基于脑电节律特征优化与同步性的运动意愿解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑机接口技术的目标是为在大脑和外部设备之间建立一条不依赖外周神经及肌肉的直接控制及感知通道。这种技术有望恢复残疾及瘫痪患者的运动交流能力并为人类提供新的信息交互方式。脑机接口的基础是对检测到的神经信号进行解码以判断大脑活动的真实意愿。对基于脑电信号的脑机接口来说,所得到的信号属于宏观场电位,基本形式体现为各种节律信号的综合。因此,对脑电节律特性的分析和理解,以及对节律信号的解码是相关脑机接口研究的重要基础。
     本论文以脑机接口中的节律脑电信号解码为研究目标,重点研究运动相关节律信号多频率时间成分共存特性及信号同步特征提取方法,旨在将其用于运动意愿的解码。论文的主要创新点包括提出了综合脑电节律信号的频率、时间、空间特征的优化方法,在优化中采用自适应策略以平衡脑机接口识别精度和泛化能力,以及提出并验证了一种基于网络特性的脑电节律同步性特征。
     在脑电节律成分优化方法中,论文研究了脑电节律信号的频域、时域、空域信息的相互关系,在现有的多种特征筛选方法的基础上提出了一种同时对信号的频率-时间-空间特征进行综合利用的方法,以加强对运动相关脑电信号模式的识别。在该方法中,论文分析了频-时-空模式识别的精度和脑机接口泛化能力之间的平衡问题,通过一种数据驱动的算法得到优化的特征数据以同时提升这两个指标。在采用真实的运动及运动想象脑电的实验中,该方法相对于原有的基于共空域模式的脑电识别方法可以更有效地对不同受试者的运动相关脑电进行个性化的识别,两类实验的平均准确率分别相对提高10%和6%以上,有助于提高脑机接口系统的实用性。
     在节律信号同步化方面论文主要关注多通道信号同步特征。脑电信号的空间特征不仅体现为不同时频成分的节律在空间中的分布,还包含了不同位置信号之间的相关信息。通道间的同步性一定程度上反映了不同脑区间的同步相关特性,而后者与大脑的许多重要功能息息相关。但在现有的脑机接口解码算法中对脑电同步性的整体分析少见报道,本论文采用一种基于脑电通道间同步性网络的信号特征提取方法。该方法先将各个通道间的节律同步信息网络化,然后通过计算网络属性来获得反映脑电信号同步性的特征。在此项研究中,为了更好地评估同步化分析方法,论文还对节律信号的同步性机制模型进行了研究,对常用的节律活动模型进行了改进使之更符合真实的神经组织结构。由此获得的模拟数据被用于同步化方法的验证和参数设置。
     在以上节律信号研究的基础上,论文还将脑电同步性分析方法和脑电成分优化方法结合。通过优化特征信息确定了用于同步性分析的信号的时频范围,从而提高了算法的解码性能。对真实脑电数据的解码实验显示新的特征提取方法能有效区别不同的运动意愿。
Brain-computer interface (BCI) system can provide a direct control or sensory channel that do not rely on peripheral neural and muscular system between brain and external equipments. BCI technologies are expected to restore the motor functionality of patients with paralytic injury or disease, and to provide humans with new way of interaction. The base of BCI technologies are brain intention identification by means of neural signal decoding. For BCIs based on electroencephalogram (EEG), the signal utilized is a synthesis of multiple rhythmic field potentials, so the analysis for understanding the properties of EEG rhythm plays an important role in related BCI decoding methods.
     This dissertation focuses on the property of rhythmic signal components and methods for its feature extraction. The resulting algorithm is used in motor intention decoding.
     In the analysis of EEG rhythm components, the relationships between information frequency, temporal and spatial EEG domains have been studied. The dissertation proposed a comprehensive method to optimize the features in all three domains simultaneously. The new method is designed to achieve a better tradeoff between EEG pattern recognition accuracy and generalization capacity of the algorithm, as the proposed method used a data-driven method to achive varied accuracy for different features. The experiments with motor execution and motor imagery EEG data showed that the proposed algorithm can achieve a better user-specific recognition of the motor-related EEG patterns (average rate of correct recognition improved more than 10% and 6% for two experiments), while at the same time remains the system's generalization capacity-which is two important aspects of BCI application.
     The synchronization feature of multi-channel EEG is also studied in this dissertation, as it embodies spatial properties of EEG besides component distribution. Synchronization between EEG channels reflects neural synchrony between brain regions, and neural synchrony is believed to support a series of important brain functionality. However there are few reports about BCI algorithm using overall synchronization pattern. A feature extraction method based on connectivity network of synchrony is proposed, which first calculates the synchronization value between electrode pairs, then generates the network topography measures to discribe the network synchronization pattern. In order to evaluate this method, the dissertation also proposed a modified rhythmic signal synchonization model. The simulation data generated with the model is used to set the parameters of the feature extraction method.
     Based on the above studies of rhythmic signal, the synchronization feature method is combined with the EEG component feature optimization to limite signal time-frequency range. Tests with real motor-related EEG data showed that the combination would largely improve the performance of synchronization method.
引文
[1]M. D. Dominique, "What is Neural Engineering?" Journal of Neural Engineering, vol.4, 2006.
    [2]C. Eliasmith and C. H. Anderson, Neural Engineering-Computation, Representation, and Dynamics in Neurobiological Systems:The MIT Press,2004.
    [3]J. R. Wolpaw, et al., "Brain-computer interfaces for communication and control" Clinical Neurophysiology, vol.113, pp.767-791,2002.
    [4]J. R. Wolpaw, et al., "Brain-Computer Interface Technology:A Review of the First International Meeting" IEEE Transactions on Rehabilitation Engineering, vol.8, pp. 164-173,2000.
    [5]E. A. Curran and M. J. Stokes, "Learning to control brain activity:A review of the production and control of EEG components for driving brain-computer interface (BCI) systems" Brain and Cognition, vol.51, pp.326-336,2003.
    [6]M. A. Lebedev and M. A. L. Nicolelis, "Brain-machine interfaces:past, present and future" Trends in Neurosciences, vol.29, pp.536-546,2006.
    [7]L. A. Farwell and E. Donchin, "Talking off the top of your head:toward a mental prosthesis utilizing event-related brain potentials" Electroencephalography and Clinical Neurophysiology, vol.70, pp.510-523,1988.
    [8]B. Z. Allison, et al., "Brain-computer interface systems:progress and prospects" Expert Review of Medical Devices, vol.4, pp.463-474,2007.
    [9]A. Bashashati, et al., "A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals" Journal of neural engineering, vol.4, pp. R32-R57,2007.
    [10]F. Lotte, et al., "A review of classification algorithms for EEG-based brain-computer interfaces" Journal of neural engineering, vol.4, pp. R1-R13,2007.
    [11]B. Guangyu, et al., "VEP-based brain-computer interfaces:time, frequency, and code modulations [Research Frontier]" Computational Intelligence Magazine, IEEE, vol.4, pp. 22-26,2009.
    [12]N. Birbaumer, "Brain-computer-interface research:Coming of age" Clinical neurophysiology:official journal of the International Federation of Clinical Neurophysiology, vol.117, pp.479-483,2006.
    [13]J. R. Wolpaw and D. J. McFarland, "Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans" presented at the Proceedings of the National Academy of Sciences of the United States of America,2004.
    [14]Q. Zhao, et al., "EEG-based asynchronous BCI control of a car in 3D virtual reality environments" Chinese Science Bulletin, vol.54, pp.78-87,2009.
    [15]Y. Q. Li, et al., "A Hybrid BCI System for 2-D Asynchronous Cursor Control" presented at the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),2010.
    [16]G. Pfurtscheller, et al., "Self-Paced Operation of an SSVEP-Based Orthosis With and Without an Imagery-Based "Brain Switch":A Feasibility Study Towards a Hybrid BCI" presented at the IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010.
    [17]Y. Su, et al, "A hybrid brain-computer interface control strategy in a virtual environment" Journal of Zhejiang University SCIENCE C, vol.12, pp.351-361,2011.
    [18]G. Pfurtscheller, et al., "the hybrid BCI" Frontiers in Neuroscience, vol.4,2010.
    [19]P. W. Ferrez and J. D. R. Millan, "Error-related EEG potentials generated during simulated brain-computer interaction" presented at the IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,2008.
    [20]B. D. Seno, et al., "Online detection of p300 and error potentials in a BCI speller" Intell. Neuroscience, vol.2010, pp.1-1,2010.
    [21]G. Pfurtscheller, et al., "15 years of BCI research at graz university of technology: current projects" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, pp.205-210,2006.
    [22]A. Kubler, et al., "Brain-computer communication:Unlocking the locked in" Psychological Bulletin, vol.127, pp.358-375,2001.
    [23]A. Kubler, et al., "Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface" Neurology, vol.64, pp.1775-1777,2005.
    [24]G. Pfurtscheller and C. Neuper, "Motor imagery and direct brain-computer communication" Proceedings of the IEEE, vol.89, pp.1123-1134,2001.
    [25]G. Dornhege, et al., "Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms" IEEE Transactions on Biomedical Engineering, vol.51, pp.993-1002,2004.
    [26]Jie Deng, et al., "Classification of the intention to generate a shoulder versus elbow torque by means of a time-frequency synthesized spatial patterns BCI algorithm" Journal of Neural Engineering, vol.2, pp.131-138,2005.
    [27]J. Zhou, et al., "EEG-based classification for elbow versus shoulder torque intentions involving stroke subjects" Computers in biology and medicine, vol.39, pp.443-452, 2009.
    [28]J. R. Wolpaw, et al., "Brain-computer interfaces for communication and control" Clinical neurophysiology:official journal of the International Federation of Clinical Neurophysiology, vol.113, pp.767-791,2002.
    [29]G. Pfurtscheller and F. Lopes Da Silva, "Event-related EEG/MEG synchronization and desynchronization:basic principles" Clinical Neurophysiology, vol.110, pp.1842-1857, 1999.
    [30]M. Kukleta and M. Lamarche, "Steep early negative slopes can be demonstrated in pre-movement bereitschaftspotential" Clinical neurophysiology:official journal of the International Federation of Clinical Neurophysiology, vol.112, pp.1642-1649,2001.
    [31]M. Pregenzer and G. Pfurtscheller, "Frequency component selection for an EEG-based brain to computer interface" IEEE Transactions on Rehabilitation Engineering, vol.7, pp. 413-419,1999.
    [32]B. Lou, et al., "Bipolar electrode selection for a motor imagery based brain–computer interface" Journal of neural engineering, vol.5, pp.342-349, 2008.
    [33]N. F. Ince, et al., "Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings" Journal of neural engineering, vol.3, pp.235-44,2006.
    [34]N. F. lnce, et al., "Extraction subject-specific motor imagery time-frequency patterns for single trial EEG classification" Computers in biology and medicine, vol.37, pp. 499-508,2007.
    [35]G. Dornhege, et al., "Combined Optimization of Spatial and Temporal Filters for Improving Brain-Computer Interfacing" IEEE Transactions on Biomedical Engineering, vol.53, pp.2274-2281,2006.
    [36]G. Buzsaki, Rhythms of the brain. New York:Oxford University Press,2006.
    [37]T. Koenig, et al., "Millisecond by Millisecond, Year by Year:Normative EEG Microstates and Developmental Stages" Neurolmage, vol.16, pp.41-48,2002.
    [38]J. Britz, et al., "BOLD correlates of EEG topography reveal rapid resting-state network dynamics" Neurolmage, vol.52, pp.1162-1170,2010.
    [39]F. Lopes da Silva, "Neural mechanisms underlying brain waves:from neural membranes to networks" Electroencephalography and Clinical Neurophysiology, vol. 79, pp.81-93,1991.
    [40]G. Buzsaki and J. J. Chrobak, "Temporal structure in spatially organized neuronal ensembles:a role for interneuronal networks" Current Opinion in Neurobiology, vol.5, pp.504-510,1995.
    [41]G. Buzsaki and A. Draguhn, "Neuronal Oscillations in Cortical Networks" Science, vol. 304, pp.1926-1929,2004.
    [42]A. Bragin, et al., "Gamma (40-100-Hz) Oscillation in the Hippocampus of the Behaving Rat" Journal of Neuroscience, vol.15, pp.47-60,1995.
    [43]P. Lakatos, et al., "An Oscillatory Hierarchy Controlling Neuronal Excitability and Stimulus Processing in the Auditory Cortex" Journal of Neurophysiology, vol.94, pp. 1904-1911,2005.
    [44]E. Gysels and P. Celka, "Phase synchronization for the recognition of mental tasks in a brain-computer interface" Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.12, pp.406-415,2004.
    [45]F. Varela, et al., "The brainweb:Phase synchronization and large-scale integration" Nat Rev Neurosci, vol.2, pp.229-239,2001.
    [46]E. Pereda, et al., "Nonlinear multivariate analysis of neurophysiological signals" Progress in Neurobiology, vol.77, pp.1-37,2005.
    [47]A. K. Engel and W. Singer, "Temporal binding and the neural correlates of sensory awareness" Trends in Cognitive Sciences, vol.5, pp.16-25,2001.
    [48]A. K. Engel, et al., "Dynamic predictions:Oscillations and synchrony in top-down processing" Nat Rev Neurosci, vol.2, pp.704-716,2001.
    [49]S. Wolf, "Neuronal Synchrony:A Versatile Code Review for the Definition of Relations?" Neuron, vol.24, pp.49-65,1999.
    [50]S. Makeig, et al., "Mining event-related brain dynamics" Trends in Cognitive Sciences, vol.8, pp.204-210,2004.
    [51]H. Shibasaki and M. Hallett, "What is the Bereltschaftspotential?" Clinical Neurophysiology, vol.117, pp.2341-2356,2006.
    [52]S. J. Luck, An Introduction to the Event-related Potential Technique, illustrated edition ed. Cambridge, MA:MIT Press,2005.
    [53]E. Niedermeyer and F. Lopes da Silva, Electroencephalography:Basic Principles, Clinical Applications, and Related Fields,5th ed. ed. Philadelphia, PA:Lippincott Williams & Wilkins,2004.
    [54]S. J. Luck, An introduction to the event-related potential technique:MIT press,2005.
    [55]E. Basar, et al., "Important relation between EEG and brain evoked potentials" Biological Cybernetics, vol.25, pp.41-48,1976.
    [56]S. Makeig, et al., "Dynamic Brain Sources of Visual Evoked Responses" Science, vol.295, pp.690-694,2002.
    [57]R. W. Thatcher, et al., "Self-Organized Criticality and the Development of EEG Phase Reset" Human Brain Mapping, vol.30, pp.553-574,2009.
    [58]D. Mantini, et al., "Large-scale brain networks account for sustained and transient activity during target detection" Neurolmage, vol.44, pp.265-274,2009.
    [59]J. Anemuller, et al., "Complex independent component analysis of frequency-domain electroencephalographic data" Neural Networks, vol.16, pp.1311-1323,2003.
    [60]J. Sawinski, et al., "Visually evoked activity in cortical cells imaged in freely moving animals" Proceedings of the National Academy of Sciences, vol.106, pp.19557-19562, 2009.
    [61]L. R. Hochberg, et al., "Neuronal ensemble control of prosthetic devices by a human with tetraplegia" Nature, vol.442, pp.164-171,2006.
    [62]J. P. Donoghue, et al., "Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia" The Journal of Physiology, vol.579, pp.603-611,2007.
    [63]K. Sung-Phil, et al., "Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia" Journal of neural engineering, vol. 5, p.455,2008.
    [64]N. Birbaumer and L. G. Cohen, "Brain-computer interfaces:communication and restoration of movement in paralysis" The Journal of Physiology, vol.579, pp.621-636, 2007.
    [65]J. D. Millan, et al., "Asynchronous Non-Invasive Brain-Actuated Control of an Intelligent Wheelchair" presented at the 2009 Annual International Conference of the leee Engineering in Medicine and Biology Society (EMBC),2009.
    [66]E. Rodriguez, et al., "Perception's shadow:long-distance synchronization of human brain activity" Nature, vol.397, pp.430-433,1999.
    [67]B. Penolazzi, et al., "Gamma EEG activity induced by semantic violation during sentence reading" Neuroscience Letters, vol.465, pp.74-78,2009.
    [68]S. Waldert, et al., "A review on directional information in neural signals for brain-machine interfaces" Journal of Physiology-Paris, vol.103, pp.244-254,2009.
    [69]J. Kubanek, et al., "Decoding flexion of individual fingers using electrocorticographic signals in humans" Journal of neural engineering, vol.6, p.066001,2009.
    [70]G. Schalk and et al., "Decoding two-dimensional movement trajectories using electrocorticographic signals in humans" Journal of neural engineering, vol.4, p.264, 2007.
    [71]E. Vaadia and N. Birbaumer, "Grand challenges of brain computer interfaces in the years to come" frontiers in Neuroscience,2009.
    [72]M. Daniel, "Evolution of brain-computer interface:action potentials, local field potentials and electrocorticograms" Current Opinion in Neurobiology, vol.20, pp. 741-745,2010.
    [73]P. J. Allen, et al., "A Method for Removing Imaging Artifact from Continuous EEG Recorded during Functional MRI" Neurolmage, vol.12, pp.230-239,2000.
    [74]L. Yang, et al., "EEG-fMRI reciprocal functional neuroimaging" Clinical Neurophysiology, vol.121, pp.1240-1250,2010.
    [75]D. P. Nowlis and J. Kamiya, "THE CONTROL OF ELECTROENCEPHALOGRAPHIC ALPHA RHYTHMS THROUGH AUDITORY FEEDBACK AND THE ASSOCIATED MENTAL ACTIVITY" Psychophysiology, vol.6, pp.476-484,1970.
    [76]M. B. Sterman, et al., "Biofeedback Training of the Sensorimotor Electroencephalogram Rhythm in Man:Effects on Epilepsy" Epilepsia, vol.15, pp. 395-416,1974.
    [77]J. J. Vidal, "Toward Direct Brain-Computer Communication" Annual Review of Biophysics and Bioengineering, vol.2, pp.157-180,1973.
    [78]J. R. Wolpaw, et al., "BCI meeting 2005-workshop on signals and recording methods" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, pp. 138-141,2006.
    [79]D. Huang, et al., "Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control" Journal of neural engineering, vol.6, p.046005,2009.
    [80]B. Wu, et al., "A virtual Chinese keyboard BCI system based on P300 potentials" Tien Tzu Hsueh Pao/Acta Electronica Sinica, vol.37, pp.1733-1738+1745,2009.
    [81]F. Galan, et al., "A brain-actuated wheelchair:Asynchronous and non-invasive Brain-computer interfaces for continuous control of robots" Clinical Neurophysiology, vol.119, pp.2159-2169,2008.
    [82]A. Vuckovic, "Non-invasive BCI:How far can we get with motor imagination?" Clinical Neurophysiology, vol.120, pp.1422-1423,2009.
    [83]J. R. Wolpaw, et al., "Brain-computer interfaces for communication and control" Clinical Neurophysiology, vol.113, pp.767-791,2002.
    [84]D. J. McFarland, et al., "Mu and beta rhythm topographies during motor imagery and actual movements" Brain Topography, vol.12, pp.177-186,2000.
    [85]G. Pfurtscheller and F. H. L. da Silva, "Event-related EEG/MEG synchronization and desynchronization:basic principles" Clinical Neurophysiology, vol.110, pp.1842-1857, 1999.
    [86]E. V. C. Friedrich, et al., "A scanning protocol for a sensorimotor rhythm-based brain-computer interface" Biological Psychology, vol.80, pp.169-175,2009.
    [87]G. Pfurtscheller and F. L. d. Silva, Event-related desynchronization:Elsevier Health Sciences,1999.
    [88]G. Pfurtscheller, "Induced Oscillations in the Alpha Band:Functional Meaning" Epilepsia, vol.44, pp.2-8,2003.
    [89]P. Suffczynski, et al., "Computational model of thalamo-cortical networks:dynamical control of alpha rhythms in relation to focal attention" International Journal of Psychophysiology, vol.43, pp.25-40,2001.
    [90]K. Andrea and K.-R. Muller, "An introduction to brain computer interfacing" in Toward Brain-Computer Interfacing, ed Cambridge, MA:MIT press,2007, pp.1-26.
    [91]E. J. Speckmann, "NEURONAL MECHANISMS UNDERLYING THE GENERATION OF CORTICAL FIELD POTENTIALS" Electroencephalography and Clinical Neurophysiology, vol.57, pp. P13-P13,1984.
    [92]N. Birbaumer, "slow Cortical Potentials:Plasticity, Operant Control, and Behavioral Effects" The Neuroscientist, vol.5, pp.74-78,1999.
    [93]N. Birbaumer, et al., "A spelling device for the paralysed" Nature, vol.398, pp.297-298, 1999.
    [94]T. Hinterberger, et al., "A brain-computer interface (BCI) for the locked-in:comparison of different EEG classifications for the thought translation device" Clinical Neurophysiology, vol.114, pp.416-425,2003.
    [95]官金安,et al.,"单通道脑电信号中诱发电位的单次提取"生物医学工程学杂志,pp.252-256,2006.
    [96]E. E. Sutter, "The brain response interface:communication through visually-induced electrical brain responses" Journal of Microcomputer Applications, vol.15, pp.31-45, 1992.
    [97]X. Gao, et al., "A BCI-based environmental controller for the motion-disabled" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.11, pp.137-140, 2003.
    [98]W. Zhenghua and Y. Dezhong, "Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCls" Journal of neural engineering, vol.5, p.36,2008.
    [99]L. Tao and et al., "An online brain-computer interface using non-flashing visual evoked potentials" Journal of neural engineering, vol.7, p.036003,2010.
    [100]G. R. Muller-Putz, et al., "Steady-state somatosensory evoked potentials:suitable brain signals for brain-computer interfaces?" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, pp.30-37,2006.
    [101]S. S, et al., "Evoked correlates of stimulus uncertainty" Science, vol.150, pp.443-446, 1965.
    [102]D. S. Klobassa, et al., "Toward a high-throughput auditory P300-based brain-computer interface" Clinical Neurophysiology, vol.120, pp.1252-1261,2009.
    [103]A. Kubler, et al., "A Brain-Computer Interface Controlled Auditory Event-Related Potential (P300) Spelling System for Locked-In Patients" Annals of the New York Academy of Sciences, vol.1157, pp.90-100,2009.
    [104]A.-M. Brouwer and J. B. F. v. Erp, "A Tactile P300 Brain-Computer Interface" frontiers in Neuroscience, vol.4,2010.
    [105]L. Yuanqing, et al., "An EEG-Based BCI System for 2-D Cursor Control by Combining Mu/Beta Rhythm and P300 Potential" IEEE Transactions on Biomedical Engineering, vol. 57, pp.2495-2505,2010.
    [106]I. I. Goncharova, et al., "EMG contamination of EEG:spectral and topographical characteristics" Clinical Neurophysiology, vol.114, pp.1580-1593,2003.
    [107]M. Fatourechi, et al., "EMG and EOG artifacts in brain computer interface systems:A survey" Clinical Neurophysiology, vol.118, pp.480-494,2007.
    [108]S. Theodoridis and K. Koutroumbas, Pattern Recognition, Third ed. Orlando:Academic Press,2006.
    [109]D. J. McFarland, et al., "BCI meeting 2005-workshop on BCI signal processing:feature extraction and translation" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, pp.135-138,2006.
    [110]綦宏志,et al.,“想象动作中动态脑电的信息熵研究”中国生物医学工程学报,pp.74-77,2007.
    [111]J. Oin, et al., "ICA and Committee Machine-Based Algorithm for Cursor Control in a BCI System" in Advances in Neural Networks-ISNN 2005. vol.3496,1 ed:Springer Berlin/ Heidelberg,2005, pp.293-318.
    [112]D. J. McFarland and J. R. Wolpaw, "Sensorimotor rhythm-based brain-computer interface (BCI):feature selection by regression improves performance" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.13, pp.372-379, 2005.
    [113]F. Lotte, et al., "A review of classification algorithms for EEG-based brain-computer interfaces" J Neural Eng, vol.4, pp. R1-R13,2007.
    [114]B. Blankertz, et al., "The Berlin brain-computer interface:EEG-based communication without subject training" leee Transactions on Neural Systems and Rehabilitation Engineering, vol.14, pp.147-152,2006.
    [115]J. Blumberg, et al., "Adaptive Classification for Brain Computer Interfaces" presented at the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS),2007.
    [116]P. Shenoy, et al., "Towards adaptive classification for BCI" Journal of neural engineering, vol.3, pp. R13-R23,2006.
    [117]B. Blankertz, et al., "The BCI competition Ⅲ:validating alternative approaches to actual BCI problems" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, pp.153-159,2006.
    [118]S. Sun, et al., "An experimental evaluation of ensemble methods for EEG signal classification" Pattern Recognition Letters, vol.28, pp.2157-2163,2007.
    [119]S. Pradeep, et al., "Towards adaptive classification for BCI" Journal of neural engineering, vol.3, p. R13,2006.
    [120]J. R. Millan and J. Mourino, "Asynchronous BCI and local neural classifiers:an overview of the adaptive brain interface project" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.11, pp.159-161,2003.
    [121]C. Vidaurre, et al., "A fully on-line adaptive BCI" IEEE Transactions on Biomedical Engineering, vol.53, pp.1214-1219,2006.
    [122]J. C. Sanchez, et al, "Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants" Neural Networks, vol.22, pp.305-315,2009.
    [123]J. Philips, et al, "Adaptive shared control of a brain-actuated simulated wheelchair" presented at the 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007.
    [124]J. d. R. Millan, et al., "Brain-actuated interaction" Artificial Intelligence, vol.159, pp. 241-259,2004.
    [125]wikipedia. (2011, Cortical homunculus. Available: http://en.wikipedia.org/wiki/Cortical homunculus
    [126]J. R. Wolpaw and D. J. McFarland, "Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans" Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.17849-17854,2004.
    [127]G. Pfurtscheller, et al., "15 years of BCI research at graz university of technology: current projects" Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.14, pp.205-210,2006.
    [128]B. Blankertz, et al., "The Berlin brain-computer interface:EEG-based communication without subject training" Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.14, pp.147-152,2006.
    [129]T. M. Vaughan, et al., "The wadsworth BCI research and development program:at home with BCI" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, pp.229-233,2006.
    [130]C. W. Anderson and Z. Sijercic, "Classification of EEG Signals from Four Subjects During Five Mental Tasks" presented at the Conference on Engineering Applications in Neural Networks (EANN96),1996.
    [131]F. Faradji, et al., "Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis" Journal of Neuroscience Methods, vol.180, pp.330-339,2009.
    [132]T. M. Vaughan, et al., "The wadsworth BCI research and development program:at home with BCI" Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.14, pp.229-233,2006.
    [133]J. R. Wolpaw, et al., "The Wadsworth Center brain-computer interface (BCI) research and development program" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.11, pp.1-4,2003.
    [134]B. Blankertz, et al., "The non-invasive Berlin Brain-Computer Interface:Fast acquisition of effective performance in untrained subjects" Neurolmage, vol.37, pp.539-550, 2007.
    [135]M. Pregenzer, et al, "Automated feature selection with a distinction sensitive learning vector quantizer" Neurocomputing, vol.11, pp.19-29,1996.
    [136]Q. Lei, et al, "Motor imagery classification by means of source analysis for brain-computer interface applications" Journal of neural engineering, vol.1, pp. 135-141,2004.
    [137]A. Vallabhaneni and B. He, "Motor imagery task classification for brain computer interface applications using spatiotemporal principle component analysis" Neurol Res, vol.26, pp.282-7,2004.
    [138]T. Wang, et al., "Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns" Clinical Neurophysiology, vol.115, pp. 2744-2753,2004.
    [139]J. del R Millan, et al., "A local neural classifier for the recognition of EEG patterns associated to mental tasks" IEEE Transactions on Neural Networks, vol.13, pp.678-686, 2002.
    [140]N. Yamawaki, et al., "An enhanced time-frequency-spatial approach for motor imagery classification" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, pp.250-254,2006.
    [141]N. F. Ince, et al., "Adapting subject specific motor imagery EEG patterns in space-time-frequency for a brain computer interface" Biomedical Signal Processing and Control,2009.
    [142]F. Goksu, et al., "Classification of EEG with structural feature dictionaries in a brain computer interface" presented at the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS),2008.
    [143]L. Jie, et al., "A Prior Neurophysiologic Knowledge Free Tensor-Based Scheme for Single Trial EEG Classification" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.17, pp.107-115,2009.
    [144]Q. Lei and H. Bin, "A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications" Journal of neural engineering, vol.2, p.65,2005.
    [145]F. Miwakeichi, et al., "Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis" Neurolmage, vol.22, pp.1035-1045,2004.
    [146]K. R. M¨uller, et al., "Machine learning techniques for brain-computer interfaces" Biomed. Technol., vol.49, pp.11-22,2004.
    [147]O. Bai, et al., "Asymmetric spatiotemporal patterns of event-related desynchronization preceding voluntary sequential finger movements:a high-resolution EEG study" Clinical Neurophysiology, vol.116, pp.1213-1221,2005.
    [148]G. Pfurtscheller, et al., "Event-related beta synchronization after wrist, finger and thumb movement" Electroencephalography and Clinical Neurophysiology/ Electromyography and Motor Control, vol.109, pp.154-160,1998.
    [149]J. A. Pineda, et al., "Learning to control brain rhythms:making a brain-computer interface possible" IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.11, pp.181-184,2003.
    [150]Z. J. Koles, "The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG" Electroencephalography and Clinical Neurophysiology, vol.79, pp.440-447,1991.
    [151]K. Fukunaga, Introduction to Statistical Pattern Recognition,2 ed. New York:Academic Press,1990.
    [152]B. Blankertz, et al., "Optimizing Spatial Filters for Robust EEG Single-Trial Analysis" IEEE Signal Processing Magazine, vol.25, pp.41-56,2008.
    [153]W. Yijun, et al., "BCl competition 2003-data set IV:An algorithm based on CSSD and FDA for classifying single-trial EEG" IEEE Transactions on Biomedical Engineering, vol. 51, pp.1081-1086,2004.
    [154]D. J. Krusienski, et al., "Common Spatio-Temporal Patterns for the P300 Speller" presented at the 3rd International IEEE/EMBS Conference on Neural Engineering (CNE2007),2007.
    [155]W. Wei, et al., "One-Versus-the-Rest(OVR) Algorithm:An Extension of Common Spatial Patterns(CSP) Algorithm to Multi-class Case" presented at the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005.
    [156]J. Muller-Gerking, et al., "Designing optimal spatial filters for single-trial EEG classification in a movement task" Clinical Neurophysiology, vol.110, pp.787-798, 1999.
    [157]M. Pregenzer and G. Pfurtscheller, "Distinction Sensitive Learning Vector Quantization (DSLVQ.) application as a classifier based feature selection method for a Brain Computer Interface" in Artificial Neural Networks,1995., Fourth International Conference on,1995, pp.433-436.
    [158]G. Pfurtscheller, et al., "Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks" Neurolmage, vol.31, pp.153-159, 2006.
    [159]G. Schalk, et al., "BCI2000:a general-purpose brain-computer interface (BCI) system" IEEE Transactions on Biomedical Engineering, vol.51, pp.1034-1043,2004.
    [160]R. J. Croft and R. J. Barry, "Removal of ocular artifact from the EEG:a review" Neurophysiologie Clinique/Clinical Neurophysiology, vol.30, pp.5-19,2000.
    [161]N. Brenner, et al., "Synergy in a Neural Code" Neural Computation, vol.12, pp. 1531-1552,2000.
    [162]P. E. Latham and S. Nirenberg, "Synergy, Redundancy, and Independence in Population Codes, Revisited" The Journal of Neuroscience, vol.25, pp.5195-5206,2005.
    [163]P. J. Uhlhaas and W. Singer, "Neural Synchrony in Brain Disorders:Relevance for Cognitive Dysfunctions and Pathophysiology" Neuron, vol.52, pp.155-168,2006.
    [164]C. J. Stam and J. C. Reijneveld, "Graph theoretical analysis of complex networks in the brain", ed:BioMed Central Ltd.,2007.
    [165]C. Stam, et al., "Small-World Networks and Functional Connectivity in Alzheimer's Disease" Cerebral Cortex, vol.17, pp.92-99,2007.
    [166]K. J. Friston, "Functional and effective connectivity in neuroimaging:A synthesis" Human Brain Mapping, vol.2, pp.56-78,1994.
    [167]O. Sporns, et al., "The Human Connectome:A Structural Description of the Human Brain" PLoS Comput Biol, vol.1, p. e42,2005.
    [168]C. J. Honey, et al., "Network structure of cerebral cortex shapes functional connectivity on multiple time scales" Proceedings of the National Academy of Sciences, vol.104, pp. 10240-10245,2007.
    [169]M. G. Rosenblum, et al., "Phase Synchronization of Chaotic Oscillators" Physical Review Letters, vol.76, p.1804,1996.
    [170]L. Jean-Philippe, et al., "Measuring phase synchrony in brain signals" Human Brain Mapping, vol.8, pp.194-208,1999.
    [171]K. Lehnertz, et al., "Chaos in Brain?" presented at the World Scientific, Singapore, 2000.
    [172]N. F. Rulkov, et al., "Generalized Synchronization of Chaos in Directionally Coupled Chaotic Systems" Physical Review E, vol.51, pp.980-994,1995.
    [173]E. Bullmore and O. Sporns, "Complex brain networks:graph theoretical analysis of structural and functional systems" Nat Rev Neurosci, vol.10, pp.186-198,2009.
    [174]D. S. Modha and R. Singh, "Network architecture of the long-distance pathways in the macaque brain" Proceedings of the National Academy of Sciences, vol.107, pp. 13485-13490,2010.
    [175]D. S. Bassett, et al., "Adaptive reconfiguration of fractal small-world human brain functional networks" Proceedings of the National Academy of Sciences, vol.103, pp. 19518-19523,2006.
    [176]S. Achard, et al., "A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs" Journal of Neuroscience, vol. 26, pp.63-72,2006.
    [177]S. I. Dimitriadis, et al., "Tracking brain dynamics via time-dependent network analysis" Journal of Neuroscience Methods, vol.193, pp.145-155,2010.
    [178]D. J. Watts and S. H. Strogatz, "Collective dynamics of "small-world" networks" Nature, vol.393, pp.440-442,1998.
    [179]A.-L. Barabasi and R. Albert, "Emergence of Scaling in Random Networks" Science, vol. 286, pp.509-512,1999.
    [180]R. Milo, et al., "Network Motifs:Simple Building Blocks of Complex Networks" Science, vol.298, pp.824-827,2002.
    [181]M. Girvan and M. E. J. Newman, "Community structure in social and biological networks" Proceedings of the National Academy of Sciences, vol.99, pp.7821-7826, 2002.
    [182]V. Latora and M. Marchiori, "Efficient Behavior of Small-World Networks" Physical Review Letters, vol.87, p.198701,2001.
    [183]D. S. Bassett and E. Bullmore, "Small-World Brain Networks" The Neuroscientist, vol. 12, pp.512-523,2006.
    [184]Y. Kuramoto, "Self-entrainment of a population of coupled non-linear oscillators" presented at the International Symposium on Mathematical Problems in Theoretical Physics,1975.
    [185]D. S. Bassett and E. T. Bullmore, "Human brain networks in health and disease" Current Opinion in Neurology, vol.22, pp.340-347,2009.
    [186]A. T. Winfree, "Biological rhythms and the behavior of populations of coupled oscillators" Journal of Theoretical Biology, vol.16, pp.15-42,1967.
    [187]S. H. Strogatz, "From Kuramoto to Crawford:exploring the onset of synchronization in populations of coupled oscillators" Physica D:Nonlinear Phenomena, vol.143, pp.1-20, 2000.
    [188]W. J. Freeman, Mass action in the nervous system. New York:Academic Press,1975.
    [189]C. J. Stam, et al., "Phase lag index:Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources" Human Brain Mapping, vol.28, pp.1178-1193,2007.
    [190]S. Boccaletti, et al., "Complex networks:Structure and dynamics" Physics Reports, vol. 424, pp.175-308,2006.
    [191]M. E. J. Newman, et al., "Random graphs with arbitrary degree distributions and their applications" Physical Review E, vol.64, p.026118,2001.
    [192]E. Osuna, et al., "An improved training algorithm for support vector machines" in Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop,1997, pp.276-285.
    [193]V. Vapnik, Statistical Learning Theory:Wiley-Interscience,1998.
    [194]S. A. Kotz and M. Schwartze, "Cortical speech processing unplugged:a timely subcortico-cortical framework" Trends in Cognitive Sciences, vol.14, pp.392-399, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700