番荔枝内酯类化合物的分离、构效关系及毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番荔枝内酯类化合物(Annonaceous acetogenins, ACGs)是从番荔枝科植物中分离得到的一类有很强抗肿瘤活性的天然产物,是目前国际天然产物化学家研究的热点之一。该类化合物抗肿瘤的构效关系尚不十分清楚,无毒性-活性相关性、体内的药代动力学研究。
     目的:从番荔枝子中分离番荔枝内酯类化合物,研究其抗肿瘤作用的构效关系、体内药代动力学过程、毒性-活性相关性及分子作用机制。
     方法:1、用95%乙醇提取及液液萃取法富集番荔枝子中番荔枝内酯部位;采用柱层析、制备液相等技术对该部位进行分离纯化;采用质谱、各种色谱光谱技术对分离得到的单体化合物进行理化性质测定及结构鉴定,并运用Mosher法对分离得到的新化合物绝对构型进行测定;对洗脱得到的脂肪油部位进行甲酯化后处理后,采用GC分析与混合对照品对照,分析其主要成分及相对含量。
     2、对分离得到的番荔枝内酯类化合物进行结构分类,采用MTT法测试该类化合物对不同种人肿瘤细胞增殖的抑制作用,并结合化合物的结构类型分析其抗肿瘤作用的构效关系。
     3、采用健康鼠进行不同结构类型番荔枝内酯类化合物的毒性试验,以及采用实体瘤小鼠模型,观察不同结构类型番荔枝内酯类化合物的抗肿瘤药效,分析体内毒性-药效相关性。
     4、静脉给予大鼠番荔枝内酯单体三周,通过对大鼠脏器光镜及电镜检查,细胞中线粒体复合物Ⅰ活力、钙离子和ROS荧光强度、ATP含量、Bax、Bcl-2及case-3蛋白表达、线粒体DNA损伤、线粒体ND1、ND2基因及蛋白表达等指标检测来分析番荔枝内酯对大鼠的毒性及分子机制。
     5、采用液-液萃取法对番荔枝内酯类化合物血浆样品进行处理,并采用HPLC-MS技术分析静脉给予番荔枝内酯单体bullatacin在大鼠体内的药代动力学过程。
     结果:1、采用IR、UV、MS、NMR等技术鉴定了从番荔枝子中分离的30个化合物,其中22个为番荔枝内酯类化合物(12个新化合物),采用Mosher法鉴定了新化合物的立体构型。GC分析脂肪油主要成分为脂肪酸(80.9%),其中不饱和脂肪酸的含量达到51.1%。
     2、分离得到的番荔枝内酯类成分分为三类:单四氢呋喃型、邻双氢呋喃型和间双四氢呋喃型。MTT实验结果显示不同结构类型番荔枝内酯类化合物均有很强的肿瘤细胞抑制活性。构效关系分析表明了在单四氢呋喃型和邻双四氢呋喃型番荔枝内酯类化合物中,四氢呋喃环离末端内酯环越近活性越好;在邻双四氢呋喃型和间双四氢呋喃型番荔枝内酯类化合物中,三羟基取代的总碳数为37,分子量为622的活性最强;在邻双四氢呋喃型和间双四氢呋喃型番荔枝内酯类化合物中,4-OH取代位置与活性强弱并无一定的关系。
     3、三种不同结构类型的番荔枝内酯小鼠体内毒性-药效相关性研究表明邻双四氢呋喃型番荔枝内酯在小鼠体内有较好的抗肿瘤活性,但也表现出比单四氢呋喃和间双四氢呋喃型番荔枝内酯更高的毒性。
     4、静脉给予大鼠番荔枝内酯单体bullatacin后,300μg/kg剂量组大鼠血液生化指标ALT、AST、BUN和CR活性与空白对照组比较均上升;300μg/kg剂量组大鼠肝及肾组织光镜及电镜下检测发现组织细胞及线粒体出现病变;与空白对照组比较,各组大鼠各脏器线粒体复合物Ⅰ活性均有所下降,呈一定的剂量依赖性,肝和肾组织细胞内钙离子和ROS浓度比对照组升高;300μg/kg剂量组大鼠心、肝和肾脏器组织中的ATP含量与空白对照组相比降低;300μg/kg剂量组大鼠肝和肾脏器组织中的Bax蛋白表达、Bax/Bcl-2及case-3蛋白表达升高;各组大鼠肝和肾组织线粒体DNA提取物PCR扩增产物样本进行琼脂糖凝胶电泳后可见4.7Kb片断,均扩增出大小为0.86Kb条带,肾组织样本还扩增出另一个大小约1.5Kb的条带;与空白对照组比较,各组大鼠肝肾组织中ND1、ND2基因表达均有升高趋势,肝组织中ND1、ND2蛋白表达降低,肾组织中ND1、ND2蛋白表达升高。
     5、运用液-液萃取建立了Bullatacin血清样品的制备方法,HPLC-MS技术建立的血清样品含量测定方法的特异性、精密度、回收率和稳定性都达到要求,并应用于研究静脉给予番荔枝内酯在大鼠体内的药代动力学过程。
     结论:从番荔枝子中分离得到22个番荔枝内酯类成分,结构分为三类:单四氢呋喃型、邻双氢呋喃型和间双四氢呋喃型,其中12个为新化合物。四氢呋喃环及其相邻的取代羟基位置、取代羟基个数及羟基位置不同对其体外抗肿瘤活性有一定的影响。与其它两类番荔枝内酯类化合物相比,邻双四氢呋喃番荔枝内酯在小鼠体内有较好的抗肿瘤活性,但也表现出较高的毒性。300μg/kg剂量bullatacin连续给予大鼠三周对大鼠表现出一定的毒性,与空白对照组比较,bullatacin可引起大鼠血液生化指标上升、肝和肾脏器病理学改变,作用分子机制为其可引大鼠组织细胞中线粒体复合物Ⅰ活力降低及ATP含量下降、钙离子和ROS浓度上升、Bax蛋白表达、Bax/Bcl-2及case-3蛋白表达升高有关,其还可引起大鼠肝肾组织线粒体DNA损伤,对线粒体ND1及ND2基因和蛋白表达有一定的影响。液-液萃取和HPLC-MS技术可用于Bullatacin血清样品的制备及其在大鼠体内的药代动力学研究血样样品的含量测定。
ACGs (Annonaceous acetogenins) isolated from the plants in Annonaceae have strong anti-tumor activity and are the hot interest of the international natural products chemists. However, The antitumor structure-activity relationship of these compounds is obscure, and the in vivo pharmacokinetics and toxicity-activity relationship study have not yet been reported.
     Objective:To isolate ACGs from Annona squamosa seeds and to investigate the structure-activity relationship of their anti-tumor effects, the in vivo pharmacokinetics, toxicity-activity relationship, and the molecular mechanism of action.
     Methods:
     1. Enrich the ACGs parts with95%ethanol extraction and liquid-liquid extraction. This part was isolated and purified by column chromatography and preparative liquid technologies. Using mass spectrometry, a variety of chromatographic spectroscopy was performed to determinate the physical and chemical properties and structures of the isolated compounds. The absolute configuration of isolated new compounds was also determined by the Mosher method. After methyl esterification of fatty oils part, the GC was used to analyze the composition and content with mixed reference substance.
     2. The isolated ACGs were structurally classified. MTT assay was used to test the inhibitory effect of these compounds against different kinds of human tumor cells. The structure-activity relationship of the anti-tumor effects based on the structures of the compound type was analyzed.
     3.Healthy mice and solid tumor mouse model were used to observe the toxicity and anti-tumor activity of different structure types of ACGs, respectively, for analysis of the toxicity-activity relationship in vivo.
     4. Rats were given bullatacin three weeks by tail vein intravenous. The heart, liver and kidney tissues of rat were observed using light microscopy and electron microscopy to analyze the toxicity of bullatacin in rats. The mitochondrial complex I activity, calcium and ROS fluorescence intensity, ATP content, Bax, Bcl-2and case-3expression, mitochondrial DNA damage, mitochondrial ND1and ND2gene and protein expression were detected to analyze the molecular mechanisms of toxic effects of bullatacin in rats.
     5. Process the plasma samples of bullatacin by liquid-liquid extraction, and analyze the pharmacokinetics of bullatacin in rats by tail vein intravenous using HPLC-MS.
     Results:
     1. Thirty compounds were isolated from seeds of Annona squamosa. The structures of22ACGs were identified using IR, UV, MS and NMR. Twelve were new compounds and their absolute configuration was determined using Mosher method. The main components of the fatty oil were fatty acids (80.9%), of which the contents of unsaturated fatty acids reached51.1%.
     2. Isolated ACGs were structurally divided into three types:mono-THF (tetrahydrofuran), adjacent bis-THF and nonadjacent bis-THF ACGs. MTT assay results showed that different structure types of ACGs have a strong inhibitory activity against tumor cell growth. Structure-activity relationship analysis showed that among mono-THF and adjacent bis-THF ACGs, compounds with less carbon numbers between THF ring and lactone ring exhibited better activity. ACGs bearing three substituted hydroxyl (total carbon number is37, molecular weight is622) exhibited strongest activity among adjacent bis-THF and nonadjacent bis-THF ACGs. There is no definite relationship between the position of substituted4-OH and the activity of adjacent bis-THF and nonadjacent bis-THF ACGs.
     3. Toxicity-activity relationship of three types of ACGs in vivo showed that adjacent bis-THF ACG had higher anti-tumor activity and toxicity than mono-THF and nonadjacent bis-THF ACGs.
     4. Rats were treated with bullatacin by tail vein intravenous. Results showed that ALT, AST, BUN and CR activity of300μg/kg dose group was increased compared with control group. Liver and kidney tissues of300μg/kg dose group presented lesions through light microscope and electron microscope detection. Compared with control group, liver mitochondrial complex I activity of all bullatacin treated groups were decreased in a dose-dependent manner. Besides, calcium, ROS concentrations of heart, liver and kidney tissues and Bax and case-3expression and Bax/Bcl-2ratio in liver and kidney tissues were increased. ATP contents of heart, liver and kidney tissue of300μg/kg dose treated rat were decreased compared with control group. Mitochondrial DNA PCR amplification of liver and kidney tissues was subjected to agarose gel electrophoresis and amplified a4.7Kb and0.86Kb stripe, another size of approximately1.5Kb bands amplified in rat kidney tissue samples of bullatacin treated group. Compared with control group, ND1and ND2gene expression in rat liver and kidney in bullatacin treated group were increased. ND1and ND2protein expression in liver tissue was decreased, and ND1, ND2protein expression in renal tissue increased.
     5. Liquid-liquid extraction and determination method by HPLC-MS technique of serum sample with bullatacin treatment were established. The stability, extraction recovery and matrix effect involved in the method were also validated. This method was applied to measure the plasma bullatacin concentrations after a single tail vein intravenous.
     Conclusions:22ACGs (12new ACGs) including mono-tetrahydrofuran, adjacent bis-and nonadjacent bis-tetrahydrofuran ACGs were isolated from Annona squamosa seeds. The position of tetrahydrofuran ring and its adjacent substituted hydroxy, the number and position of substituted hydroxyl have a certain impact of anti-tumor activity of ACGs in vitro. Compared with mono-THF and nonadjacent bis-THF ACGs, adjacent bis-tetrahydrofuran ACG has better anti-tumor activity in mice, but exhibit higher toxicity.300μg/kg dose of bullatacin for three weeks in rats showed some toxicity effects. Compared with control group, bullatcin caused blood biochemical parameters increased and liver and kidney tissues pathological changes. Bullatacin led to decrease in mitochondrial complex I activity and ATP content, and increase in calcium, ROS concentration, Bax and case-3expression and Bax/Bcl-2ratio, and mitochondrial DNA of rat liver and kidney damage with a certain impact of mitochondrial ND1and ND2gene protein expression in liver and kidney tissues of rats. Liquid-liquid extraction and HPLC-MS techniques can be used to prepare serum samples with bullatacin and determine its blood samples content in rats.
引文
1.陈封怀.中国科学院华南植物研究所.广东植物志(第二卷)[M].广州:广东科技出版社,1991:387.
    2.广东省食品药品管理局.广东省中药标准第二册[S].广州:广东科技出版社,2004:194.
    3.蒋英,李秉滔,李延辉.中国植物志(Reipubliae Popularis Sinicae) [M].北京:科学出版社.1979,30,10-175.
    4.邢乐道.治疗艾滋病、癌症的复方药物及具制备方法[P].申请号200410012842.5
    5.章永红.一种治疗癌症的药物及其制备方法[P].申请号200510041538.8
    6.熊国裕.一种用于治疗肿瘤疾病的中药复方[P].申请号200710121055.8
    7.邢乐道,黄硕彦.一种治疗癌症的中药制剂及其制备方法[P].申请号200410013488.8
    9. Keinan E, Sinha A, Yazbak A, et al. Towards chemical libraries of annonaceous acetogenins[J]. Pure& Appl Chem.1997,69,423-430.
    10. Alah FQ, Liu XX, Mclaughlin JL. Annonaceous acetogenins recent progress[J]. J Nat Prod.1999,62, 504-540.
    11. Chang FR, Yang PY, Lin JY, et al. Bioactive kaurane diterpenoids from Annona glabra[J]. J Nat Prod. 2000,63,1000-1003.
    12. Fatope MO, Audu OT, Takeda Y, et al. Bioactive ent-kaurene diterpenoids from Annona senegalensis[J]. J Nat Prod.1996,59,301-303.
    13.夏国豪.光叶番荔枝中二萜类化合物抑制肝癌细胞株SMMC-7721增殖及机制的研究[D].硕士学位论文.南京中医药大学,2003,7-26.
    14. Zhang YH, Peng HY, Xia GH, et al. Anticancer effect of two diterpenoid compounds isolated from Annona glabra Linn[J].Acta Pharm Sin.2004,25,937-942.
    15. Li CM, Tan NH, Zheng HL, et al. Cyclopeptide from the seeds Annona glabr[J]. Phytochemistry,1999, 50,1047-1052.
    16. Liu XX, Jerry EP, Mclaughlin L. Pondaplin, a novel Cyclic Prenylated Phenylpropanoid from Annona glabra[J]. Tetrahedron Lett.1999,40,399-402.
    17.陈晓灵,光叶番荔枝种子化学成分和抗肿瘤活性研究[D].硕士学位论文.南京中医药大学,2006.
    18.杨海军,番荔枝种子化学成分及药理活性研究[D].硕士学位论文.南京中医药大学,2009.
    19. Chang FR, Chen CY, Hsieh TJ, et al. Chemical constituents from annona glabra[J]. J Chin Chem Soc. 2000,47,913-920.
    20. Mclaughlin JL, Chang CJ. Studies in Natural Products Chemistry[M]. Vol.9. Amsterdam.1991,383.
    21.田丽鹃,杨念云,孟正木,韩英.圆滑番荔枝的化学成分研究[J].中国药学杂志.2003,38,258-260.
    22. Chen Y, Yu DQ. Classification and NMR characteristics of the y-lactone and THF rings of antitumor bioactive annonaceous acetogenins [J]. Acta Pharm Sin.1998,33,553-560.
    23.潘锡平,于德泉.大花紫玉盘中的新抗肿瘤活性番荔枝内酯及其绝对构型研究[J].药学学报.1997,32,286-293.
    24.孙兰,朱久香,余竞光,余科蕾,李德宇,周立东.圆滑番荔枝种子化学成分研究[J].药学学报.2003,38,32-36.
    25.陈文森,姚祝军,吴毓林.牛心果化学成分的研究[J].有机化学.1995,15,85-88.
    26. Bermejo A, Figadere B, Zafra-Polo MC, Barrachina I, Estornel E, Cortes D. Acetogenins from Annonaceae:recent progress in isolation, synthesis and mechanisms of action. Nat Prod Rep.2005, 22:269-303.
    27. Chang FR, Liaw CC, Lin CY, et al. New adjacent bis-tetrahydrofuran annonaceous acetogenins from Amona muricata[J]lanta Med.2003,69,241-246.
    28. Zhou GX, Chen RY, Zhang YJ, et al. New annonaceous acetogenins from the roots of Uvaria calamistrata[J]. J Nat Prod.2000,63,1201-1204.
    29. Kuwabara K, Takada M, Iwata J, et al. Design syntheses and mitochondrial complex I inhibitory activity of novel acetogenin mimics[J]. Eur J Biochem.2000,267,2538-2546.
    30. Chiu HF, Chih TT, Hsian YM, et al. Bullatacin, a potent antitumor Annonaceous acetogenin, induces apoptosis through a reduction of intracellular cAMP and cGMP levels in human hepatoma 2.2.15 cells[J]. Biochem Pharmacol.2003,65,319-327.
    31. Miyoshi H, Ohshima M, Shimada H, et al. Essential structural factors of annonaceous acetogenins as potent inhibitors of mitochondrial complex I[J]. Biochim Biophys Acta.1998,1365,443-452.
    32. Coothankandaswamy V, Liu Y, Mao SC, et al.The alternative medicine pawpaw and its acetogenin constituents suppress tumor angiogenesis via the HIF-1/VEGF pathway[J]. J Nat Prod.2010,73, 956-961.
    33. Lee CC, Lin YH, Chang WH, etal. Squamocin modulates histone H3 phosphorylation levels and induces G1phase arrest and apoptosis in cancer cells[J]. Bmc Cancer.2011,11,58.
    34. He HB, Wu XL, Yu B, et al. The effect of desacetyluvaricin on the expression of TLR4 and P53 protein in Hepg2.2.15[J]. Hepat Mon.2011,11,364-367.
    1.姚祝军,吴毓林.番荔枝内酯——明日抗癌之星[J].有机化学,1995,15,120-132.
    2.候宽绍,中国种子植物科属词典(第二版)[M],科学出版社,北京,1982,p 31.
    3. Jolad SD, Hoffmann JJ, Schram KH, et al. Uvaricin, A new antitumor agent from Uvaria accuminata (Annonaceae)[J]. Org Chem.1982,47,3151-3152.
    4.陈瑛,于德泉.抗癌有效成分番荔枝内酯化合物末端内酯环和四氢呋喃环的化学分类及套NMR鉴别特征[J].药学学报.1998,33,553-560.
    5. Yang HJ, Li X. Study the optimum extraction of Annonaceous Acetogenins from seeds of Annona Glabra by superatical fluid CO2 extraction(SFE)[J]. J US-China Sci Med.2008,10,87-91.
    6. Alali FQ, Liu XX, McLaughlin JL. Annonaceous Acetogenins:Recent Progress[J]. J Nat Prod.1999,62, 504-540.
    7. Duret P, Waechter AI, Margraff R., et al. High-speed contercurrent chromatography:a promising method for the separation of the Annonaceous acetogenins[J]. J Liq Chrom Rel Technol.1997,20,627-635.
    8. Bermejo A, Figadere B, et al. Acetogenins from annonaceae:recent progress in isolation, synthesis and mechanisms of action[J]. Nat Prod Rep.2005,22,269-303.
    9. Chen XL, Li X, Chen JW, et al. Chemical constituents from the seed of Annona glabra[J],Chin J Nat Med. 2006,4,195-197.
    10. Idensi BN, Pierre C, Christophe G., et al. Annonaceous acetogenins:Precursors from the seeds of Annona squamosa[J]. Phytochemistry Lett.2009,2:72-76.
    11. Liaw CC, Yang YL, Chen M, et al. Mono-tetrahydrofuran annonaceous acetogenins from Annona squamosa as cytotoxic agents and calcium ion chelators[J]. J Nat Prod.2008,71,764-771.
    12. Pettit GR, Mukku VJRV, Cragg G, et al. Cancer cell growth inhibitory constituents[J]. J Nat Prod.2008, 71,130-133.
    13. Eparvier V, Nguyen VH, Thoison O, et al. Cytotoxic monotetrahydrofuran acetogenins from Disepalum plagioneurum[J]. J Nat Prod.2006,69,1289-1294.
    14. Liaw CC, Chang FR, Wu YC, et al. Montacin and cis-montacin, two new cytotoxic monotetrahydrofuran annonaceous acetogenins from Annona Montana[J]. J Nat Prod.2004,67,1804-1808.
    15. Barrachina I, Chahboune N, Royo I, et al. New cytotoxic bis-terahydrofuranic acetogenins from Annona aff. spraguei[J]. Planta Med.2005,71,867-876.
    16. Eun JK, Kyung MS, Dal HK, et al. Asimitrin and 4-Hydroxytrilobin, new bioactive annonaceous acetogenins from the Seeds of Asimina triloba possessing a bis-tetrahydrofuran ring[J]. J Nat Prod.2005, 68,194-197.
    17. Rodrigues dos Santos Lima LA, Santos Pimenta LP, Diamantino Boaventura MA. Two new adjacent bis-Tetrahydro-furan annonaceous acetogenins from seeds of Annona cornifolia[J]. Planta Med.2009,75, 80-83.
    18. Fall D, Pimentel L, Champy P, et al. A new adjacent bis-tetrahydrofuran annonaceous acetogenins from the seeds of Uvaria chamae[J]. Planta Med.2006,72,938-940.
    19. Luciana AR Santos Lima, Lucia PS Pimenta, Maria Amelia D Boaventura. Acetogenins from Annona cornifolia and their antioxidant capacity[J]. Food Chem.2010,122,1129-1138
    20. Dai Y, Harinantenaina L, Brodie PJ, et al. Antiproliferative acetogenins from a Uvaria sp. from the Madagascar Dry Forest[J]. J Nat Prod.2012,75,479-83.
    21. Barrachina I, Neske A, Granell S, et al. Tucumanin, a β-hydroxy-γ-lactone bistetrahydrofuranic acetogenin from Annona cherimolia, is a potent inhibitor of mitochondrial complex I[J]. Planta Med. 2004,70,866-868.
    22. Yang HJ, Li X, Zhang N, et al. Two new cytotoxic acetogenins from Annona squamosa[J]. J Asian Nat Prod Res.2009,11,250-256.
    23. Fall D, Duval RA, Gleye C, et al. Chamuvarinin, an acetogenin bearing a tetrahydropyran ring from roots of Uvaria chamae[J]. J Nat Prod.2004,67,1041-1043.
    24. Bermejo A, Figadere B, et al. Acetogenins from annonaceae:recent progress in isolation, synthesis and mechanisms of action[J]. Nat Prod Rep.2005,22,269-303.
    25. Kojima N, Tanaka T. Medicinal chemistry of annonaceous acetogenins:design, synthesis, and biological evaluation of novel Analogues[J]. Molecules.2009,14,3621-3661.
    26. Londerhausen M, Leicht W, Lieb F, et al. Molecular mode of action of annonins[J] Pestic Sci.1991,33, 427-438.
    27. Miyoshi H, Ohshima M, Shimada H, et al. Essencial structural factors of annonaceous as potent inhibitors of mitochondrial compiex I[J]. Biochem Biophys Acta.1998,1365,443-452.
    28. Oberlies NH, Chang C, Mclaughlin JL. Structure-activity relationships of diverse Annonaceous acetogenins against multidrug resistant human mammary adenocarcinoma (MCF-7/Adr) cells[J]. J Med Chem,1997,40,2102-2106.
    29. He K, Zeng L, Ye Q, et al. Comparative SAR evaluation of annonaceous acetogenins for pesticidal activiry[J]. Pestic Sci.1997,49,372-378.
    30. Alali FQ, Kaakeh W, Bennett GW, et al. Annoaceous are acetogenins as natural pesticides:Potent toxisity against insecticide susceptible and resistance German cockroach[J]. J Eco Entomol.1998,91,641-649.
    31. Landolt JL, Ahammadsahib KI, Hollingworth RM, et al. Determination of structure-activity relationships of Annonaceous acetogenins by inhibition of oxygen uptake in rat liver mitochondria[J]. Chemico-Biological Interactions.1995,98,1-13.
    32. Gu ZM, Zeng L, Fang X, et al. Determining Absolute Configurations of Stereocenters in Annonaceous Acetogenins through Formaldehyde Acetal Derivatives and Mosher Ester Methodology [J]. J Org Chem. 1994,59,5162-5172.
    33. Alfonso D, Johnson HA, Colman-Saizarbitoria T, et al. SARs of annonaceous acetogenins in rat liver mitochondria[J]. Nat Toxins,1996,4,181-188.
    34. Degli Esposti M, Ghelli A, Ratta M, et al. Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex Ⅰ)[J]. Biochem J.1994,301, 161-167.
    35. Liaw CC, Chang FR, Wu CC, et al. Nine new cytotoxic monotetrahydrofuranic annonaceous acetogenins from Annona montana[J]. Planta Med.2004,70,948-959.
    36. Woo MH, Kim DH, McLaughlin JL. Asitrilobins A and B:cytotoxicmono-THF annonaceous from the seeds of Asimina triloba[J]. Phytochemistry.1999,50,1033-1040.
    37. Chang FR, Wu YC. Novel cytotoxic annonaceous acetogenins from Annonamuricata[J]. J Nat Prod.2001, 64,925-931.
    38. Queiroz EF, Roblot F, Figadere B, et al. Three new bistetrahydrofurana cetogenins from the seeds of Annona spinescens[J]. J Nat Prod.1998,61,34-39.
    39. Kim GS, Zeng L, Alali F, et al. Two new mono-tetrahydrofuran ring acetogenins, annomuricin E and muricapentocin, from the leaves of Annona muricata[S]. J Nat Prod.1998,61,432-436.
    40. Chavez D, Mata R. Purpurediolin and purpurenin, two new cytotoxic adjacent bis-tetrahydrofuran annonaceous acetogenins from the seeds of Annona purpurea[J]. J Nat Prod.1998,61,580-584.
    41. Araya H, Sahai M, Singh S, et al. Squamocin-Ol ands quamocinO2, new adjacent bis-tetrahydrofuran acetogenins from the seeds of Annona squamosa[J]. Phytochemistry,2002,61,999-1004.
    42. Liu XX, Alali FQ, Hopp DC, et al. Glabracins A and B, two new acetogenins from Annona glabra[J]. Bioorg Med Chem.1998,6,959-965
    43. Chang FR, Liaw CC, Lin CY, et al. New adjacent bis-tetrahydrofuran annonaceous acetogenins from Annona muricata[J]. Planta Med.2003,69,241-246.
    44. Chang FR, Chen JL, Lin CY, et al. Bioactive acetogenins from the seeds of Annona atemoya[J], Phytochemistry.1999,51,883-889
    45. Hopp DC, Alali FQ, Gu ZM, et al. Mono-THF ring annonaceous acetogenins from Annona squamosa[J]. Phytochemistry.1998,47,803-809.
    46. Zhou GX, Chen RY, Zhang YJ, et al. New annonaceous acetogenins from the roots of Uvaria calamistrata[S]. J Nat Prod.2000,63,1201-1204.
    47. Liu XX, Alali FQ, Pilarinou E, et al. Two bioactive mono-tetrahydrofuran acetogenins, annoglacins A and B, from Annona glabra[J]. Phytochemistry.1999,50,815-821.
    48. Liaw CC, Chang FR, Wu YC, et al. Montacin and cis-montacin, two new cytotoxic monotetrahydrofuran annonaceous acetogenins from Annona Montana[J]. J Nat Prod.2004,67,1804-1808.
    49. Chavez D, Mata, R. Purpuracenin:a new cytotoxic adjacent bis-tetrahydrofuran annonaceous acetogenins from the seeds of Annona purpurea[J]. Phytochemistry.1999,50,823-828.
    50. Kuwabara K, Takada M, Iwata J, et al. Design syntheses and mitochondrial complex I inhibitory activity of novel acetogenin mimics[J]. Eur J Biochem.2000,267,2538-2546.
    51. Chiu HF, Chih TT, Hsian YM, et al. Bullatacin, a potent antitumor Annonaceous acetogenin, induces apoptosis through a reduction of intracellular cAMP and cGMP levels in human hepatoma 2.2.15 cells[J]. Biochem Pharmacol.2003,65,319-327.
    52. Miyoshi H, Ohshima M, Shimada H, et al. Essential structural factors of annonaceous acetogenins as potent inhibitors of mitochondrial complex I[J]. Biochim Biophys Acta.1998,1365,443-452.
    53. Coothankandaswamy V, Liu Y, Mao SC, et al.The alternative medicine pawpaw and its acetogenin constituents suppress tumor angiogenesis via the HIF-1/VEGF pathway[J]. J Nat Prod.2010,73, 956-961.
    54. Lee CC, Lin YH, Chang WH, etal. Squamocin modulates histone H3 phosphorylation levels and induces G1 phase arrest and apoptosis in cancer cells[J]. Bmc Cancer.2011,11,58.
    55. He HB, Wu XL, Yu B, et al. The effect of desacetyluvaricin on the expression of TLR4 and P53 protein in Hepg2.2.15[J]. Hepat Mon.2011,11,364-367.
    56. Santos Pimenta LP, Chagasdo Nacimento F, Assuncao ACS, et al. Laurifolin, a novel acetogenin from Rollinia laurifolia leaves[J]. Tetrahedron Lett.2001,42,8433-8434.
    57. Mootoo BS, Ali A, Khan A, et al. Three novel monotetrahydrofuran annonaceous acetogenins from Annona Montana[J]. J Nat Prod.2000,63,807-811.
    58. Duret P, Hocquemiller R, Cave A. Bulladecin and atemotetrolin, two bis-tetrahydrofuran acetogenins from Annona atemoya seeds[J]. Phytochemistry,1998,48,499-506.
    59. Zhou GX, Zhou LE, Chen RY, et al. Calamistrins A and B, two new cytotoxic monotetrahydrofuran annonaceous acetogenins from Uvaria calamistrata[J]. J Nat Prod.1999,62,261-264.
    60. Pan XP, Yu DQ. Absolute stereochemistry of uvarigrin from Uvaria grandiflora Roxb (Annonaceae)[J]. Acta Pharm Sin.1997,32,286-287.
    61. Liu XX, Alali FQ, Pilarinou E, et al. Glacins A and B:two novel bioactive mono-tetrahydrofuran acetogenins from Annona glabra[J]. J Nat Prod.1998,61,620-624.
    62. Alali FQ, Zhang Y, Rogers L, et al. Mono-tetrahydrofuran acetogenins from Goniothalamus giganteus[J]. Phytochemistry.1998,49,761-768.
    63. Kim DH, Ma ES, Suk KD, et al. Annomolin and annocherimolin, new cytotoxic annonaceous acetogenins from Annona cherimolia seeds[J]J Nat Prod.2001,64,502-506.
    1. Gu ZM, Zeng L, Schwedler JT, et al. New bioactive adjacent bis-THF annonaceous acetogenins from Annona bullata[J]. Phytochemistry.1995,40,467-477.
    2. Chavez D, Mata R. Purpuracenin:a new cytotoxic adjacent bis-tetrahydrofuran annonaceous acetogenins from the seeds of Annona purpurea[J]. Phytochemistry.1999,50,823-828.
    3. Zeng L, Ye Q, Oberlies NH, et al. Recent advances in annonaceous acetogenins[J]. Nat Prod Rep.1996,13, 275-306.
    4. Gu ZM, Zhao GX, Oberlies NH, et al. In Recent Advances in Phytochemistry[M], Eds. Arnason JT, Mata R, Romeo JT. Plenum Press, New York,1995,249-310.
    5.陈瑛,于德泉.抗癌有效成分番荔枝内酯化合物末端内酯环和四氢呋喃环的化学分类及NMR鉴别特征[J].药学学报.1998,33,553-560
    6. Hisham A, Pieters LAC, Claeys M, et al. Uvariamicin-Ⅰ,Ⅱ and Ⅲ:three novel acetogenins from uvaria narum[T\. Tetrahedron Lett.1990,31,4649-4652.
    7. Myint SH, Cortes D, Laurens A, et al. Solamin, a cytotoxic mono-tetrahydrofuranic gamma-lactone acetogenin from Annona muricata seeds (collected in French Guiana)[J]. Phytochemistry.1991,30, 3335-3338.
    8. Lieb F, Nonfon M, Wachendorff-Neumann U, et al. Annonacins and Annonastatin from Annona squamosa[J]. Planta Med.1990,56,317.
    9. Tam VT, Hieu PQC, Chappe B, et al. Reticulatain-1 and-2 with reticulatamone:three new polyketides from the seeds of Annona reticulata[J]. Bull Soc Fr Chim.1995,132,324-329.
    10. Duret P, Waechter Al, Hocquemiller R, et al. Annotemoyin-1 and-2:two novel monotetrahydrofuranic y-lactone acetogenins from the seeds of Annona atemoya[J]. Nat Prod Lett.1996,8,89-95.
    11. Chang FR, Wu YC. Novel cytotxic acetogenins from Annona muricata[J]. J Nat Prod.2001;64,925-931.
    12. Sahai M, Singh S, Singh M, et al. Annonaceous acetogenins from the seeds of Annona squamosa. Adjacent bis-tetrahydrofuranic acetogenins[J]. Chem Pharm Bull.1994,42,1163-1174.
    13. Ye O, He K, Oberlies NH,et al. Longimicins A-D:novel bioactive acetogenins from Asimina longifolia (annonaceae) and structure-activity relationships of asimicin type of annonaceous acetogenins[J]. J Med Chem.1996,39,1790-1796.
    14. Jolad SD, Hoffmann JJ, Cole JR, et al. Desacetyluvaricin from Uvaria accuminata, configuration of uvaricin at C-36[J]. J Nat Prod.1985,48,644-645.
    15. Fujimoto Y, Murasaki C, Shimada H, et al. Annonaceous acetogenins from the seeds of Annona squamosa. Non-adjacent bis-tetrahydrofuranic acetogenins[J]. Chem. Pharm. Bull.1994,42,1175-1184.
    16. Hirayama K, Akashi S, Yuji R, et al. Structural studies of polyhydroxybis (tetrahydrofuran) acetogenins from Annona squamosa using the combination of chemical derivatization and precursor-ion scanning mass spectrometry[J]. Org Mass Spectrom.1993,28,1516-1524.
    17. He K, Zhao GX, Shi G, et al. Additional bioactive annonanaceous acetogenins from Asimina triloba (Annonaceae)[J]. Bioorg Med Chem.1997,5,501-506.
    1. Bermejo A, Figadere B, Zafra-Polo MC, et al. Acetogenins from annonaceae:recent progress in isolation, synthesis and mechanisms of action[J]. Nat. Prod. Rep.,2005,22:269-303.
    2. Kojima N, Tanaka T. Medicinal chemistry of annonaceous acetogenins:design, synthesis, and biological evaluation of novel analogues[J]. Molecules.2009,14,3621-3661.
    3. Londerhausen M, Leicht W, Lieb F, et al. Molecular mode of action of annonins[J]. Pestic.Sci.,1991,33, 427-438.
    4. Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays[J]. J Immunol Methods.1983,65,55-63.
    5. Scudiero DA, Shoemaker RH, Paull KD, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines[J]. Cancer Res.1988,48, 4827-4833.
    1.陈奇.中药药理研究方法学.北京:人民卫生出版社.1993.525.
    2. McLaughlin JL. Paw paw and cancer:Annonaceous acetogenins from discovery to commercial products[J]. J Nat Prod.2008,71,1311-1321.
    3. McLaughlin JL, Zeng L, Oberlies NH, et al. Phytochemicals for pest control, in:Hedin PA, Hollingworth RM, Masler EP, et al. (Eds.). Washington, D.C.:American Chemical Society,1997,117-133.
    1. Schatz, G What mitochondria have told me[J]. Mol Biol Cell.2001,12,777-778.
    2.徐志防,魏孝义.番荔枝内酯抑制线粒体复合物Ⅰ的作用机理[J].天然产物研究与开发.2003,15,476-481.
    3. Berglund M, Akesson A, Bjellerup P, et al. Metal-bone interactions[J]. Toxicol Lett.2000,112-113, 219-225.
    4. Lenaz G, Fato R, Genova ML, et al. Mitochonadrial Complex Ⅰ:structural and functional aspects[J]. Biochim iophys cta.2006,1757(9/10),1406-1420.
    5. Dykens JA, Will Y. The significance of mitochondrial toxicity testing in drug development J]. Drag Discov Today.2007,12,777-785.
    6. Schon EA, Manfredi G Neuronal degeneration and mitochondrial dysfunction[J] Clin Invest.2003,111, 303-312.
    1.陈瑛,于德泉.抗癌有效成分番荔枝内酯化合物末端内酯环和四氢呋喃环的化学分类及NMR鉴别特征[J].药学学报.1998,33,553-560.
    2. Liaw CC, Wu TY, Chang FR, et al. Historic perspectives on Annonaceous acetogenins from the chemical bench to preclinical trials[J]. Planta Med.2010,76,1390-1404.
    3. Bermo A, Figadere B, Zafra-Polo MC, et al.Acetogenins from Annonaceae:recent progress in isolation, synthesis and mechanisms of action[J]. Nat Prod Rep.2005,22,269-303.
    4. McLaughlin JL. Paw paw and cancer:Annonaceous acetogenins from discovery to commercial products[J]. J Nat Prod.2008,71,1311-1321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700