竹基纳米纤维素的制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米纤维素纤丝(NCF)及其复合材料由于具有纤维素独特的化学分子结构以及纳米尺寸效应,具备许多特殊的物理力学性能,在先进材料、光电子器件、包装、医药等许多重要领域应用前景广阔。本文以竹材为原料制备NCF及其应用产品,首先比较了竹纤维和薄壁细胞制备NCF的差异。在此基础上,基于产业化前景考虑,分别以商业竹浆、竹材加工剩余物为原料,研究NCF制取技术。最后以NCF溶胶为起始材料,重点开展NCF薄膜、NCF气凝胶以及NCF酚醛树脂纳米复合材料制备与性能研究,探讨竹基NCF的可能应用途径。论文的主要研究结论如下:
     薄壁组织细胞和竹纤维经过高压均质化处理均可制备出高质量的NCF溶胶,但解离过程不同,竹纤维均质化过程包括纤维的分段、纤维段的解离、细胞壁的破碎、纤丝束的分离四个步骤。薄壁组织细胞则分为细胞的破碎、壁层的解离、纤丝束的分离三个步骤,总体而言,竹纤维的细胞壁结构比较致密,使用现有处理技术获得高质量的NCF需要较多工序,能耗较大。在制备过程中使用饱和盐溶液取代纯水作为分散剂可将溶液的粘度降低几个数量级,提高生产效率。
     工业竹浆纤维为原料,使用高压均质化技术可以制备出的高质量NCF溶胶,但适当的机械预处理必不可少;高速匀浆处理可以促使纤维细胞壁外层的剥离,超声处理则对于竹纤维分丝帚化有明显作用;将超声波预处理与高速匀浆处理相结合是竹浆纤维高压均质化前处理的有效方法,可解决进料口的堵塞以及均质化前期样品破碎不均匀的问题;润胀剂的使用可以取代机械预处理,从而降低NCF能耗。
     竹加工剩余物中薄壁组织细胞的比例高达80%,是制备NCF的良好原料,其经过筛分和化学预处理才能用于NCF制备;超声波破碎是一种非常适合从薄壁基本组织中制备NCF的方法,经过化学预处理的薄壁基本组织在超声50min左右可获得质量优异的NCF溶胶。超声波破碎时,溶液的溶度过高会降低超声波的空化效应,以低于0.5wt%的浓度为宜;对于薄壁细胞来说,超声波破碎和高压均质化均可制备出高质量的NCF溶胶,但超声波在薄壁细胞破碎方面的效果优于后者,高压均质化对细胞壁的解离作用更加明显。
     NCF经真空抽滤可制备出结构致密、力学性能优异的NCF薄膜材料。超声处理40minNCF所制备薄膜材料的物理、力学性能较宜,模量和强度分别为12.6GPa和141MPa。处理时间、薄膜厚度、含水率等因素对薄膜的力学性能影响显著。通过控制干燥时气流走向和干燥时间可以制备出一定取向的NCF薄膜。力学性能测试表明薄膜正交方向的抗拉强度和弹性模量相差约20%,两个方向在断裂伸长率和蠕变性能上存在显著差异。
     NCF经冷冻干燥可制备出超轻高韧的气凝胶,本文制备的NCF气凝胶材料密度最低可达0.5×10~(-3)g/cm~3,密度约为目前世界最轻固体材料的2.5倍。冷冻方式对NCF气凝胶的微观结构有显著影响。超低温冰箱和液氮制备的NCF气凝胶效果较好;NCF气凝胶材料具有优良的能量吸附性能,密度为10mg/cm~3的NCF气凝胶的能量吸附值达220kJ/m3,与密度为其5倍的聚苯乙烯泡沫相近;NCF气凝胶整体上NCF束属于无规排列,但通过快速冷冻方法可以实现局部NCF束的定向排列。
     采用浓缩冻干法制备的NCF气凝胶作为负载酚醛树脂的载体,可以制备出低树脂负载率(PF含量小于15%) NCF/PF复合材料,复合材料的强度和模量分别为150MPa和5GPa。该工艺可以使酚醛树脂在复合材料中得到均匀的分布。在高湿度条件下,NCF/PF复合材料的吸湿性要低于纯NCF薄膜材料;在相同含水率下,两者的弹性模量、断裂强度和断裂伸长率差异不大。
Nano-cellulose fibrils (NCF) and its composites own a lot of special physical andmechanical properties due to the unique chemical molecular structure and nano-size effect.This special material is very potential in the application of some important areas, such asadvanced materials, optoelectronic devices, packaging and pharmacy. In this paper, bamboowas for the first time taken as raw material to prepare NCF and its products, and the differencesfor preparing NCF by bamboo fibers or parenchyma cells were compared. Besides, based onindustrial prospects, the technology for preparing NCF was studied by taking commercialbamboo pulp and bamboo processing residues as raw materials. Finally, the preparation andproperty of NCF film, NCF aerogels and NCF/phenolic resin composites based on NCF solwere focused on and the potential application on bamboo-based NCF was also discussed.
     Both parenchyma cells and bamboo fibers after homogenization could be used to prepareNCF sol with high quality, but differences exist in the dissociation process. In thehomogenization process of bamboo fibers the four steps include the fiber segment, thedissociation of the fiber segment, the cell wall crushing, the separation of fiber bundles. Whilefor Parenchyma cells, there are only three steps including cell disruption, parietal dissociation,the separation of fiber bundles. Overall, the cell wall structure of bamboo fiber is very dense,which is responsible for high energy consumption and a lot of processes by using existingprocessing techniques. The efficiency of producing NCF could be improved by taking saturatedsalt solutions as a substitution for purified water to reduce the viscosity of the solution.
     NCF sol with high quality could be prepared by the use of high pressure homogenizationtechniques when taking industrial bamboo pulp as the raw material, while appropriatemechanical pretreatment is also essential. Homogenizing treatment with high speed couldinduce the strip of the outer cell wall, and then ultrasonic treatment plays a significant role inthe devillicate of bamboo fibers. The method which combines ultrasonic pretreatment withhigh-speed homogenizer is an effective way to avoid the inlet blockage and uneven crush before high-pressure homogenization. Swelling agent used as a method to pretreat bamboopulp could replace mechanical pretreatment, thereby reducing energy consumption forpreparing NCF.
     Parenchyma cells up to80%of bamboo processing residue is a good raw material, whichcould be used for preparing NCF after sieving and chemical pretreatment. Ultrasonic treatmentis a very suitable method to produce NCF by parenchyma cells, and parenchyma cells withchemical pretreatment could be prepared into excellent NCF sol by50-min ultrasonic treatment.Less than0.5wt%of solution concentration should be used because during the ultrasonicprocess high concentration may reduce the ultrasonic cavitation effect. For the parenchymacells, the ultrasonication and high pressure homogenization could both be used to prepare NCFsol, but in terms of parenchyma cell disruption, the ultrasonication is better, while thehigh-pressure homogenizing effect on the cell walls is more apparent.
     NCF film material with compact structure and excellent mechanical properties can beprepared by vacuum filtration. After40-min ultrasonic treatment, its physical and mechanicalproperties can be stable, and its modulus and strength were respectively12.6GPa and141MPa.The processing time, the film thickness, moisture content and other factors significantly affectthe mechanical properties of the material. By controlling the drying air flow direction and thedrying time NCF film with certain orientation can be prepared. Results show that there is adifference of about20%in the tensile strength and elastic modulus at the perpendiculardirection and in terms of creep and elongation at break for different directions, there aresignificant differences in performance.
     NCF aerogels with high toughness and very low density can be prepared by freeze drying,and the density of NCF aerogels could be as low as0.5×10~(-3)g/cm~3, which is2.5times as thatof the world's lightest solid material. The freezing method has a significant influence NCF onaerogel microstructure. Better NCF aerogels could be prepared by an ultra-low temperaturefreezer or liquid nitrogen. NCF aerogel material has excellent energy adsorption. Energyabsorption value of NCF aerogels with a density of10mg/cm~3could be up to220kJ/m3, whichis very close to that of the polystyrene foam with5-time density. NCF bundles as a whole in NCF aerogels are arranged at random, but local NCF bundle orientation can be achieved byrapid freezing method.
     NCF/PF composite materials with low resin load ratio (PF content of less than15%)could be prepared using NCF aerogels made by concentration and freezing drying as a loadcarrier in phenolic resin. The strength and modulus of this composite material wererespectively150MPa and5GPa. This process can make the phenol resin uniformly distributein the composite material. At high humidity, hygroscopicity of NCF/PF composite material islower than that of pure NCF film material; besides, at the same moisture content, littledifference exists in the elastic modulus, breaking strength and elongation at break.
引文
[1]江泽慧.中国林业工程.济南出版社,2002
    [2]江泽慧.我国林业生物产业发展战略.林业经济,2011,(7):7-9,22
    [3]江泽慧.中国林产品发展的现状与前景.木材工业,2006,(2):10-13
    [4]江泽慧.发展低碳经济建设低碳林业.世界林业研究,2010,(3):3-8
    [5]余雁,江泽慧,田根林,等.纳米技术在木材科学中的应用:现状与挑战.第二届中国林业学术大会论文集,2009,广西南宁
    [6]江泽慧,王汉坤,余雁,等.植物源微纤化纤维素的制备及性能研究进展.世界林业研究,2012,25(2):46-49
    [7] D Klemm, D Schumann, F Kramer, et al. Nanocelluloses as innovative polymers in research andapplication. Advances in Polymer Science,2006,205:49-96
    [8] M Henriksson, L A. Berglund. Structure and properties of cellulose nanocomposite films containingmelamine formaldehyde. Journal of Applied Polymer Science.2007,106:2817-2824
    [9] S Iwamoto, A N Nakagaito, Hi Yano. Nano-fibrillation of pulp fibers for the processing of transparentnanocomposites. Applied Physics A: Materials Science and Process,2007,89(2):461-466
    [10] A N Nakagaito, H Yano. Toughness enhancement of cellulose nanocomposites by alkali treatment of thereinforcing cellulose nanofibers. Cellulose,2008a,15(2):323-331
    [11] E Kontturi, T Tammelin, M sterberg. Cellulose-model films and the fundamental approach. ChemicalSociety Reviews,2006,35(12):1287-1304
    [12]叶代勇,黄洪,傅和青,等.纤维素化学研究进展明.化工学报,2006,57(8):782-791
    [13]江泽慧,孙正军,任海青.先进生物质复合材料在风电叶片中的应用.复合材料学报,2006,(3):131-133
    [14]江泽慧,王戈,费本华,等.竹木复合材料的研究及发展.林业科学研究,2002,(6):87-93
    [15]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002
    [16]江泽慧.以科学发展观为指导加快中国竹产业发展进程.绿色中国,2005,(24):5-8
    [17]江泽慧.加速推进我国竹产业发展.林业经济,2002,(1):9-12
    [18]李民栋.竹材化学组成和半纤维素结构的特征.中国造纸,1990(3):56-59
    [19]津田真由美.竹材的化学成分分析.林产试场报,1995,9(3):17-20
    [20] T Higuchi. Chemistry and Biochemistry of Bamboo. Bamboo Journal.1987,(4):132-145
    [21]江泽慧,于文吉,余养伦.竹材化学成分分析和表面性能表征.东北林业大学学报,2006,34(4):1-2
    [22]江泽慧,彭镇华.世界主要树种木材科学特性.科学出版社,2001
    [23] F W Herrick, R L Casebier, J K Hamilton, et al. Microfibrillated cellulose: morphology and accessibility.Journal of Applied Polymer Science,1983,37:797-813
    [24] A F Turbak, F W Snyder, K R Sandberg. Microfibrillated cellulose: Switzerland,1985,81-3923:10
    [25] A J Svagan, M A S A Samir, L A Berglund. Biomimetic polysaccharide nanocomposites of highcellulose contentand high toughness. Biomacromolecules,2007,8(8):2556-2563
    [26] M A S A, Samir. F Alloin, A Dufresne. Review of recent research into cellulosic whiskers, theirproperties and their application in nanocomposite field. Biomacromolecules,2005,6:612-626
    [27] B S Tanem, I Kvien, A T J van Helvoort, et al. Morphology of cellulose and its nanocomposites. In:Oksman K, Sain M (eds) Cellulose Nanocomposites: Processing, Characterization, and Properties,American Chemical Society, Washington DC,2006,938:48-62
    [28] M A Hubbe, O J Rojas, L A Lucia, et al. Cellulosic nanocomposites: a review. Bioresources,2008,3:929
    [29] H A Kr ssig. Cellulose-structure, Accessibility and Reactivity. Yverdon, Switzerland: Gordon andBreach Science Publishers,1993,307-314
    [30] T Nishino, K Takano, K Nakamae. Elastic modulus of the crystalline regions of cellulose polymorphs.Journal of Polymer Science Part B: Polymer Physics,1995,33(11):1647-1651
    [31] D H Page, J Abbot. Changes in cellulose structure during pulping. Paperi Ja Puu-Paper and Timber,1983,65:797
    [32] T Nishino, I Matsuda, K Hirao. All-cellulose composite. Macromolecules,2004,37(20):7683-7687
    [33] E Pohler, T Zimmermann, T Geiger. EMPA. www.empa.ch/plugin/template/empa/﹡/27303/---/l=1,2009
    [34] M P kk, J Vapaavuori, R Silvennoinen, et al. Long and entangled native cellulose I nanofibers allowflexible aerogels and hierarchically porous templates for functionalities. Soft Matter,2008,4(12):2492-2499
    [35]肖仙英,郑炽篙,胡健,等.纳米技术与制浆造纸工业:纳米技术在涂料方面的应用.中华纸业,2002,23(11):16-18
    [36]宋海农,杨崎峰,黄显南,等.多元微粒子助留助滤技术.西南造纸,2001,30(3):8-11
    [37]张红杰,胡惠仁.阳离子微粒与阴离子聚合物复配的微粒助留系统.纸和造纸,2002(l):52-54
    [38]胡健,曾靖山,刘静.纳米助留剂稀释过程中影响因素的研究.西南造纸,2003,32(2):14-15
    [39] H Fukuzumi, T Saito, T Iwata, et al. Transparent and high gas barrier films of cellulose nanofibersprepared by TEMPO-mediated oxidation. Biomacromolecules,2009,10(1):162-165
    [40] A N Nakagaito, H Yano. Novel high-strength biocomposites based on microfibrillated cellulose havingnanoorder-unit web-like network structure. Appl Phys A-Mater Sci Process.2005,80(1):155-159
    [41] M P kk, M Ankerfors, H Kosonen, et al. Enzymatic hydrolysis combined with mechanical shearingand high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules,2007,8(6):1934-1941
    [42] P Stenstad, M Andresen, B S Tanem, et al. Chemical surface modifications of microfibrillated cellulose.Cellulose.2008,15(1):35-45
    [43] A N Nakagaito, H Yano. The effect of morphological changes from pulp fiber towards nano-scalefibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. AppliedPhysics A: Materials Science and Process,2004,78(4):547-552
    [44] A Chakraborty, M Sain, M Kortschot. Cellulose microfibrils: a novel method of preparation using highshear refining and cryocrushing. Holzforschung59(1):102-107
    [45] B Wang, M Sain. Dispersion of soybean stock-based nanofiber in a plastic matrix. Polymer International,2007a,56(4):538-546
    [46] S Janardhnan, M Sain. Isolation of cellulose microfibrils-an enzymathic approach. Bioresources,2006,1(2):176-188
    [47] A Bhatnagar, M Sain. Processing of cellulose nanofiber-reinforced composites. Journal of ReinforcedPlastics and Composites,2005,24(12):1259-1268
    [48] B Wang, M Sain. Isolation of nanofibers from soybean source and their reinforcing capability onsynthetic polymers. Composites Science and Technology.2007b,67(11-12):2521-2527
    [49] A Alemdar, M Sain. Isolation and characterization of nanofibers from agricultural residues-wheat strawand soy hulls. Bioresource Technology,2008,99(6):1664-1671
    [50] T Taniguchi, K Okamura. New films produced from microfibrillated natural fibres. PolymerInternational,1998,47(3):291-294
    [51] K Abe, S Iwamoto, H Yano. Obtaining cellulose nanofibers with a uniform width of15nm from wood.Biomacromolecules,2007,8(10):3276-3278
    [52] E L Hult, P T Larsson, T Iversen. Cellulose fibril aggregation: an inherent property of kraft pulps.Polymer,2001,42(8):3309-3314
    [53] Q Cheng, S Q Wang, T G Rials, et al. Physical and mechanical properties of polyvinyl alcohol andpolypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulosefibers. Cellulose,2007,14:593–602
    [54] Q Z Cheng, S Q Wang, G Timthy, et al. Poly(vinyl alcohol) nanocomposites reinforced with cellulosefibrils isolated by high intensity ultrasonication. Composites Part A: Applied Science andManufacturing,2009,40(2):218-224
    [55] P C S F Tischer, M R Sierakowski, H Westfahl, et al. Nanostructural reorganization of bacterialcellulose by ultrasonic treatment; Biomacromolecules,2010,11(5):1217–1224
    [56] C Zhao, W Deng, F H Gage. Mechanisms and Functional Implications of Adult Neurogenesis. cell,2008,132:(4,22):645–660
    [57] R S Somerville, K Lee, H C Ferguson, et al. Cosmic variance in the great observatories origins deepsurvey. The Astrophysical Journal Letters,2004,600(2):600L171
    [58]刘聪.微/纳纤丝的制备及其改良杨木胶合板的性能研究.江苏南京:南京林业大学,2011,1-38
    [59]戴达松.大麻纳米纤维素的制备、表征及应用研究.福建福州:福建农林大学,2011,1-87
    [60] O Eriksen, K Syverud, O Gregersen. The use of microfibrillated cellulose produced from kraft pulp asstrength enhancer in TMP paper. Nordic Pulp and Paper Research Journal,2008,23(3):299-304
    [61] M Ankerfors, T Lindstr m. On the manufacture and uses of nanocellulose.9Th InternationalConference on Wood and Biofiber Plastic Pomposites. Wisconsin-Madison United States, May,2007:21-23
    [62] A Dufresne, J Y Cavaille, M R Vignon. Mechanical behavior of sheets prepared from sugar beetcellulose microfibrils. Journal of Applied Polymer Science,64(6):1185-1194
    [63] B Wang, M Sain, K Oksman. Study of structural morphology of hemp fiber from the micro to thenanoscale. Applied Composite Materials,2007,14(2):89-103
    [64] T Saito, A Isogai. Wet strength improvement of TEMPO-oxidized cellulose sheets prepared withcationic polymers. Industrial and Engineering Chemistry Research,2007,46(3):773-780
    [65] T Saito, A Isogai. Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,289(1-3):219-225
    [66] T Saito, Y Nishiyama, J L Putaux, et al. Homogeneous suspensions of individualized microfibrils fromTEMPO-catalyzed oxidation of native cellulose. Biomacromolecules,2006,7(6):1687-1691
    [67] T Saito, M Hirota, N Tamura, et al. Individualization of nano-sized plant cellulose fibrils by directsurface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules,2009,10(7):1992-1996
    [68] T Saito, A Isogai. Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by theTEMPO mediated system. Carbohydrate Polymers,2005,61(2):183-190
    [69] Y Habibi, M R Vignon. Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation ofcellulose III from sugar beet pulp. Cellulose,2008,15(1):177-185
    [70] E Lasseuguette, D Roux, Y Nishiyama. Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose,2008,15(3):425-433
    [71]张俊华.微纤化纤维素的制备及其对纸张增强效果的应用研究.广西南宁:广西大学,2008:1-50
    [72] J Zhang, H Song, L Lin, et al. Microfibrillated cellulose from bamboo pulp and its properties. Biomassand Bioenergy,2012,39:78-83
    [73] G Henriksson, A Nutt, H Henriksson, et al. Endoglucanase28(cel12A), a new Phanerochaetechrysosporium cellulase. European Journal of Biochemistry,1999,259(1-2):88-95
    [74] G Henriksson, M Christiernin, R Agnemo. Monocomponent endoglucanase treatment increases thereactivity of softwood sulfite dissolving pulp. Journal of Industrial Microbiology Biotechnology,2005,32:211-214
    [75] E R Berghem, L G Pettersson. Mechanism of enzymatic cellulose degradation-purification of acellulolytic enzyme from trichoderma-viride active on highly ordered cellulose. European journal ofbiochemistry,1973,37:21-30
    [76] G Henriksson, M Henriksson. Biofibre Materials Centre (Bi-MaC). Newsletter,2004, No5/04.http://www.bimac.kth.se/News/Nyhetsbrev_5-04.pdf
    [77] S Janardhnan, M Sain. Isolation of cellulose microfibrils: an enzymathic approach. Bioresources,2006,1(2):176-188
    [78] M Henriksson, G Henriksson, L A. Berglund, et al. An environmentally friendly method forenzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal,2007,43(8):3434-3441
    [79] E Dinand, H Chanzy, MR Vignon. Suspensions of cellulose microfibrils from sugar beet pulp. FoodHydrocolloids,1999,13(3):275-283
    [80] E L Hult, P T Larsson, T Iversen. A comparative CP/MAS C-13-NMR study of cellulose structure inspruce wood and kraft pulp. Cellulose,2000,7(1):35-55
    [81] E L Hult, T Iversen, J Sugiyama. Characterization of the supermolecular structure of cellulose in woodpulp fibres. Cellulose,2003,10(2):103-110
    [82] H Zhang, M Tong. Influence of hemicelluloses on the structure and properties of lyocell fibers. PolymerEngineering and Science,2007,47(5):702–706
    [83] S Iwamoto, K Abe, H Yano. The effect of hemicelluloses on wood pulp nanofibrillation and nanofibernetwork characteristics. Biomacromolecules,2008,9(3):1022–1026
    [84] T Virtanen, S L Maunu, T Tamminen, et al. Changes in fiber ultrastructure during various kraft pulpingconditions evaluated by13C CPMAS NMR spectroscopy. Carbohydrate Polymers,2008,73(1):156–163
    [85] H Zhang, H Zhang, M Tong, et al. Comparison of the structures and properties of lyocell fibers fromhigh hemicellulose pulp and high α-cellulose pulp. Journal of Applied Polymer Science,2008,107(1):636–641
    [86] A F Turbak, F W Snyder, K R Sandberg. Microfibrillated cellulose, a new cellulose product: Properties,uses, and commercial potential. Journal of Applied Polymer Science,1983,37:815-827
    [87] D M Bruce, R N Hobson, J W Farrent, et al. High-performance composites from low-cost plant primarycell walls. Composites Part A: Applied Science and Manufacturing,2005,36(11):1486-1493
    [88] T Zimmermann, E Pohler, T Geiger. Cellulose fibrils for polymer reinforcement. Advanced EngineeringMaterials,2004,6(9):754-761
    [89] M Andresen, P Stenius. Water-in-oil emulsions stabilizedby hydrophobized microfibrillated cellulose.Journal of Dispersion Science and Technology,2007,28(6):837-844.
    [90] M Andresen, L S Johansson, B S Tanem, et al. Properties and characterization of hydrophobizedmicrofibrillated cellulose. Cellulose,2006,13(6):665-677
    [91] H Yano, S Nakahara. Bio-composites produced from plant microfiber bundles with a nanometer unitweb-like network. Journal Materials Science,2004,39(5):1635–1638
    [92] M Andresen, P Stenstad, T M retr, et al. Nonleaching antimicrobial films prepared fromsurface-modified microfibrillated cellulose. Biomacromolecules,2007,8(7):2149–2155
    [93] S Iwamoto, A N Nakagaito, H Yano, et al. Optically transparent composites reinforced with plantfiber-based nanofibers. Applied Physics A: Materials Science and Process,2005,81(6):1109-1112
    [94] A N Nakagaito, H Yano. The effect of fiber content on the mechanical and thermal expansion propertiesof biocomposites based on microfibrillated cellulose. Cellulose,2008b,15(4):555–559
    [95] M Henriksson, L A. Berglund, P Isaksson, et al. Cellulose nanopaper structures of high toughness.Biomacromolecules,2008,9(6):1579-1585
    [96] S J Eichhorn, A Dufresne, M Aranguren, et al. Review: current international research into cellulosenanofibres and nanocomposites. Journal of Materials Science,2010,45,1-33
    [97] M Nogi, S Iwamoto, A N Nakagaito, H Yano. Optically transparent nanofiber paper. AdvancedMaterials,2009,21(16):1595-1598
    [98] M Nogi, H Yano. Transparent nanocomposites based on cellulose produced by bacteria offer Potentialinnovation in the electronics device industry. Advanced Materials,2008,20(10):1849-1852
    [99] L A Berglund. New concepts in natural fiber composites. Proceedings of the27th Ris¢InternationalSymposium on Materials Science: Polymer Composite Materials for Wind Power Turbines,2006:1-9
    [100] T Zimmermann, E Pohler, P Schwaller. Mechanical and morphological properties of cellulose fibrilreinforced nanocomposites. Advanced Engineering Materials,2005b,7(12):1156–1161
    [101] K Syverud, P Stenius. Strength and barrier properties of MFC films. Cellulose,2009,16(1):75-85
    [102] H Yano, J Sugiyama, A N Nakagaito, et al. Optically transparent composites reinforced with networksof bacterial nanofibers. Advanced Materials,2005,17(2):153-155
    [103] I Siró, D Plackett. Characterization of microfibrillated cellulose (MFC) films made of different typesof raw material. Stockholm, Sweden: Nordic Polymer Days,2008:11-13
    [104] M Nogi, H Yano. Optically transparent nanofiber sheets by deposition of transparent materials: aconcept for rollto-roll processing. Applied Physics Letters,2009,94(23):1-3
    [105] M Nogi, K Handa, A N Nakagaito, et al. Optically transparent bionanofiber composites with lowsensitivity to refractive index of the polymer matrix. Applied Physics Letters,2005,87(24):1-3
    [106] J Lu, T Wang, L T Drzal. Preparation and properties of microfibrillated cellulose polyvinyl alcoholcomposite materials. Composites Part A: Applied Science and Manufacturing,2008,39(5):738-746
    [107] C Aulin, S Ahola, P Josefsson, et al. Nanoscale cellulose films with different crystallinities andmesostructures-their surface properties and interaction with water. Langmuir,2009,25(13):7675-7685
    [108] A V Shlyakhtina, Y J Oh. Transparent SiO2aeogels prepared by ambient pressure drying with ternaryazeotropes as components of pore fluid. Journal of Non-Crystalline Solids,2008,354(15-16):1633-1642
    [109] R Gavillon, T Budtova. Aerocellulose: new highly porous cellulose prepared from cellulose-NaOHaqueous solutions. Biomacromolecules,2008,9(1):269-277
    [110] W Chen, H Yu, Q Li, et al. Ultralight and highly flexible aerogels with long cellulose I nanofibers. SoftMatter,2011,7(21):10360-10368
    [111] W Chen, H Yu. Y Liu. Preparation of millimeter-long cellulose I nanofibers with diameters of30-80nm from bamboo fibers. Carbohydrate Polymers,2011,86(2):453-461
    [112] N Hüsing, U Schubert. Aerogel-airy materials: Chemistry structure and properties. AngewandteChemie International Edition,1998,37(1-2):22-45
    [113] A C Pierre, G M Pajonk. Chemistry of aerogels and their applications. Chemical Reviews,2002,102(11):4243–4265
    [114] S S Kistler. Coherent expanded-aerogels. Journal of Physical Chemistry,1932,36(1):52-64
    [115] H Jin, Y Nishiyama, M Wada, et al. Nanofibrillar cellulose aerogels. Colloids and Surfaces A:Physicochem and Engineering Aspects,2004,240(1-3):63-67
    [116] M C Gutiérrez, M L Ferrer, F D Monte. Ice-templated materials: sophisticated structures exhibitingenhanced functionalities obtained after unidirectional freezing and ice-segregat on-inducedself-assembly. Chemistry of Materials,2008,20(3):634-648
    [117] O Aaltonen, O Jauhiainen. The preparation of lignocellulosic aerogels from ionic liquid solutions.Carbohydrate Polymers,2009,75(15):125-129
    [118] H Sehaqui, M Salajková, Q Zhou, et al. Mechanical performance tailoring of tough ultra-high porosityfoams prepared from cellulose Ⅰ nanofiber suspensions. Soft Matter,2010,6(8):1824-1832
    [119] H Sehaqui, Q Zhou, L A. Berglund. High-porosity aerogels of high specific surface area prepared fromnanofibrillated cellulose (NFC). Composites Science and Technology,2011,71(13):1593-1599
    [120] F Liebner, A Potthast, T Rosenau, et al. Ultralight-Weight Cellulose aerogels from NBnMO-stabilizedlyocell dopes. Research Letters in Materials Science,2007
    [121] J C B Duchemin, M P Staiger, N Tucker, et al. Newman. Aerocellulose Based on All-CelluloseComposites. Journal of Applied Polymer Science,2010,115(1):216–221
    [122] F Fischer, A Rigacci, R Pirard, et al. Cellulose-based aerogels. Polymer,2006,47(22):7636-7645
    [123] L Heath, W Thielemans. Cellulose nanowhisker aerogels. Green Chemistry,2010,12(8):1448-1453
    [124] S Hoepfner, L Ratke, B Milow. Synthesis and characterisation of nanofibrillar cellulose Aerogels.Cellulose,2008,15(1):121-129
    [125] T W Clyne, A E Markaki, J C Tan. Mechanical and magnetic properties of metal fibre networks, withand without a polymeric matrix. Composites Science and Technology,2005,65(15-16):2492-2499
    [126] D Hull. An introduction to composite materials. Cambridge: Cambridge Univ Press,1981:26
    [127] J T Korhonen, P Hiekkataipale, J Malm, et al. Inorganic hollow nanotube aerogels by atomic layerdeposition onto native nanocellulose templates. ACS nano,2011,5(3):1967-1974
    [128] H Jin, M Kettunen, A Laiho, et al. Superhydrophobic and superoleophobic nanocellulose aerogelmembranes as bioinspired cargo carriers on water and oil. Langmuir,2011,27(5):1930-1934
    [129] R T Olsson, L Belova, O Ikkala, et al. Making flexible magnetic aerogels and stiff magnetic nanopaperusing cellulose nanofibrils as templates. Nature nanotechnology,2010,5:584-588
    [130] X Gao, L Jiang. Biophsics: water-repellent legs of water striders[J]. Nature,2004,432:36
    [131] M Kettunen, R J Silvennoinen, N Houbenov, et al. Photoswitchable superabsorbency based onnanocellulose aerogels. Advanced Functional Materials,2010,21(3):510-517
    [132]邱立军. P(LLA-CL)电纺纤维的制备、表征及在小血管组织工程中的应用.上海.东华大学.2009
    [133] Z M Huang, Y Z Zhang, M Kotaki, et al. A review on polymer nanofibers by electrospinning and theirapplications in nanocomposites. Composites Science and Technology,2003,63(15):2223-2253
    [134] A Castellanos. Electrohydrodynamics. New York: Springer Verlag Wien,1998:380
    [135] D H Reneker, A L Yarin, H Fong, et al. Bending instability of electrically charged liquid jets ofpolymer solutions in electrospinning. Journal of Applied Physics,2000,87(9):4531-4547
    [136] D Li, Y Wang, Y Xia. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layerstacked films. Advanced Materials,2004,16(4):361-366
    [137] P Katta, M Alessandro, R D Ramsier, et al. Continuous electrospinning of aligned polymer nanofibersonto a wire drum collec-tor. Nano Letters,2004,4(11):2215-2218
    [138] M K Shin, S I Kim, S J Kim. Controlled assembly of polymer nanofibers: from helical springs to fullyextended. Applied Physics Letters,2006,88(22):223109.
    [139] D Sun, C Chang, S Li, et al. Near-field electrospinning. Nano Letters,2006,6(4):839-842
    [140]刘呈坤,孙润军.静电纺制备定向排列纳米纤维集合体.产业用纺织品,2008,216(9):1-7
    [141]戴剑锋,张超,王青,等.反复拉伸法制备单壁碳纳米管定向排列的SWCNT/PMMA复合材料.新型炭材料,2008,23(3):201-204
    [142]戴剑锋,张超,王青,等.碳纳米管定向排列的SWNTs/PMMA复合材料研究.炭素技术,2008,27(4):7-9
    [143]史长伟.纤维定向排列与卷曲的关系.造纸科学与技术,2006,25(2):42-46
    [144]邱立军,王红声,何创龙,等.聚(左旋乳酸-己内酯)/Fe3O4取向超细纤维的制备及生物相容性.中国组织工程研究与临床康复,2009,13(12):2222-2226
    [145] A K Bledzki, J Gassan. Composites reinforced with cellulose based fibres. Progress in PolymerScience,1999,24(2):221-274
    [146] D N Saheb, J P Jog. Natural fiber polymer composites: a review. Advances in PolymerTechnology,1999,18:351-363
    [147] S J Eichhorn, C A Baillie, N Zafeiropoulos, et al. Review: current international research into cellulosicfibres and composites. Journal Materials Science,2001,36(9):2107-2131
    [148] P Wambua, J Ivens, I Verpoest. Natural fibres: can they replace glass in fibre reinforced plastics?Composites Science and Technology,2003,63(9):1259-1264
    [149] M J John, R D Anandjiwala. Recent developments in chemical modification and characterization ofnatural fiber-reinforced composites. Polymer Composites,2008,29:187-207
    [150] M J John, S Thomas. Biofibres and biocomposites. Carbohydrate Polymers,2008,71(3):343-364
    [151] A Dufresne, D Dupeyre, M Paillet. Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate)composites. Journal of Applied Polymer Science,2003,87(8):1302-1315
    [152] E A Aksoy, B Akata, N Bac, et al. Preparation and characterization of zeolite beta-polyurethanecomposite membranes. Journal of Applied Polymer Science,2007,104(5):3378-3387
    [153] M Seydibeyo lu, K Oksman. Novel nanocomposites based on polyurethane and microfibrillatedcellulose. Composites Science Technology,2008,68(3-4):908-914
    [154] J Leitner, B Hinterstoisser, M Wastyn, et al. Sugar beet cellulose nanofibril-reinforced composites.Cellulose,2007,14(5):419-425
    [155] B Ding, E Kimura, T Sato, et al. Fabrication of blend biodegradable nanofibrous nonwoven mats viamulti-jet electrospinning. Polymer,2004,45(6):1895-1902
    [156] C M. Hassan, N A Peppas. Structure and applications of poly(vinyl alcohol) hydrogels produced byconventional crosslinking or by freezing/thawing methods. Advances in Polymer Science,2000,153:37-65
    [157] G Paradossi, F Cavalieri, E Chiessi, et al. Poly(vinyl alcohol) as versatile biomaterial for potentialbiomedical applications. Journal Materials Science: Materials Medicine,2003,14(8):687-691
    [158] L E Millon, W K Wan. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite forbiomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2006,79B(2):245-253
    [159] A Dufresne, D Dupeyre, M R Vignon. Cellulose microfibrils from potato tuber cells: processing andcharacterization of starch-cellulose microfibril composites. Journal of Applied Polymer Science,2000,76(14):2080-2092
    [160] X Ma, P R. Chang, J Yu. Properties of biodegradable thermoplastic pea starch/carboxymethyl celluloseand pea starch/microcrystalline cellulose composites. Carbohydrate Polymers,2008a,72(3):369-375
    [161] A Dufresne, M R Vignon. Improvement of starch film performances using cellulose microfibrils.Macromolecules1998,31:2693-2696
    [162] A K Bledzki, S Reihmane, J Gassan. Properties and modification methods for vegetable fibers fornatural fiber composites. Journal of Applied Polymer Science,1996,59(8):1329-1336
    [163] A López-Rubio, J M Lagaron, M Ankerfors, et al. Enhanced film forming and film properties ofamylopectin using micro-fibrillated cellulose. Carbohydrate Polymers,2007,68(4):718-727
    [164] T Lindstr m, M Ankerfors, G Henriksson. Method for treating chemical pulp for manufacturingmicrofibrillated cellulose. PCT Int Appl.2007-SE82;2006-272:14
    [165] M E Malainine, M Mahrouz, A Dufresne. Thermoplastic nanocomposites based on cellulosemicrofibrils from Opuntia ficus-indica parenchyma cell. Composites Science and Technology,65(10):1520-1526
    [166] W Chen, H Yu, Y Liu, et al. Isolation and characterization of cellulose nanofibers from four plantcellulose fibers using a chemical-ultrasonic process. Cellulose,2011,18(2):433-442
    [167] A N Nakagaito, H Yano. Novel high-strength biocomposites based on microfibrillated cellulose havingnano-order-unit web-like network structure. Applied Physics A,2005,80(1):155-159
    [168] W Chen, H Yu, Y Liu. Preparation of millimeter-long cellulose I nanofibers with diameters of30~80nm from bamboo fibers. Carbohydrate Polymers,2011,86(2):453-461
    [169] F Chang, S H Lee, K Toba, et al. Bamboo nanofiber preparation by HCW and grinding treatment andits application for nanocomposite. Wood Science and Technology,2012,46(1-3):393-403
    [170] Suslick, K. S."The Chemical Effects of Ultrasound" Scientific American,1989,260(2):80-86.
    [171] Q Q Li, S Renneckar. Supramolecular structure characterization of molecularly thin cellulose Inanoparticles. Biomacromolecules,2011,12(3):650-659
    [172] L E Wise. Wood Chemistry. Reinhold, New York,1944, Chapter13
    [173] Pauli, Handkowsky. Biochcm. Z.,1909,18,340
    [174] D Bruyn. Nature.1938,144,570
    [175] A N Nayer, Ralph L. Hossfeld. Hydrogen bonding and the swelling of wood in various organic liquids.Journal of the American Chemical Society,1949,71(8):2852-2855
    [176] G I Mantanis, R A Young, R M Rowell, et al. Swelling of wood Part I. Swelling in water. WoodScience and Technology,1994,28:119-134
    [177] G I Mantanis, R A Young, R M Rowell, et al. Swelling of Wood Part II. Swelling in Organic Liquids.Holzforschung,1994,48:480-490
    [178] G I Mantanis, R A Young, R M Rowell, et al. Swelling of Wood Part III. Effect of Temperature andExtractives on Rate and Maximum Swelling. Holzforschung,1995,49:239-248
    [179] G I Mantanis, R A Young, R M Rowell, et al. Swelling of Wood. Part IV. A Statistical Model forPrediction of Maximum Swelling of Wood in Organic Liquids. Wood and Fiber Science,1995,27(1):22-24
    [180] J Rodrigues, O Faix, H Pereira. Determination of lingin content of Eucalyptus globulus wood ueingFTIR spectroscopy. Holzforschung,1998,52(1):46-50
    [181] U P Agarwal, L L Landucci. FT-Rama inverstigation of bleaching of spruce thermomechanical pulp. J.Pulp Paper Sci.,2004,30(10):269
    [182] D Fengel, G Wegener. Wood: chemistry, ultrastructure, reactions. Berlin: Walter de Gruyter,1983
    [183] S Fischer, Karla Schenzel, K Fischer, et al. Applications of FT raman spectroscopy and mircospectroscopy characterizing cellulose and cellulosic biomaterials. Macromolecular,2005,223(1):41-56
    [184] G I Mantanis, R A Young, R M Rowell. Swelling of wood--Part II Swelling in organic liquids.Holzforschung,1994,48:480-490
    [185] G I Mantanis, R A Young, R M Rowell. Swelling of wood-Part III Effect of temperature andextractives on rate and maximum swelling. Holzforschung,1995,49:239-248
    [186] N Parameswaran, W Liese. On the fine structure of bamboo fibres, Wood Science and Technology.1976,10(4),231-246
    [187] S G Cristina, K Gunnar, J M Richard. Developmental changes in cell wall structure of phloem fibres ofthe bamboo dendrocalamus asper. Annals of Botany,2004,94(4):497-505
    [188] J S Andersen, M Mann. Organellar proteomics: turning inventories into insights, EMBO reports.2006,7,874-879
    [189] M Andresen, P Stenius. Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose,Journal of Dispersion Science and Technology.2007,28(6),837-844
    [190] P Zimmermann, M Hirsch-Hoffmann, L Hennigand, et al. Arabidopsis microarray database andanalysis toolbox, Plant Physiology.2004,136(1),2621-2632
    [191] K Iwamoto, M Bundo, K Yamada, et al. DNA methylation status of SOX10correlates with itsdownregulation and oligodendrocyte dysfunction in schizophrenia, The Journal of Neuroscience.2005,25(22),5376-5381
    [192] N Iwamoto, H Umeda, N Tominaga, et al. The first chemical enrichment in the Universe and theformation of hyper metal-poor stars, Science.2005,309(5733),451-453
    [193] S Abe. Support vector machines for pattern classification. Graduate School of Science and TechnologyKobe University, Kobe, Japan
    [194] T Zimmermann, E Poehler, T Geiger. Cellulose fibrils for polymer reinforcement. Abstracts of PapersAmerican Chemical Society,2005a,229:313-313
    [195] R Zimmermann, J G. Strauss, G. Haemmerle, et al. Fat Mobilization in adipose tissue is promoted byadipose triglyceride lipase, Science.2004,306(5700),1383-1386
    [196] H Leitner, J Peck, E S Sheppard. Contesting Neoliberalism. URBAN FRONTIERS, The GuilfordPress A Division of Guilford Publications, Inc.72Spring Street, New York, NY10012
    [197] H Leitner, B Miller. Scale and the limitations of ontological debate: a commentary on Marston, Jonesand Woodward. Transactions of the Institute of British Geographers,2007,32(1):116-125
    [198] Z Jiang, H Wang, X Liu, et al. Sensitivity of several selected mechanical properties of moso bamboo tomoisture content change under the fibre saturation point. BioResources.2012,7(4),5048-5058.
    [199] M Henriksson, G Henriksson, L A Berglund, T. Lindstr m. An environmentally friendly method forenzyme-assistedpreparation of microfibrillated cellulose (MFC) nanofibers, European Polymer Journal.2007,43,3434-3441
    [200] Y Qing, R Sabo, Z Cai, et al. Resin impregnation of cellulose nanofibril films facilitated by waterswelling. Cellulose,2013,20:303–313
    [201] K Piehl-Aulin, I Jones, B Lindvall, et al. Increased Serum Inflammatory Markers in the Absence ofClinical and Skeletal Muscle Inflammation in Patients with Chronic Obstructive Pulmonary Disease,Connecting the World of Biomedical Science.2009,78(2),191-196
    [202] A Pizzi, N J Eaton, M Bariska. Theoretical water sorption energies by conformational analysis, WoodScience and Technology.1987,21(3),235-248
    [203] C Aulin, M G llstedt, T Lindstr m. Oxygen and oil barrier properties of microfibrillated cellulosefilms and coatings, Cellulose.2010,17(3),559-574
    [204] A J Svagan, M A S A Samir, L A Berglund. Biomimetic Polysaccharide Nanocomposites of HighCellulose Content and High Toughness, Biomacromolecules.2007,8,2556-2563

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700