蒽类光敏染料的合成及在太阳能电池中的应用与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光敏染料是染料敏化太阳能电池(DSSC)中的一个关键组成部分,在太阳光的照射下将被激发的电子注入Ti02导带中,与此同时,还原态的电解质(13-/I-)将氧化态的染料分子还原成基态。由于纯有机敏化太阳能电池较低的制作成本,与传统的金属化合物敏化电池相比,纯有机染料敏化太阳能电池有了广泛的研究和长足的发展。
     本文共设计并合成了9个芳胺类纯有机敏化染料,包括7个蒽类染料和两个三苯胺类染料。并利用1HNMR和13CNMR谱对这些化合物进行了结构表征。同时,对这9个光敏染料进行了光物理性质,电化学性质,密度泛函理论计算和光伏性能的各项测试和研究。
     敏化染料的光物理性质和其结构有着紧密的联系。实验表明,染料分子的共轭性会显著的影响其光物理性质,空间位阻越大,体系的共轭性就越差,阻碍了电子在染料分子中的传递,使染料的吸收光谱蓝移,吸收太阳光的能力下降。在作为桥键的噻吩环上引入取代基可以调节染料的吸收光谱,吸电子基的引入能使染料的吸收光谱发生红移。实验设计和合成的所有敏化染料的HOMO轨道能级都能保证染料的重生,LUMO轨道能级都能使电子有效的注入半导体导带。染料HOMO和LUMO能级值受到染料分子结构变化的影响。并三噻吩做为桥键时,敏化染料的HOMO能级值有所升高,使其与电解液中I3-/I-电对之间的电位差变小,最终导致了染料还原再生的驱动力的降低。
     敏化染料的结构变化对电池的光伏性质也会产生重要的影响。通过对不同电子给体蒽类和三苯胺类染料的研究表明,电子给体是非平面结构的光敏染料在不含分子聚集抑制剂的情况下,能够有效阻止其在二氧化钛表面的H聚集,并获得较高的光电转换效率。
Photosensitizer is the key component for the dye sensitized solar cells (DSSCs), which leading excited state electrons injection into the conduction band of the TiO2under the irradiation of sunlight. At the same time, the dye is quickly regenerated by the electrolyte(l3-/I-). In order to reduce the cost of the dye sensitized solar cells, the organic sensitizers have developed rapidly in recent years compared with the noble metal complex sensitizers.
     In this thesis, nine aromatic organic dyes have been designed and synthesized as the sensitizers for the dye sensitized solar cells, which containing seven heteroan thracene sensitizers and two triphenylamine sensitizers. The structures of the dyes have been characterized by1HNMR and13CNMR technology. At the same time, we study the electrochemical and photophysical properties of the DSSCs.
     The photophysical properties of sensitizers is closely linked to its structure. The experiments show that the photophysical properties of sensitizers is significantly affected by its conjugacy. The more steric hindrance, the worse its conjugacy, which impedes transfer of electrons in the dye molecule and lead to the decrease of the ability to absorbing sunlight. For the dyes, the introduction of electron-withdrawing units to π-conjugation spacer can achieve red-shifted of absorption spectra. LUMO and HOMO levels of sensitizers match well with the I3-/I-and the TiO2conduction band respectively. The structure of sensitizers have a crucial effect on the HOMO and LUMO level of the dyes. Introduction of DTT unit as π-conjugation spacer moieties will increased value of the HOMO level, so that the electrolyte I3-/I-electrical potential difference between a pair of smaller, which resulting in reduction the driving force regeneration of the dyes.
     The structure of sensitizers have a important effect on the photovoltaic properties of the dyes. The study of various electron donor on triphenyl amine and anthracene show that The electron donor is non-planar configuration of the photosensitive dye can effectively prevent the surface of the titanium dioxide H-aggregation and obtain a higher photoelectric conversion efficiency in the absence of the molecule aggregation inhibitor.
引文
[1]Seddon K.R. Ionic liquids for clean technology [J]. Journal of Chemical Technology and Biotechnology,1997,68(4):351-356
    [2]Wilkes J.S., Zaworotko M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids [J]. J Chem Soc, Chem Commun,1992,13):965-967
    [3]Niu J., Zhou H., Li Z., et al. An Efficient Ullmann-Type C- O Bond Formation Catalyzed by an Air-Stable Copper (I)- Bipyridyl Complex [J]. The Journal of Organic Chemistry,2008, 73(19):7814-7817
    [4]Ooyama Y., Harima Y. Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells [J]. European Journal of Organic Chemistry,2009,2009(18):2903-2934
    [5]Ardo S., Meyer G.J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces [J]. Chemical Society Reviews,2009, 38(1):115-164
    [6]Haque S.A., Handa S., Peter K., et al. Supermolecular Control of Charge Transfer in Dye-Sensitized Nanocrystalline TiO2 Films:Towards a Quantitative Structure-Function Relationship [J]. Angewandte Chemie International Edition,2005,44(35):5740-5744
    [7]Klein C, Nazeeruddin M.K., Liska P., et al. Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity [J]. Inorganic chemistry,2005,44(2):178-180
    [8]Nazeeruddin M.K., De Angelis F., Fantacci S., et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers [J]. Journal of the American Chemical Society,2005,127(48):16835-16847
    [9]Nazeeruddin M.K., Klein C., Liska P., et al. Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells [J]. Coordination chemistry reviews,2005,249(13): 1460-1467
    [10]Schmidt-Mende L., Kroeze J.E., Durrant J.R., et al. Effect of hydrocarbon chain length of amphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics [J]. Nano letters, 2005,5(7):1315-1320
    [11]Wang P., Klein C., Humphry-Baker R., et al. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells [J]. Journal of the American Chemical Society,2005,127(3): 808-809
    [12]Mazille F., Fei Z., Kuang D., et al. Influence of ionic liquids bearing functional groups in dye-sensitized solar cells [J]. Inorganic chemistry,2006,45(4):1585-1590
    [13]Nazeeruddin M.K., Wang Q., Cevey L., et al. DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications [J]. Inorganic chemistry,2006,45(2):787-797
    [14]Kuang D., Klein C., Snaith H.J., et al. Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells:influence of lithium ions on the photovoltaic performance of liquid and solid-state cells [J]. Nano letters,2006,6(4):769-773
    [15]Jang S.-R., Lee C., Choi H., et al. Oligophenylenevinylene-functionalized Ru (Ⅱ)-bipyridine sensitizers for efficient dye-sensitized nanocrystalline TiO2 solar cells [J]. Chemistry of materials,2006,18(23):5604-5608
    [16]Barolo C., Nazeeruddin M.K., Fantacci S., et al. Synthesis, characterization, and DFT-TDDFT computational study of a ruthenium complex containing a functionalized tetradentate ligand [J]. Inorganic chemistry,2006,45(12):4642-4653
    [17]Chen C.Y., Wu S.J., Wu C.G., et al. A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells [J]. Angewandte Chemie,2006,118(35):5954-5957
    [18]Chen C.Y., Lu H.C., Wu C.G., et al. New Ruthenium Complexes Containing Oligoalkylthiophene-Substituted 1,10-Phenanthroline for Nanocrystalline Dye-Sensitized Solar Cells [J]. Advanced functional materials,2007,17(1):29-36
    [19]Gao F., Wang Y., Shi D., et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells [J]. Journal of the American Chemical Society,2008,130(32): 10720-10728
    [20]Wild A., Winter A., Schlutter F., et al. Advances in the field of π-conjugated 2,2':6',2 "-terpyridines [J]. Chemical Society Reviews,2011,40(3):1459-1511
    [21]Anderson S., Constable E.C., Dare-Edwards M.P., et al. Chemical modification of a titanium (Ⅳ) oxide electrode to give stable dye sensitisation without a supersensitiser [J].1979
    [22]Desilvestro J., Graetzel M., Kavan L., et al. Highly efficient sensitization of titanium dioxide [J]. Journal of the American Chemical Society,1985,107(10):2988-2990
    [23]Amadelli R., Argazzi R., Bignozzi C., et al. Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru (bpy) 2 (CN) 2] 2Ru (bpy (COO) 2) 22 [J]. Journal of the American Chemical Society,1990,112(20):7099-7103
    [24]Coe B.J., Meyer T.J., White P.S. Cyano-Bridged Complexes of trans-Tetrakis (pyridine) ruthenium (Ⅱ) [J]. Inorganic chemistry,1995,34(14):3600-3609
    [25]O'regan B., Grfitzeli M. A low-cost, high-efficiency solar cell based on dye-sensitized [J]. nature,1991,353
    [26]Nazeeruddin M.K., Pechy P., Gratzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex [J]. Chemical Communications,1997,18):1705-1706
    [27]Nazeeruddin M.K., Zakeeruddin S., Humphry-Baker R., et al. Acid-base equilibria of (2, 2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (Ⅱ) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania [J]. Inorganic chemistry,1999, 38(26):6298-6305
    [28]Dai Q., Rabani J. Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium [J]. New journal of chemistry,2002,26(4): 421-426
    [29]Reynal A., Palomares E. Ruthenium Polypyridyl Sensitisers in Dye Solar Cells Based on Mesoporous TiO2 [J]. European Journal of Inorganic Chemistry,2011,2011(29):4509-4526
    [30]Xie P., Guo F. Molecular Design of Ruthenium Complexes for Dye-Sensitized Solar Cells Based on Nanocrystalline TiO2 [J]. Current Organic Chemistry,2011,15(22):3849-3869
    [31]Hara K., Sugihara H., Tachibana Y., et al. Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium (Ⅱ) phenanthroline complex photosensitizers [J]. Langmuir,2001,17(19): 5992-5999
    [32]Robson K.C., Koivisto B.D., Gordon T.J., et al. Triphenylamine-Modified Ruthenium (Ⅱ) Terpyridine Complexes:Enhancement of Light Absorption by Conjugated Bridging Motifs [J]. Inorganic chemistry,2010,49(12):5335-5337
    [33]Reynal A., Forneli A., Martinez-Ferrero E., et al. A Phenanthroline Heteroleptic Ruthenium Complex and Its Application to Dye-Sensitised Solar Cells [J]. European Journal of Inorganic Chemistry,2008,2008(12):1955-1958
    [34]Fan S.H., Wang K.Z., Yang W.C. A Carbazole-Containing Difunctional Rull Complex That Functions as a pH-Induced Emission Switch and an Efficient Sensitizer for Solar Cells [J]. European Journal of Inorganic Chemistry,2009,2009(4):508-518
    [35]Gao F., Wang Y., Zhang J., et al. A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell [J]. Chemical Communications,2008,23):2635-2637
    [36]Luque A., Marti A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels [J]. Physical Review Letters,1997,78(26):5014-5017
    [37]Imahori H., Kang S., Hayashi H., et al. Photoinduced Charge Carrier Dynamics of Zn-Porphyrin-TiO2 Electrodes:The Key Role of Charge Recombination for Solar Cell Performance [J]. The Journal of Physical Chemistry A,2010,115(16):3679-3690
    [38]Chen B.-S., Chen K., Hong Y.-H., et al. Neutral, panchromatic Ru (ii) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance [J]. Chemical Communications,2009,39):5844-5846
    [39]Jin Z., Masuda H., Yamanaka N., et al. Triarylamine-Functionalized Ruthenium Dyes for Efficient Dye-Sensitized Solar Cells [J]. ChemSusChem,2008,1(11):901-904
    [40]Jin Z., Masuda H., Yamanaka N., et al. Efficient electron transfer ruthenium sensitizers for dye-sensitized solar cells [J]. The Journal of Physical Chemistry C,2009,113(6):2618-2623
    [41]Jin Z., Masuda H., Yamanaka N., et al. A Highly Efficient Dye-sensitized Solar Cell Based on a Triarylamine-functionalized Ruthenium Dye [J]. Chemistry Letters,2009,38(1):44-45
    [42]Bessho T., Yoneda E., Yum J.-H., et al. New paradigm in molecular engineering of sensitizers for solar cell applications [J]. Journal of the American Chemical Society,2009,131(16): 5930-5934
    [43]Kuciauskas D., Monat J.E., Villahermosa R., et al. Transient absorption spectroscopy of ruthenium and osmium polypyridyl complexes adsorbed onto nanocrystalline TiO2 photoelectrodes [J]. The Journal of Physical Chemistry B,2002,106(36):9347-9358
    [44]Sauve G., Cass M.E., Coia G., et al. Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes [J]. The Journal of Physical Chemistry B, 2000,104(29):6821-6836
    [45]Sauve G., Cass M.E., Doig S.J., et al. High Quantum Yield Sensitization of Nanocrystalline Titanium Dioxide Photoelectrodes with cis-Dicyanobis (4,4'-dicarboxy-2,2'-bipyridine) osmium (Ⅱ) or Tris (4,4'-dicarboxy-2,2'-bipyridine) osmium (Ⅱ) Complexes [J]. The Journal of Physical Chemistry B,2000,104(15):3488-3491
    [46]Altobello S., Argazzi R., Caramori S., et al. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes [J]. Journal of the American Chemical Society,2005,127(44):15342-15343
    [47]Monat J.E., Rodriguez J.H., Mccusker J.K. Ground-and excited-state electronic structures of the solar cell sensitizer bis (4,4'-dicarboxylato-2,2'-bipyridine) bis (isothiocyanato) ruthenium (Ⅱ) [J]. The Journal of Physical Chemistry A,2002,106(32):7399-7406
    [48]Ferrere S. New photosensitizers based upon [Fe (L) 2 (CN) 2] and [Fe (L) 3](L= substituted 2, 2'-bipyridine):Yields for the photosensitization of TiO2 and effects on the band selectivity [J]. Chemistry of materials,2000,12(4):1083-1089
    [49]Geary E.A., Yellowlees L.J., Jack L.A., et al. Synthesis, structure, and properties of [Pt (II)(diimine)(dithiolate)] dyes with 3,3'-,4,4'-, and 5,5'-disubstituted bipyridyl:Applications in dye-sensitized solar cells [J]. Inorganic chemistry,2005,44(2):242-250
    [50]Islam A., Sugihara H., Hara K., et al. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum (Ⅱ) diimine dithiolate complexes [J]. Inorganic chemistry,2001, 40(21):5371-5380
    [51]Geary E.A., Mccall K.L., Turner A., et al. Spectroscopic, electrochemical and computational study of Pt-diimine-dithiolene complexes:rationalising the properties of solar cell dyes [J]. Dalton Transactions,2008,28):3701-3708
    [52]Dubois L.H., Nuzzo R.G. Synthesis, structure, and properties of model organic surfaces [J]. Annual review of physical chemistry,1992,43(1):437-463
    [53]Alonso-Vante N., Nierengarten J.-F., Sauvage J.-P. Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis (1,10-phenanthroline) copper (I) complex [J]. Journal of the Chemical Society, Dalton Transactions,1994,11):1649-1654
    [54]Sakaki S., Kuroki T., Hamada T. Synthesis of a new copper (I) complex,[Cu (tmdcbpy) 2](tmdcbpy= 4,4',6,6'-tetramethyl-2,2'-bipyridine-5,5'-dicarboxylic acid), and its application to solar cells [J]. Journal of the Chemical Society, Dalton Transactions,2002,6): 840-842
    [55]Bessho T., Constable E.C., Graetzel M., et al. An element of surprise—efficient copper-functionalized dye-sensitized solar cells [J]. Chemical Communications,2008,32): 3717-3719
    [56]Alebbi M., Bignozzi C.A., Heimer T.A., et al. The limiting role of iodide oxidation in cis-Os (dcb) 2 (CN) 2/TiO2 photoelectrochemical cells [J]. The Journal of Physical Chemistry B, 1998,102(39):7577-7581
    [57]Polo A.S., Itokazu M.K., Murakami Iha N.Y. Metal complex sensitizers in dye-sensitized solar cells [J]. Coordination chemistry reviews,2004,248(13):1343-1361
    [58]Cherian S., Wamser C.C. Adsorption and Photoactivity of Tetra (4-carboxyphenyl) porphyrin (TCPP) on Nanoparticulate TiO2 [J]. The Journal of Physical Chemistry B,2000,104(15): 3624-3629
    [59]Fungo F., Otero L., Durantini E.N., et al. Photosensitization of thin SnO2 nanocrystalline semiconductor film electrodes with metallodiporphyrin [J]. The Journal of Physical Chemistry B,2000,104(32):7644-7651
    [60]Fungo F., Otero L.A., Sereno L., et al. Synthesis of porphyrin dyads with potential use in solar energy conversion [J]. J Mater Chem,2000,10(3):645-650
    [61]Tachibana Y., Haque S.A., Mercer I.P., et al. Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films:a comparison of ruthenium bipyridyl and porphyrin sensitizer dyes [J]. The Journal of Physical Chemistry B,2000,104(6):1198-1205
    [62]Kay A., Graetzel M. Artificial photosynthesis.1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins [J]. The Journal of Physical Chemistry, 1993,97(23):6272-6277
    [63]Giribabu L., Kumar C.V., Reddy P.Y. Porphyrin-rhodanine dyads for dye sensitized solar cells [J]. Journal of Porphyrins and Phthalocyanines,2006,10(08):1007-1016
    [64]Forneli A., Planells M., Sarmentero M.A., et al. The role of para-alkyl substituents on meso-phenyl porphyrin sensitised TiO2 solar cells:control of the eTiO2/electrolyte+ recombination reaction [J]. Journal of Materials Chemistry,2008,18(14):1652-1658
    [65]Nazeeruddin M.K., Humphry-Baker R., Gratzel M., et al. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines [J]. Chemical Communications, 1998,6):719-720
    [66]Nazeeruddin M.K., Humphry-Baker R., Gratzel M., et al. Efficient near-IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines [J]. Journal of Porphyrins and Phthalocyanines,1999,3(03):230-237
    [67]Aranyos V., Hjelm J., Hagfeldt A., et al. Free-base tetra-arylphthalocyanines for dye-sensitised nanostructured solar cell applications [J]. Journal of Porphyrins and Phthalocyanines,2001,5(08):609-616
    [68]He J., Hagfeldt A., Lindquist S.-E., et al. Phthalocyanine-sensitized nanostructured TiO2 electrodes prepared by a novel anchoring method [J]. Langmuir,2001,17(9):2743-2747
    [69]He J., Benko G, Korodi F., et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode [J]. Journal of the American Chemical Society,2002, 124(17):4922-4932
    [70]Palomares E., Martinez-Diaz M.V., Haque S.A., et al. State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2 films [J]. Chemical Communications,2004,18):2112-2113
    [71]Morandeira A., Lopez-Duarte I., Martinez-Diaz M.V., et al. Slow electron injection on Ru-phthalocyanine sensitized TiO2 [J]. Journal of the American Chemical Society,2007, 129(30):9250-9251
    [72]Hara K., Sayama K., Ohga Y., et al. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%[J]. Chemical Communications,2001,6):569-570
    [73]Rehm J.M., Mclendon GL., Nagasawa Y., et al. Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface [J]. The Journal of Physical Chemistry,1996, 100(23):9577-9578
    [74]Horiuchi T., Miura H., Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells [J]. Chemical Communications,2003,24):3036-3037
    [75]Horiuchi T., Miura H., Sumioka K., et al. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes [J]. Journal of the American Chemical Society,2004,126(39): 12218-12219
    [76]Schmidt-Mende L., Bach U., Humphry-Baker R., et al. Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells [J]. Advanced Materials,2005,17(7):813-815
    [77]Dentani T., Kubota Y., Funabiki K., et al. Novel thiophene-conjugated indoline dyes for zinc oxide solar cells [J]. New journal of chemistry,2009,33(1):93-101
    [78]Chen R., Zhao G., Yang X., et al. Photoinduced intramolecular charge-transfer state in thiophene-π-conjugated donor-acceptor molecules [J]. Journal of Molecular Structure,2008, 876(1):102-109
    [79]Kitamura T., Ikeda M., Shigaki K., et al. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells [J]. Chemistry of materials,2004,16(9):1806-1812
    [80]Thomas K.J., Lin J.T., Hsu Y.-C., et al. Organic dyes containing thienylfluorene conjugation for solar cells [J]. Chemical Communications,2005,32):4098-4100
    [81]Velusamy M., Justin Thomas K., Lin J.T., et al. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells [J]. Organic Letters,2005,7(10):1899-1902
    [82]Justin Thomas K., Hsu Y.-C., Lin J.T., et al.2,3-Disubstituted thiophene-based organic dyes for solar cells [J]. Chemistry of materials,2008,20(5):1830-1840
    [83]Lin J.T., Chen P.-C., Yen Y.-S., et al. Organic dyes containing furan moiety for high-performance dye-sensitized solar cells [J]. Organic Letters,2008,11(1):97-100
    [84]Casanova D. The Role of the π Linker in Donor-π-Acceptor Organic Dyes for High-Performance Sensitized Solar Cells [J]. ChemPhysChem,2011,12(16):2979-2988
    [85]Xu W., Pei J., Shi J., et al. Influence of acceptor moiety in triphenylamine-based dyes on the properties of dye-sensitized solar cells [J]. Journal of Power Sources,2008,183(2):792-798
    [86]Xu W.s Peng B., Chen J., et al. New triphenylamine-based dyes for dye-sensitized solar cells [J]. The Journal of Physical Chemistry C,2008,112(3):874-880
    [87]Li G, Jiang K.-J., Li Y.-F., et al. Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells [J]. The Journal of Physical Chemistry C,2008, 112(30):11591-11599
    [88]Kim D., Lee J.K., Kang S.O., et al. Molecular engineering of organic dyes containing -aryl carbazole moiety for solar cell [J]. Tetrahedron,2007,63(9):1913-1922
    [89]Sayama K., Tsukagoshi S., Hara K., et al. Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film [J]. The Journal of Physical Chemistry B,2002,106(6):1363-1371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700