao, K. V. Relationships between Verticillium dahliae inoculum density and wilt incidence, severity and growth of cauliflower. Phytopathology 1998,88:1108-1115
    216. Yadeta, K. A., and Thomma, B. P. H. J. The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers Plant Science 2013,4:97. doi:10.3389/fpls.2013.00097
    217. Yip, V. L. and Withers, S. G. Breakdown of oligosaccharides by the process of elimination. Current Opinion of Chemistry and Biology 2006,10:147-155.
    218. Zhao Z., Liu H., Wang C. and Xu J. R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC genomics 2013,14:274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700