六种鲇形目鱼类线粒体基因组克隆及其系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲇形日鱼类是重要的经济鱼类之一,数量几乎占到整个淡水鱼类的三分之一,具有分布广,适应性强的特点。近几十年来,研究人员对鲇形目科之间的相互关系进行了一定的研究,但是鲇形目内不同科间及同一科内不同属间的系统发育关系并没有得到系统深入的阐述,而鲇形目鱼类系统发育研究对于正确合理的分类和种质资源的进一步挖掘与利用具有重要的意义。当前,鲇形目的系统发育关系已经成为了进化学家和分类学家最具挑战性和吸引力的课题之一。截止目前,对于黄颡鱼属和鲇属鱼类系统发育关系研究的相对较少,属内的归属仍然存在一定的争议。另外,前期对于黄颡鱼属和鲇属系统发育关系的研究大部分采用的是线粒体DNA的部分序列,如Cytb、ND4和线粒体DNA控制区等,所利用的线粒体基因组信息非常有限。本研究利用PCR技术对鲇形目黄颡鱼属的黄颡鱼(Pelteobagrus fulvidraco)、瓦氏黄颡鱼(Pelteobagrus vachellii)、光泽黄颡鱼(Pelteobagrus nitidus)和长须黄颡鱼(Pelteobagrus cupogon),以及鲇属的南方大口鲇(Silurus meridionails)和鲇(Silurus asotus)六种鲇形目鱼类进行线粒体基因组的克隆,并利用生物信息学相关软件对其进行组成和特征的比较分析,然后联合已知线粒体基因组的鲇形目鱼类进行系统发育树的构建,得到了如下结果:
     1.成功克隆了黄颡鱼、瓦氏黄颡鱼、光泽黄颡鱼、长须黄颡鱼、南方大口鲇和鲇六种鲇形目鱼类的线粒体全基因组,全长分别为16527bp、16527bp、16532bp、16562bp.16527bp和16523bp,其基因排列顺序与已己知鲇形目鱼类线粒体基因组一致,均包括13个蛋白质编码基因、22个tRNA基因、2个rRNA基因(12SrRNA和16SrRNA)和一个非编码区(D-Loop区)。
     2.六种鲇形目鱼类的线粒体基因组的碱基组成均表现出AT碱基的偏倚性,A+T含量平均值为57.4%,明显高于G+C含量,A+T含量最高的是黄颡鱼(59.1%),最低的是南方大口鲇(55.3%)。13个蛋白质编码基因的碱基组成中A+T碱基含量平均值为56.84%,其中最高的是光泽黄颡鱼(58.95%)、最低的是南方大口鲇(54.97%)、均为第三密码子位置A+T碱基含量最高,光泽黄颡鱼高达64.68%,四种碱基中G碱基含量最低,特别是第三密码子位置,在长须黄颡鱼中含量仪为8.73%。
     3.六种鲇形目鱼类的13个蛋白质编码基因全长为11404bp(鲇)~11411bp(南方大口鲇),四种,黄颡鱼的编码序列长度相同,为11408bp。在13个蛋白质编码基因中,6种鲇形目鱼类最长的均为ND5基因,且除鲇为1824bp以外,其余五种鱼均为1827bp,最短的基因为ATPase8,长度均为168bp。黄颡鱼、瓦氏黄颡鱼、长须黄颡鱼和南方大口鲇四种鱼的蛋白编码基因中除COX1基因以GTG作为起始密码子外,其余的12个蛋白编码基因均以ATG作为起始密码子。ND2基因以TAG作为终止密码子,ND1、COX1、ATPase6、ATPase8、ND4L、ND5和ND6七个蛋白编码基因均以TAA作为终止密码子,其余的五个基因(COX2、COX3、ND3、ND4和Cytb)均以不完全终止密码子T作为终止密码子。光泽黄颡鱼和鲇与上述四种鱼有所不同,其中光泽黄颡鱼NDl以TAG作为终止密码子,鲇ND5以TAG作为终止密码子,ND2以不完全终止密码子T作为终止密码子,ATPase6和Cytb以TA作为终止密码子
     4.成功鉴别出六种鲇形目鱼类的终止序列区、中央保守区和保守区的相关序列ETAS、CSB-D、CSB-E、CSB-F、CSB-1、CSB-2和CSB-3。
     5.六种鲇形目鱼类重叠核苷酸总长度为25bp~28bp,间隔区域总长度为59bp~62bp,其中黄颡鱼、光泽黄颡鱼、长须黄颡鱼和南方大口鲇重叠长度相同(28bp),间隔区域长度光泽黄颡鱼和长须黄颡鱼、黄颡鱼和瓦氏黄颡鱼、南方大口鲇和鲇两两相同,分别为59bp、60bp和62bp。大部分基因间隔和重叠都很短,仅为几个碱基,最长的基因间隔约为30bp,最长的基因重叠为10bp。重叠最长的序列位于ATPase6与ATPase8之间(10bp),间隔最长的序列位于tRNA-Cys和tRNA-Asn之间(约30bp)。
     6.对鲇形目鱼类系统发育分析表明,黄颡鱼与长须黄颡鱼亲缘关系较近,瓦氏黄颡鱼与光泽黄颡鱼亲缘关系较近。
     7.从分厂进化的角度,短尾尼拟鲿、切尾拟鲿、乌苏拟鲿可能被划归为鮠属更为合理,分别称为短尾鮠、切尾鮠和乌苏鮠。
     8.拟鲿属和黄颡鱼属不是单系群,长臀鮠科与叉尾鮰科形成姐妹群关系。
As one of the most important economic species of freshwater fish, the Siluriformes is widely distributed in China and accounting for almost one-third numbers of the entire freshwater for its prominent adaptability to environment. Recent decades, researchers had done lots of works to clarify the relationship among species of Siluriformes, however, the phylogenetic relationship are still unkown in species and intergeneric of Siluriformes. Accordingly, the phylogenetic relationship of Siluriformes has become one challenging and attractive problem to evolutionary biologists and taxonomists.
     So far, the phylogenetic relationship of Siluriformes in family and genus have some controversy.The early phylogenetic studies of Pelteobagrus and Silurus were mainly based on partial genes and fragments of the mitochondrial genome such as Cytb, ND4and D-loop in which information is very limited. In order to clarify the phylogeny relationship within Siluriformes, the complete mitochondrial genomes were used to do the phylogenetic analysis. In this study, the complete mitochondrial genome sequence of Pelteobagrus fulvidraco, Pelteobagrus vachellii, Pelteobagrus nitidus, Pelteobagrus eupogon, Silurus meridionails and Silurus asotus were determined by using PCR and analyzed using some bioinformatics software. Compared newly obtain mitochondrial DNA sequences with other Siluriformes in the public databases, we expected to elucidate the phylogenetic relationship among different species of Siluriformes.. The main results of our study are as followed:
     1.The complete mitochondrial genomes of Pelteobagrus fulvidraco, Pelteobagrus vachellii, Pelteobagrus nitidus, Pelteobagrus eupogon, Silurus meridionails and Silurus asotus were16527bp,16527bp,16532bp,16562bp,16527bp and16523bp in length, respectively. These mitochondrial genomes consist of thirteen protein-coding genes (ND1、 ND2、ND3、ND4、ND4L、ND5、ND6、COX1、CoX2、COX3、ATPase6、ATPase8and Cytb), and twenty-two tRNA genes, two rRNA genes(12SrRNA and16SrRNA) and one noncoding region(D-Loop). These genes arrangements in the six catfishes mitochondrial genones were consistent to that of others known Siluriformes.
     2. Base composition of six siluriformes fish in the mitochondrial genome are shown AT bias. The average A+T content is57.4%which is higher than G+C. In the six catfishes, the highest of A+T content is Pelteobagrus fulvidraco (59.1%), and the lowest is Silurus meridionails (57.4%). The average of A+T content in thirteen protein genes is56.84%, the highest is Pelteobagrus nitidus (58.95%) and the lowest is Silurus meridionails (54.97%) The A+T content were the highest in the third position than that of the first and second position, and that of Pelteobagrus nitidus is the highest in these six catfishes. The G content is the lowest in four bases (A, T, G and C), especially Pelteobagrus eupogon was8.73%only.
     3. The total length of thirteen peotein-coding genes in the six catfishes (Siluriformes) range from11404(Silurus asotus) to11411bp (Silurus meridionails). Four catfishes (Pelteobagrus) have same length (11408bp). ND5is the longest gene in the13protein-coding genes,which is1824bp in five catfishes except Silurus asotus, and ATPase8is the shortest one, which is168bp in length. All protein-coding genes in Pelteobagrus fulvidraco, Pelteobagrus vachellii, Pelteobagrus eupogon and Silurus meridionails share the same start codon ATG except COX1, which begins with GTG. Eight protein-coding genes in these catfishes used TAA as complete stop condons TAA (ND1、COX1、ATPase6、ATPase8、ND4L、ND5and ND6), but ND2with TAG. The rest five genes end with incomplete stop codons T (COX2, COX3, ND3, ND4and Cytb). And the differcnc in Pelteobagrus nitidus and Silurus asotus, ND2, ATPase6and Cytb end with incomplete stop codons T or TA. NDI gene in Pelteobagrus nitidus and ND5gene in Silurus asotus end with codon TAG.
     4. Several other conservative sequence elements which occurred in some other fish taxa were identified in the control region of six catfishes (Siluriformes) which containing termination associated sequence(ETAS), conserved sequence blocks (CSB-D、CSB-E、 CSB-F、CSB-1、 CSB-2and CSB-3).
     5. The intergenic overlaps and spacers range from25bp to28bp and59bp to62bp in length, respectively. The overlaps with a total of28bp is same with that in Pelteobagrus fulvidraco, Pelteobagrus nitidus and Pelteobagrus eupogon. The intergenic spacers were also present in Pelteobagrus nitidus and Pelteobagrus eupogon, Pelteobagrus fulvidraco and pelteobagrus vachellii, Silurus meridionails and Silurus asotus genomes, and involved in a total of59bp,59bp,60bp,60bp,62bp and62bp, respectively. Most of the intergenic overlaps and spacers are very short which is only few nucleotides. The longest spacer with30bp was located between tRNA-Cys and tRNA-Asn and the longest overlapps with10bp was located between ATPase6and ATPase8.
     6. Based on the three datasets and those phylogenetic analysis results of Siluriformes, the Pelteobagrus fulvidraco and Pelteobagrus eupogon have more close relationships, and the Pelteobagrus vachellii and Pelteobagrus nitidus have the same status.
     7. According to the phylogeny results, Pseudobagrus brevicaudatus, Pseudobagrus truncatus and Pseudobagrus ussuriensis may belong to Leiocassis which named is Leiocassis brevicaudatus, Leiocassis truncatus and Leiocassis ussuriensis respectively. Pseudobagrus and pelteobagrus were not monophyletic group. The Cranoglanididae and Ictaluridae were sister taxon.
引文
陈国宏,常洪.1996.动物线粒体DNA多态性研究现状.天津畜牧兽医,13(2):3-5
    陈泉梅.2007.中国石首鱼科鱼类分子系统学研究.[硕士学位论文].广州:暨南大学
    陈四海.2011.鱼类线粒体DNA及其研究进展.生物技术通报.13-20
    陈姝君,赫崇波,木云雷等.2008.硬骨鱼类线粒体基因系统发育信息效率分析.中国水产科学,15(1):12-21
    陈晓芳,王翔,袁晓东等.2003.衍形目12种鸟类线粒体细胞色素b基因序列差异及其系统发育关系.遗传学报.30(5):419-424
    陈湘粦.1977.我国鲶科鱼类的总述.水生生物学集刊,6(2):197-216
    丛波,杨福合,孙红梅.2008.动物mtDNA的研究进展.黑龙江畜牧兽医,2008,1:22-23 12
    戴凤田,苏锦祥.1998.鲿科八种鱼类同工酶和骨骼特征分析及系统演化的探讨.动物分类学报,23(4):432-438
    丁少雄,王颖汇,王军,等.2006.基于16S rDNA部分序列探讨中国近海30种石斑鱼类的分子系统进化关系.动物学报,52(3):504-513
    丁青伟.2005.黄颡鱼属(硬骨鱼纲,鲿科)鱼类分子系统发育及种群遗传结构的研究.[硕士学位论文].武汉:华中农业大学
    高泽.1982.线粒体DNA.北京:科学出版社,1-4,100-109
    耿荣庆,常洪,李永红等.中国牛亚科家畜GH基因编码区序列的遗传变异研究.畜牧兽医学报.2008,39(12):1779-1784
    郭宪光.2006.骨鳔鱼类若干类群的分子系统发育和分化时间估算.[博士学位论文].武汉:中国科学院研究生院(水生生物研究所)
    郭新红,刘少军,刘巧,等.2004.鱼类线粒体DNA研究新进展.遗传学报,31(9):983-1000
    郭忠超.2011.北方花鳅线粒体基因组测序及鳅类系统发育分析.[硕士学位论文].西安:陕西师范大学
    何向宇,金利平,刘忠,等.线粒体拟核结构及相关疾病研究进展.中国细胞生物学学报.2011,33(2):173-181
    黄原.2011.分子系统发生学,北京:科学技术出版社,106
    鞠艳芳,高建恩,孙启鸿.2006.线粒体蛋白质组学研究进展.第四军医大学学报,27(8):760-762
    李超.4种鲇形日鱼类的RAPD研究.2008.[硕士学位论文].哈尔滨:东北林业大学
    李春枝,张邦杰,李本旺,等.2006.尖塘鳢属鱼类线粒体12SrRNA基因序列分析.生态科学,25(5):433-436
    李建华,王继文.2005.动物线粒体DNA在进化遗传学研究中的应用.40(2):5-7
    李林,梁宏伟,李忠等.2011.瓦氏黄颡鱼线粒体全基因组序列分析及系统进化.遗传.33(6):627-635
    梁宏伟,李林,李忠等.2011.基于mtDNA全序列的南方大口鲇进化分析.西北农林科技大学(自然科学版).39(11):80-87
    李建华,王继文.2005.动物线粒体DNA在进化遗传学研究中的应用.生物学通报.40(2):5-7
    李敏.2011.蝗总科部分种类COⅡ和18SrRNA基因分子系统学研究.[硕士学位论文].西安:陕西师范大学
    刘好朋,胡京京,苏荣胜,等.2011.线粒体基因与疾病关系的研究进展.中国畜牧兽医,38(1):191-193
    刘焕章.2002.鱼类线粒体DNA控制区的结构与进化:以鳑鮍鱼类为例.自然科学进展,12(3):266-271
    刘红艳,余来宁,张繁荣.2008.鱼类线粒体DNA控制区的分子结构及应用进展.水利渔业.28(2):4-8
    刘思情.2010.鳅超科鱼类若干基因的进化及分子系统发育分析.[硕士学位论文].武汉:华中农业大学
    吕凤义,左艳玲,范月明,等.2008.四种鲿科鱼类鲫鱼线粒体DNA控制区序列的比较研究.华南师范大学学报(自然科学版),2:105-110
    吕国庆,李思发.1998.鱼类线粒体DNA多态研究和应用进展.中国水产科学.5(3):94-103
    彭作刚,何舜平,张耀光.2002.细胞色素b基因序列变异与东亚拟鳞鱼类系统发育.自然科学进展.12(6):596-600
    彭作刚,张耀光,何舜平,等.2005.从细胞色素b基因序列变异分析中国鲇形目鱼类的系统发育.遗传学报,32(2):145-154
    彭作刚.2005.中国鲇形目鱼类和相关类群细胞色素b基因序列变异及其科间系统发育关系研究.[硕士学位论文].重庆:西南师范大学
    时伟.2011.应用线粒体全序列研究鲽形目鱼类的分子系统关系及演化.[博士学位论文].青岛:中国海洋大学
    秦钦,蔡永祥,许志强,等.2010.长江下游4属6种鲿科鱼类线粒体16S rDNA部分序列的比较分析.江苏农业学报,26(2):373-376
    孙慧敏.2009.蝗亚目三种昆虫线粒体基因组测序与蝗总科系统发育分析.[博士学位论文].西安:陕西师范大学
    唐琼英,刘焕章,杨秀平,等.2005.沙鳅亚科鱼类线粒体DNA控制区结构分析及系统发育关系的研究[J].水生生物学报,29(6):647-653
    汪泰初,刘朝良,肖林珍.2006.线粒体基因组(mtDNA)的研究进展.安徽农业科学,34(10):2068,2071
    王庆容,许吕,许崇任,王戎疆.2012.兰州鲇线粒体基因组序列结构及系统发育分析.北京大学学报(自然科学版),48(3):376-380
    王莹,赵华斌,郝家胜.2005.分子系统学的理论,方法及展望.安徽师范大学(自然科学版).28(1):84-88
    王忠卫.2005.遗传标记在鱼类育种和生态研究中的应用—鲢、鳙遗传多样性分析和纯系构建及长江三种鲿科鱼类的遗传结构研究.[博士学位论文].武汉:中国科学院水生生物研究所
    魏秀娟.2011COⅡ&18S rDNA基因序列的蝗总科部分种类的分子系统学研究。[硕士学位论文].西安:陕西师范大学
    吴兰芳,杨爱珍,刘和,等.线粒体调控细胞凋亡的研究进展.中国农学通报.2010,26(8):63-68
    肖调义,陈清华,陈开健,等.2004.四种黄颡鱼乳酸脱氢酶同工酶电泳的研究.上海水产大学学报.31(1):72-74
    肖调义,盛玲芝,苏建明,等.2002.洞庭湖瓦氏黄颡鱼的形态与生长及繁殖特性.湖南农业大学学报,28(4):333-336
    肖调义,张学文,章怀云,等.2004.洞庭湖四种黄颡鱼基因组DNA遗传多样性的RAPD分析. 中国生物工程杂志.24(3):84-89
    肖调义,章怀云,王晓清,等.2003.洞庭湖黄颡鱼生物学特性.动物学杂志,(5):83-88
    肖调义,陈清华,陈开健,等.2004.四种黄颡鱼乳酸脱氢酶同工酶电泳的研究.上海水产大学学报.13(1):72-74
    徐敬明.2010.10种方蟹线粒体12SrRNA基因的序列特征和系统发育关系.水生态学杂志.3(6):69-73
    杨光,俞菊花,徐跑,等.2010.利用18s和ITS序列揭示8中鲇形目鱼类的系统发育.动物学杂志.45(4):110-117
    杨金权.2005.鮈亚科鱼类分子系统发育、演化过程及生物地理学研究[博士学位论文].武汉:中国科学院水生生物研究所
    杨敏.2010.红尾副鳅线粒体基因组序列测定和鲤亚目系统发育分析.[硕士学位论文].西安:陕西师范大学
    俞纯方,刘大翠,刘中全等.2003.鲿科四种鱼LDH同工酶谱的研究.四川职业技术学院学报.13(1):86-88
    袁万安.2008.通过核基因ITS2片段研究对四种鲇形目鱼类进化.淡水渔业.38(5):15-21
    曾青兰,刘焕章.2001.大口胭脂鱼线粒体DNA控制区序列的研究.湖北大学学报(自然科学版),23(3):261-264
    张燕,张鹗,何舜平.2003.中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析.水生生物学报,27(5):463-467
    张树波,赖剑煌.2010.分子系统发育分析的生物信息学方法.计算机科学.2010,37(8):47-66
    张耀光,王德寿,蒲德永.1995a.嘉陵江鲿科鱼类骨学研究(Ⅱ)—脊柱及附肢骨的比较.西南师范大学学报(自然科学版),20(2):167-175
    张耀光,王德寿.1995b.嘉陵江鲿科鱼类骨学研究(Ⅰ)—韦伯氏器的比较.西南师范大学学报(自然科学版),20(1):53-58
    张昀.1998.生物进化.北京:北京大学出版社,36-37
    郑将臣,完全,程起群等.2011.基于16SrRNA序列探讨龟鳖类的遗传分化和系统发生.湖南农业大学学报(自然科学版).37(2):199-205
    赵文学,杨星,彭智,等.2006.黄颡鱼属物种的RAPD分子鉴定及杂种遗传分析.水生生物学报.30(1):101-106
    周传江,王绪祯,汪登强,等.2011.南方鲇线粒体基因组全序列与骨鳔鱼类分化时间的估算.中国科学:生命科学,41(2):150-159
    周发林,江世贵,苏天凤.2004.六种笛鲷属鱼类线粒体16SrRNA基因片段的序列比较.中国水产科学.11(2):99-103
    邹习俊,韩雪,韩虎峰.2009.鱼类mtDNA及其非编码区的研究概况.贵州畜牧兽医,6(4):23-25
    Aexander R M.1965. Strueture and function in catfish. J.Zool.,148:88-152
    Amnuay J, Pradit S, Rafael Z.2007. The complete mitochondrial DNA sequence of the Mekong giant catfish (Pangadianodon gigas), and the phylogenetic relationships among Silutiformes. Gene.387:49-57
    Anderson S, Banker A T, Barrell B G, et al.1981. Sequence and organization of the human mitochondrial genome. Nature,290 (5806):457-465
    Attardi G.1985. An im alm itochondrial DNA:an extrem e examp le of genetic economy. Int Rev Cyt, 93:93-145
    Benzen P, Brown G C, Leggett W C.1989. Mitochondrial DNA polymorphism, population structure, and life history variation in the American shad (Alosa sapidissima). Can J Fish Aquat Sci, 46(8):1446-1454
    Bermingham E, Lamb T, Avise J C.1986. Size polymorphism and heteroplasmy in the mitochondrial DNA of lower vertebrates. J Hered,77(4):249-252
    Boore J L.1999. Animal mitochondrial genomes. Nucleic Acids Res.27,1767-1780
    Broughton R E, Milam J E, Roe B A.2001. The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res.11 (11), 1958-1967
    Broughton R E, Dowling T.1994. ELlength variation in motochadrial of rhe minnow Cytprinella spiloptera. Genetics,138:179-190
    Brown J R, Beckenbach A T, Smith M J.1992. Mitochondrial DNA length variation and heteroplasmy in populations of white sturgeon (Acipenser tranmontanus). Genetics,132(1):221-228
    Brown W M, George M, Jr., Wilson A C.1979. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA,1979,76(4):1967-1971
    Brown W M, Prager E M, Wang A, et al.1982. Mitochondriai DNA sequences of primates:Tempo and mode of evolution. J Mol Evol,18:225-239
    Brown W M.1983. Evolution of animal mitochondrial DNAs. Evolution of genes and proteins. Sunderland MA:Sinaucr,62-88
    Buroker N E, Brown J R, Gilbert T A, et al.1990. Length heteroplasmy of sturgeon mitochondrial DNA:an illegitimate elongation model. Genetics,124:157-163
    Chang Y S, Huang F L, Lo T B, et al.1994. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol,38(2) 138-155
    Chen X J, Wang X W, Kaufman B A, et al.2005. Aconitase coup lesm etabolic regulation to mitochondrial DNA maintenance. Science,307(5710):714-717
    Chen X W, Jiang S, Shi Z Y, Li Q, Xun X R and Guo da Q.2012. Mitochondrial genome of the Siberian sturgeon Acipenser baerii. [J]. Mitochondrial DNA,23 (2):120-122
    Clayton D A.1982a. Replicaton of animal mitochondrial DNA[J]. Cell,28:693-705.
    Clayton D A.1992. Transcription and replication of animal mitochondrial DNAs. Int. Rev. Cytol.141, 217-232
    Clayton D A.1982b. Replication of animal mitochondrial DNA. Cell 28,693-705
    Dbermiller L E. Pfeiler E.2003. Phylogenetic relationships of elopomorph fishes inferred from mitochondrial ribosomal DNA sequence. Mol phylogenet Evol.26(2):202-214
    Delarbre C, Escriva H,Gallut C, Barriel V, Kourilsky P, Janvier P, Laudet V, Gachelin G.2000. The complete nucleotide sequence of the mitochondrial DNA of the agnathan Lampetra fluviatiiis:bearings on the phylogeny of cyclostomes. Mol Bilo Evol,17 (4):519-529
    Delarbre C, Rasmussen A S, Arnason U and Gachelin G.2001. The complete mitochondrial genome of the hagfish Myxine glutinosa:unique features of the control region. J. Mol. Evol,53 (6):634-641
    Elmerot C, Arnason U, Gojobori T, et al.2002. The mitochondrial genome of pufferfish, Fugu rubripes, and ordinal teleostean relationships.Gene,295:163-172
    Felsenstein J.1981. Evolutionary trees from DNA sequences:a maximum approach. J Mol Evol, 17:368-376
    Felsenstein, J.1968. Statistical Inference and the Estimation of Phylogenies.[Ph.D. thesis]. Chicago: Univ. Chicago
    Fitch W M.1971. Toward defining the course of evolution:Minimum change for a specific tree topology. Systematic Zoology,20:406-416
    Geller J B.1993. Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of Mytilus spp (Bivalvat Mollusca). Mol Mar Biol Biotech,2:44-55 genome of the self-fertilizing fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the first description of duplication of control region in fish. Gene 280,1-7
    Gibert T L, Brown J R, OHara P J, et al.1988. Sequence of tRNA(Thr) and tRNA(Pro) from white sturgeon (Acipenser transmontanus) mitochondrial. Nucleic Acids Res,16(24):11825
    Grewe P M. Hebert P D M.1986. Mitochondrial DNA variation in broodstocks of the lake trout. In 39th Conference of the International Association for Great Lakes Research, Scarborough, Ont, Can, NY: LAGLR, Buffalo:35
    Guo X H, Liu S J, Liu Y.2003. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture 224,25-38
    Guo X, Liu S and Liu Y.2007. Evidence for maternal inheritance of mitochondrial DNA in allotetraploid. DNA Seq,18 (4):247-256
    Guo X, Liu,S and Liu Y.2006. Evidence for recombination of mitochondrial DNA in triploid crucian carp. Genetics.172(3):1745-1749
    Gyllensten U, Wharton D, Josefsson A.1991. Paternal inheritancee of mitoehondrial DNA in mice. Nature,352:255-257
    Hillis D M, Huelsenbeck.1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of heresity,83:189-195
    Huang Y, Zhao G and Peng Z.2012. Mitochondrial genome of Onychostoma lini (Teleostei, Cypriniformes). Mitochondrial DNA,23 (3):173-175
    Huelsenbeck J P, Larget B, Miller R E, Ronquist F.2002. Potential application and pitfalls of Bayesian inference of phylogeny. Syst. Biol.51,673-688
    Huelsenbeck J P, Ronquist F.2001. MrBayes:Bayesian inference of phylogeny. Bioinformatics,17, 754-755
    Inoue J G, Miya M, Lam K, Tay B H, Danks J A, Bell J,Walker T I and Venkatesh B.2010. Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes:Chimaeriformes):a mitogenomic perspective. Mol.Biol.Evol,27(11):2576-2586
    Inoue J G, Miya M, Aoyama I, Ishikawa S, Tsukamoto K, Nishida M.2001. Complete mitochondrial DNA sequence of Japanese eel, Anguilla japonica. Fish. Sci.67,118-125
    Inoue J G, Miya M, T sukamoto K, Nishida M.2003. Basal actinopterygian relationships:a mitogenomic perspective on the phylogeny of the'ancient fish'. Mol Phylogenet Evol,26 (1):110-120
    Inoue J G, Miya M, Tsukamoto K, Nishida M.2000. Complete mitochondrial DNA sequence of the Japanese sardine Sardinops melanostictus. Fish. Sci.66,924-932
    Jayaram K C.1968. Contributions to the study of Bagrid fishes (Siluroidea:Bagridae).3. A systematic account of the Japanese, Chinese, Malayan and Indonesian genera. Treubia,27(2-3):287-386
    Jayaram K C. Taxonomic status of the Chinese catfish family Cranoglanididae Myers,1931. Proceedings of the National Institute of Sciences of India,1955,21B (6):256-263
    Johansen C M.1990. Organization of the mitochondrial genome of Atlantic cod,Gardus morhua. Nucleic Acids Res,18(3):411-419
    Jondeung A, Sangthong P, Zardoya R.2007. The complete mitochondrial DNA sequence of the Mekong giant catfish(Pangasianodon gigas) and the phylogenetic relationships among Siluriformes. Gene, 387 (1-2):49-57
    Kartavtsev Y P, Jung S O, Lee Y M, Byeon H K, Lee J S.2007. Complete mitochondrial genome of the bullhead torrent catfish, Liobagrus obesus(Siluriformes, Amblycipididae):Genome description and phylogenetic considerations inferred from the Cyt b and 16S rRNA genes. Gene,396 (1):13-27
    Kartavtsev Y P, Jung S O, Lee Y M, Byeon H K, Lee J S.2007.Complete mitochondrial genome of the bullhead torrent catfish, Liobagrus obesus (Siluriformes, Amblycipididae):Genome description and phylogenetic considerations inferred from the Cyt b and 16S rRNA genes. Gene,387:49-57
    Kenji H, Yohichi W, Fumie K, Seiji W, Kiyoshi K, Kazuyuki T.2011. Highly conserved gene arrangement of the mitochondrial genomes of 23 Plasmodium species. Parasitology International. 60(2):175-180
    Kim I C, Lee J S.2004. The complete mitochondrial genome of the rockfish, Sebastes schlegeli (Scorpaeniformes, Scorpaenidae). Mol. Cells 17,322-328
    Kim S K, Choi E II, IIoag K B, Jang K II, Ryu S II and Hwang U W.2011. Complete mitochondrial genome of the Korean stumpy bullhead Pseudobagrus brevicorpus(Siluriformes, Bagridae). Mitochondrial DNA,22 (3):44-46.
    Kishino H, Hasegawa M.1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution,29:170-179
    Kishino H, Miyata T, Hasegawa M.1990. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J.Mol.Evol.,31,151-160
    Knight A, Mindell D P.1993. Subsition bias, weighting of DNA sequence evolution, and the phylogenetic positions of Fea's viper. Syst. Biol,42(1):18-31
    Kuo C H, Huang S, Lee S C.2003. Phylogeny of hagfish based on the mitochondrial 16S rRNA gene. Mol Phylogenet Evol,28(3):448-457
    Lee J S, Miya M, Lee Y S, et al.2001. The complete DNA sequence of the mitochondrial genome of the selffertilizing fish Rivulus marmoratus (Cyprinodontifonnes, Rivulidae) and the first description of duplication of a control region in fish. Gene,280 (1-2):1-7
    Lee W J, Kocher T D.1995. Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome:early establishment of the vertebrate genome organization. Genetics,139(2): 873-887
    Levine N D.1988. Progress in taxonomy of the apicomplexan protozoa. J Protozool 35:518-520
    Liu H, Teng C S, Teng H Y.2002. Sequence variations in the mitochondrial DNA control region and their implications for the phylogeny of the Cypriniformes. Can.J.
    Mabuchi K, Miya M, Senou H, Suzuki T, Nishida M.2006. Complete mitochondrial DNA sequence of the Lake Biwa wild strain of common carp (Cyprimus carpio L.):further evidence for an ancient origin. Aquaculture 257,68-77
    Mabuchi K, Miya M, Senou H, Suzuki T, Nishida M.2006. Complete mitochondrial DNA sequence of the Lake Biwa wild strain of common carp (Cyprinus carpio L.):further evidence for an ancient origin. Aquaculture 257,68-77
    Mau, B.,1996. Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods. [Ph.D. thesis]. Madison:Univ. Wisconsin
    Meusel M S, Moritz R F.1993. Transfer of paternal mitoehondrial DNA during fertilization of honeybee (APis mellifera L.) eggs. Curr Genet,24(6):539-543
    Meyer A, Wilson A C.1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. JMol Evol,31:359-364
    Meyer.1994. Shortcomings of the cytochrome b gene as a molecular marker. Trends Ecol Evol,9: 278-280
    Miya M, Kawaguchi A, Nishida M.2001. Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial dna sequences. Mol Biol Evo,18(11):1993-2009
    Miya M, Nishida M.1998. Molecular phylogeny and evolution of the deepsea fish genus Sternoptyx.Mol Phylogenetic Evol,10:11-22
    Miya M, Nishida M.1999. Organization of mitochondrial genome of a deepsea fish, Gonostoma gracile (Teleostei:Stomiiformes):first example of transfer RNA gene rearrangement in bony fishes. Mar. Biotechnol.1,416-426
    Miya M, Nishida M.2000a. Molecular phylogeny of the deepsea fish genus Gonostoma(Teleostei: Stomiiformes):two paraphyletic clades and resurrection of Sigmops.Copeia,378-389
    Miya M, Nishida M.2000b. Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum parsimony optimality criterion. Mol Phylogenet Evol, 17:437-455
    Moritz C, Dowling T E, Brown W M.1987. Evolution of animal mitochondrial DNA relevance for population biology and system atics. Ann Rev E col Syst,18:269-289
    Nagase M, Aimi T, Suginaka K, Kitamoto Y, Morinaga T.2005. Complete mitochondrial DNA sequence of the Japanese flying fish Cypselurus hiraii. Fish. Sci.71,914-923
    Nei M, Kumar S.2000. Molecular Evolution and Phylogenetics. New York:Oxford University Press
    Nei M, Tajima F.1981. DNA polymorphism detectable by restrietion endonueleases. Genetics, 97:145-163
    Nylander J A, Ronquist F, Huelsenbeck J P, Nieves A J L.2004. Bayesian phylogenetic analysis of combined data. Syst. Biol.2004,53,47-67
    Okada K, Yamazaki Y, Yokobori S. and Wada H.2010. Repetitive sequences in the lamprey mitochondrial DNA control region and speciation of Lethenteron.[J].Gene,465 (1-2):45-52.
    Palmer J D, Soltis D, Soltis P.1992. Large size and complex structure of mitochondrial DNA in two nonflowering land plants. Curr Genet,21:125-129
    Pearson W R, Robins G, Zhang T.1999. Generalized neighbor-joining:more reliable phylogenetic tree reconstruction. Mol Biol Evol,16 (6):806-816
    Peng Z, Wang J and He S.2006. The complete mitochondrial genome of the helmet catfish Cranoglanis bouderius (Siluriformes:Cranoglanididae) and the phylogeny of cotophysan fishes. Gene,376 (2):290-297
    Perna N T, Kocher T D.1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J mol Evol,41:353-358
    Petros J A, Baumann A K, Ruiz-Pesini E, et al.2005. MtDNA mutations increase tumorigenicity in prostate cancer. PNAS,102(3):719-724
    Rannala B, Yang Z.1996. Probability distribution of molecular evolutionary trees:a new method of phylogenetic inference. J. Mol. Evol.43,304-311
    Regan C T.1911. The classification of the teleostean fishes of the order Ostariophysi.2. Souroidae. Annals and Magazine of Natural History,8(9):553-577
    Rzhetsky A, Nei M.1992. A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution,9:945-967
    Saitoh K, Miya M, Inoue J G, Ishiguro N B, Nishida M.2003. Mitochondrial genomics of ostariophysan fishes:perspectives on phylogeny and biogeography. Mol. Evol.56 (4):464-472
    Saitoh K, Sado T, Mayden R L, Hanzawa N, Nakamura K, Nishida M, Miya M.2006. Zool., 80:569-581
    Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii:Ostariophysi):the first evidence toward esolution of higher level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences. J. Mol. Evol.63 (6),826-841
    Saitou N, Nei M.1987. The neighbor-joining method:A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,4:406-425
    Sehwartz M, Vissing J.2002. Paternal Inheritance of mitochondrial DNA. N Eng J Med, 347(8):576-580
    Sforza L L C, Edwards A W.1967. Phylogenetic analysis:models and estimation procedures. American Journal of Human Genetics,19 (3):233-257
    Shadel G S, Clayton D A.1997. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66,409-435
    Sneath P H A, Sokal R R.1973. Numerical Taxonomy. San Francisco:Freeman
    Southern SO, Southern PJ, Dizon AE. Molecular characterization of a clone dolphin mitochondrial genome. J.Mol.Evol.,1988,28:32-42
    Steel M A, Hendy M D, Penny D.1988. Loss of information in genetic distances. Nature,336(6195): 118
    Steel M, Penny D.2000. Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol Biol Evol,17(6):839-850
    Sturmbauar C, Meyer A.1992. Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fish. Leter to Nature,358(6387):578-581
    Tilak R.1965. The osteocranium and the weberian apparatus of the fishes of the family bagridae (Pisces:Siluroridei). Gegebbarus Morph. Jb.,107:415-443
    Vittas S, Drosopoulou E, Kappas I, Pantzartzi C N, Scouras Z G.2011. The mitochondrial genome of the European catfish Silurus glanis (Silurifonnes. Siluridae). J Biol Res (Thessalon),15:25-35
    Vittas S, Drosopoulou E, Kappas I, Pantzartzi C N, Scouras Z G.2011. The mitochondrial genome of the European catfish Silurus glanis(Siluriformes, Siluridae). J Biol Res (Thessalon),15:25-35
    Waldbieser G C, Bilodeau A L, Nonneman D J.2003. Complete sequence and characterization of the channel catfish mitochondrial genome. DNA Seq,14 (4):265-277
    Wallberg M W, Clayton DA.1981. Sequence and properties of the human K B cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res,9:541-5421.
    Wang C, Chen Q, Lu G, Xu J, Yang Q, Li S.2008. Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei):insight into its phylogenic position within Cyprinidae. Gene 424 (1-2),96-101
    Wang J, Shen T, Ju J and Yang G.2011. The complete mitochondrial genome of the Chinese ongsnout catfish Leiocassis longirostris (Siluriformes:Bagridae) and a time-calibrated phylogeny of ostariophysan fishes. Mol. Biol. Rep,38 (4):2507-2516
    Ward B L, Anderson R S, Bendich A J.1981. The mitochondrial genome is large and variable in a family of plants(cucurbitaceae), Cell; 25:793-803
    Ward R D, Payne P.1994. Appraisal of molecular genetic technique in fisheries. Rev Fish Biol Fish, 4:3000-3257
    Wolstenhome D R, Clary D O.1985. Sequence evolution of Drosophila mitochondrial DNA. Genetics, 190:725-744
    Wu H W.1930.On some fishes collected from the upper Yangtze valley.Sinensia:65
    Zardoya R, Meyea A.1996. Phylogenetic Performance of mitochondrial protein coding genes in resolving relationships among vertebrates. Mol Biol Evol,13(7):933-942
    Zhang X Y, Yue B S, Jiang W X, et al.2009. The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes:Cyprinidae) and phylogenetic implications. Mol. Biol. Rep.36, 981-991
    Zhang Y G, Wang D S.1995. Studies on the osteology of the bagrid catfishes from Jialing River (IV): an approach to the phylogenetic relationship. Journal of Southwest China Normal University,20(4): 432-439
    Zuo G P, Wang J, He S P.2006. The complete mitochondrial genome of the helmet catfish Cranoglanis bouderius (Siluriformes:Cranoglanididae) and the phylogeny of otophysan fishes. Gene. 376:290-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700