GFRP土钉的特性及加固机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土钉支护技术在岩体加固工程中应用广泛,土钉作为支护结构的核心应具有足够的安全度和耐久性。由于钢材易腐蚀,钢筋土钉的耐久性受到质疑。GFRP(玻璃纤维增强塑料,Glass Fiber Reinforced Polymer)筋材是一种由树脂和玻璃纤维复合而成的新型加固材料,具有较好的力学性能和耐腐蚀性能,用其替代传统钢筋用于边坡加固可以很好地解决土钉的永久性问题。
     目前,对于GFRP土钉的研究和应用相对较少,相关的试验数据与研究成果有限。本文研究设计了系列GFRP筋杆体拉伸试验、抗剪切试验、螺纹与螺母之间的承载力试验以及GFRP筋材与砂浆间的拉拔试验,评价了GFRP杆体的抗拉强度、弹性模量及抗剪切强度,结合修正的混合定律模型和引入的尺寸修正因子,建立了GFRP杆体的抗拉强度和弹性模量的预测公式;在拉拔试验的基础上,对GFRP筋材与砂浆的拉拔承载力、平均粘结强度随杆体直径的变化和砂浆强度等级的变化进行分析评价;并基于Mindlin位移解,推导了弹性状态内在荷载作用下锚固体的轴力分布函数和粘结界面应力分布函数,分析了锚固体加筋杆体轴力和粘结界面应力的分布形态;以围岩强化理论对GFRP土钉加固机理进行了理论分析,分别研究了土钉对锚固复合体轴向、横向弹性模量和泊松比,以及抗拉强度的影响变化规律。
     建立GFRP土钉锚固系统轴对称有限元模型,应用有限元软件ANSYS模拟了锚固体锚固界面应力的分布规律,并分析了在不同岩体的弹性模量和不同围压下,锚固界面应力的变化规律等。
     最后通过GFRP土钉在边坡工程中的应用实例,分析了GFRP土钉的工程经济性,监测了土钉的应力变化,评价了土钉和边坡的工作状况,实践证明GFRP土钉替代钢筋土钉用于边坡支护是可行的。
Soil nailing is a support technology widely used in slope engineering, tunnel and large cave support. As the main part of the support structure, the soil nail must have enough reliability. However, steel bar is easily eroded by environment, so the durability of commonly used steel soil nailing should be paid attention to. The glass fiber reinforced polymer(GFRP) rod, which has better mechanical properties and corrosion resistance is a new kind of reinforcement material compounded with resin and glass fiber. The durability problem in slope engineering can be solved if the GFRP soil nail takes the place of steel bars.
     However there is little research being done on GFRP soil nailing, and related experimental data and research results are very limited. In this dissertation, serials tests such as tensile strength and shear strength of GFRP rod, bearing capacity between thread and nut are conducted. The assessment of tensile strength, elastic modulus and shear strength on GFRP rod are made. By introducing a modified factor of dimension, combined with modified model of mixture, prediction formula of tensile strength and elastic modulus of GFRP rod are build respectively. Based on the results of pullout tests, the bond behavior of GFRP bolts, including bearing capacity, average bond strength with variation of rod diameter and strength grade of mortar were evaluated. Meanwhile, based on the Mindlin solution, the dissertation deduced the stress distribution functions of anchored rock mass under loadings, analyzed the distribution form of axial force of rod and stress of anchoring interface. Theoretical analysis about reinforcement mechanism of GFRP soil nailing is conducted with strength enhancement theory of surrounding rock. The variation regulation of parameters, including axial elastic modulus, transverse elastic modulus, axial poison ratio, transverse poison ratio and tensile strength of anchoring complex were studied respectively.
     This dissertation builds axisymmetric element model of GFRP soil nailing anchorage system. With the usage of Finite Element Method(FEM) software ANSYS, the shear stress distribution of the anchoring interface is simulated, and the variation regulations of stress distribution of anchored rock mass with different elastic modulus and different confining pressure are also simulated.
     Finally, with an application case of GFRP soil nailing used in a slope engineering, the engineering economics of GFRP soil nailing is analyzed compared with steel soil nailing. Stress variations of GFRP soil nails are monitored, and the working situation of both the soil nails and the slope are appraised. It is feasible that GFRP soil nail takes the place of steel soil nail to support slope.
引文
[1] Dunker K F, Rabbat B G. why American bridges are crumbling[J]. Scientific American, 1993, (3): 31-37.
    [2] 罗福午. 建筑结构缺陷事故的分析及防止[M].北京:清华大学出版社,1996.
    [3] 吕志涛. 高性能材料 FRP 应用与结构创新[J]. 建筑科学与工程学报 2005,22 (1):01-05.
    [4] ATSHHIKO M. J SCE Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials[S]. Tokyo: Research Committee on Continuous Fiber Reinforcing Materials,1997.
    [5] American Concrete Institute. Guide for the design and construction of concrete reinforced with FRP bars[S]. ACI Report 440.1R-0103, Farmington Hills, 2004.
    [6] Canadian Standards Association, CAN/CSA-S806-02. Design and construction of building components with fibre reinforced polymers[S]. Canadian Standards Association, Rexdale, Ontario, 2002.
    [7] Norwegian Standard NS 3473. Prosjektering av betongkonstruksjoner-Beregnings- og konstruksjonsregler[S], 1998.
    [8] Japanese Society of Civil Engineers (JSCE). Recommendations for design and construction of concrete structures using continuous fibre reinforced materials[S]. JSCE, Tokyo, Japan, 1997.
    [9] BISE, British Institution of Structural Engineers. Interim guidance on the design of reinforced structures using fibre composite reinforcement[M], Seto Ltd, August 1999.
    [10] Katz A, Berman N, Bank L C. Effect of cyclic loading and elevated temperature on the bond properties of FRP rebars[A]. Proceedings from the First International Conference on Durability of Fiber Reinforced Polymer Composites for Construction. Sherbrooke, 1998: 403-413.
    [11] Bank L C, Gentry T R, Accelerated test methods to determine the long-term behaviour of FRP composite structure: environmental effects[J]. Journal of Reinforced Plastic and Composites,1998,14:558-587.
    [12] Machida A. State-of-the-Art report on continuous fiber reinforcing materials[M]. Tokyo: Society of Civil Engineers(JSCE),1993.
    [13] Hayes M D,Garcia K,Verghese N,et a1. The effects of moisture on the fatigue behavior of a glass/vinylester composite[J]. Fiber Composite on Fiber Composites in Infrastructure ICCI’98. Tucson,1998,(1):1-13.
    [14]Ren é e Cusson, Yunping Xi. The behavior of fiber-reinforced polymer reinforcement in low temperature environmental climates[R]. Report No CDOT-DTD-R-2003-4, University of Colorado Boulder, USA.
    [15] Francesco Micelli, Antonio Nanni. Durability of FRP rods for concrete structures[J]. Construction and BuildingMaterials, 2004, 18:491-503.
    [16] Fares ETannous, Sadatmanesh H. Durability of AR glass fiber reinforced plastic bars[J]. Composite Construction, 1999, 3 (1):12-19.
    [17] S. H. A lsayed and others. Fiber-reinforced polymer repair materials—some facts[J]. Civil Engineering, 2000, (8):131-134.
    [18] Brahim Tighiouart, Brahim Benmokrane, Phalguni Mukhopadhyaya.Bond strength of glass FRP rebar splices in beams under static loading[J]. Construction and Building Materials 1999,(13): 383-392.
    [19] S. Kocaoza, V.A. Samaranayakeb, A. Nanni Tensile characterization of glass FRP bars[J]. Composites: Part B 2005(36):127–134.
    [20] Malvar LJ. Bond stress-slip characteristics of FRP rebars[C]. Report TR-2013-SHR, Naval facilities Engineering Service Center, Port Hueneme, California, 1994.
    [21] Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete[J]. Comp Construct 1997, (1): 40-48.
    [22] 张新越,欧进萍,王勃等.不同种类GFRP筋的力学性能试验比较[J].玻璃钢/复合材料.2005,2:9,25.
    [23] 晏石林,张炎,王伟等.GFRP筋加强混凝土的粘结性能研究[J].武汉理工大学学报.2004,26(7):34-37.
    [24] 李文晓,戴瑛,贺鹏飞等.混凝土结构用纤维增强塑料筋的力学性能Ⅰ实验研究[J].玻璃钢/复合材料.2002,3:12-15.
    [25] 茅卫兵,章定国.钢筋新型代用材料FRP筋粘结锚固性能试验研究[J].河海大学学报.2000,28(5):44-48.
    [26] 孟履祥,徐福泉,关建光等.碳纤维筋(CFRP筋)松弛损失试验研究[J].施工技术.2005,34(7):40-41.
    [27] 贾新,袁勇,李焯芬.新型纤维增强塑料砂浆锚杆的粘结性能试验研究[J].岩石力学与工程学报.2006,25(10):2108-2114.
    [28] 吕海宝.玻璃钢在海洋环境下的腐蚀性能和机制演变规律[D].哈尔滨工业大学硕士学位论文.2006.6.
    [29] 朱海棠,谢晶晶,高丹盈. 纤维增强塑料筋锚杆锚固性能的数值分析[J].郑州大学学报(工学版).2004,25(1):06-10.
    [30] Kader Laoubi, Ehab El-Salakawy, Brahim Benmokrane. Creep and durability of sand-coated glass FRP bars in concrete elements under freeze/thaw cycling and sustained loads[J]. Cement & Concrete Composites 2006 (28):869–878.
    [31] CSA S806-02. In: Test method for tensile properties of FRP reinforcement. Canadian Standard Association[S]; 2002.
    [32] 张立群,金日光,耿海萍,等.短纤维橡胶复合材料强度的理论研究I纵向拉伸强度的理论预测[J]. 复合材料学报,1998,15(4):89-96.
    [33] Brahim Benmokrane, Haixue Xu and Eric Bellavance. Bond Strength of Cement Grouted Glass Fibre Reinforced Plastic (GFRP) Anchor Bolts[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics abstracts.1996, 33(5): 455-465.
    [34] Bakis C. E. FRP reinforcement: Materials and manufacturing.In Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications (Edited by Nanni A) [J],pp. 13-58. Developments in Civil Engineering 42, Elsevier, New York, 1993.
    [35] Mittleman A, Roman I. Tensile properties of real unidirectional Kevlar/epoxy composites[J]. Composites. 1990,21(1): 63-69.
    [36] karam G N. Effect of fibre volume on tensile properties of real unidirectional fibre-reinforced composites[J]. Composites. 1991,22(2): 84-88.
    [37] Young-Jun You, Young-Hwan Park,Hyeong-Yeol Kim,Ji-Sun Park.Hybrid effect on tensile properties of FRP rods with various material compositions[J]. Composite Structures, 2007, 80: 117-122.
    [38] GB/T13096.3-91.拉挤玻璃纤维增强塑料杆力学性能试验方法[S].中国标准出版社,北京,1992.
    [39] 周长东,吕西林,金叶.火灾高温下玻璃纤维筋的力学性能研究[J].建筑科学与工程学报,2006,23(1):23-28.
    [40] Francesca Ceroni, Edoardo Cosenza, Manfredi Gaetano, Marisa Pecce. Durability issues of FRP rebars in reinforced concrete members[J]. Cement & Concrete Composites,2006,28: 857–868.
    [41] 朱浮生,张海霞.影响FRP筋与混凝土黏结性能的主要因素[J].沈阳建筑大学学报(自然科学版),2006,22(3):397-401.
    [42] 尤春安.全长粘结式锚杆受力分析[J].岩石力学与工程学报,2000,19(3):339-341.
    [43] 贺若兰,张 平,李 宁,等.拉拔工况下全长粘结锚杆工作机理[J].中南大学学报,2006.37(2):401-407.
    [44] 周红安,王 钊.灌浆玻璃钢锚杆拉拔受力分析[J].长江科学院院报, 2003, 20(5):31-34.
    [45] 卡姆克 E 常微分方程手册[M].北京:科学出版社,1977.
    [46] 黄生文,邱贤辉,何唯平,刘廷望.FRP土钉主要性能的试验研究[J].土木工程学报,2007,40(8):74-78.
    [47] 李黎明编著.ANSYS有限元分析实用教程 [M]. 北京:清华大学出版社. 2005.1.
    [48] 孙玉宁,周鸿超,宋维宾. 端锚可回收锚杆锚固段力学特征研究[J].岩土力学与工程学报,2006, 25(supp):3014-3021.
    [49] 侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [50] 马国彦, 常振华. 岩体灌浆排水锚固理论与实践[M]. 中国水利水电出版社, 2003.
    [51] 张乐文,汪 稔. 岩土锚固理论研究之现状[J].岩土力学,2002,23(5):627-631.
    [52] 王拉才.岩土锚固机理及其应用[D].中科院武汉岩土力学研究所博士论文,1995.
    [53] 谭云亮,王春秋,顾士坦.锚杆加固巷道顶板稳定性潜力机理分析[J].岩石力学与工程学报.2003, 22(S1): 2210-2213.
    [54] 朱浮声,郑雨天 .全长粘结式锚杆的加固作用分析 [J].岩石力学与工程学报.1996,15(4):333-337.
    [55] 朱维申,何满朝.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996.
    [56] 侯朝炯,郭厉生,勾攀峰.煤巷锚杆支护[M].江苏徐州:中国矿业大学出版社,1999.
    [57] 贾新.玻璃纤维增强塑料锚杆锚固机理研究[D].同济大学硕士论文,2005.
    [58] Katz A. Bond mechanism of FRP rebars to concrete[J]. Material& Structure 1999; 32:761-768.
    [59] Al-Zahrani Mesfer M., A1-Dulaijan Salah U., Nanni Antonio, Bakis Charles E.&Boothby Thomas E., Evaluation of bond using FRP rods with axisymmetric deformations[J]. Construction and Building Materials, 1999, 13(6):299-309.
    [60] 刘克龙,姚卫星.复合材料的安全系数统计分析[J].南京航空航天大学学报,2004,36(1): 22~28.
    [61] Burong Zhang, Brahim Benmokrane. Tensile Behavior of FRP Tendons for Prestressed Ground Anchors[J]. Journal of Composites for Construction, 2001,5(2): 85~93.
    [62] Brahim Benrnokrane, Burong Zhang. Evaluation of Aramid and Carbon Fibre Reinforced Polymer Composite Tendons for Prestressed Ground Anchors. Can[J].Civ.Eng.,2000, 27:1031 ~1045.
    [63] 水利部. SL264-2001 水利水电工程岩石试验规程[S]. 北京:中国水利水电出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700