钽醇盐的电化学合成及纯化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超大规模集成电路的发展,器件的特征尺寸越来越小,栅介质层不断减薄。隧穿电流随栅介质层厚度减薄而呈指数级增加,导致功耗的急剧增加和器件的可靠性降低。解决这一问题的方法之一是使用高介电常数材料代替传统Si02栅介质层。Ta2O5因其具有较高的介电常数(约26),以及与目前集成电路加工相兼容等突出特点,已被认为是有希望作为动态随机存储器电容元件材料和甚大规模集成电路栅介质材料的替代品之一。钽醇盐是化学气相沉积及原子层沉积制备氧化物薄膜的常用前驱体。针对目前氨法制备钽醇盐存在流程长、环境差、成本高、回收率低等缺点,我们提出了电化学合成与纯化制备钽醇盐新技术。本论文系统研究了钽在含有支持电解质乙醇溶液中的电化学行为、乙醇钽的电合成及其精馏提纯的工艺和理论,得出了一些有意义的结果。
     运用循环伏安、线性极化、计时电流和交流阻抗等电化学测试方法,研究了钽在Et4NCl、Et4NBr和Bu4NHSO4为支持电解质的乙醇体系中的电化学行为。结果表明,当给钽施加正电位时,钽在Et4NCl或Et4NBr乙醇溶液中发生点蚀,在Bu4NHSO4乙醇溶液中发生均匀腐蚀。扫描速率增加时,钽在Cl-或Br-中的点蚀电位升高;而在HSO4中的电流密度和扫描速率的平方根成正比。溶液温度升高会加速钽在乙醇中的溶解,钽在Cl-\Br-1以及HSO4乙醇溶液中发生电化学反应的活化能分别为36.25、44.17、43.39kJ/mol。随着支持电解质浓度增加,点蚀电位降低;而钽在HSO4乙醇溶液中的钝化膜厚度会随HSO4浓度增加而减薄。在含有Cl-或Br-的乙醇中,电位大于2.0 V时发生点蚀,且水含量增加,点蚀电位和保护电位增加,电流密度急剧下降;在含HSO4的乙醇体系中,钽仍处于点蚀诱导期,但电流密度随水含量增加有所增加。
     电化学合成过程中,槽电压在电化学合成初期急剧下降,在中期趋于稳定,在后期逐步上升;电流密度和槽电压基本成线性关系。在相同条件下,以Bu4NHSO4为支持电解质的槽电压和电流效率最高,Et4NCl其次,Et4NBr最低。槽电压随极距、电流密度增加而增加,随Bu4NHSO4浓度、电化学合成温度增加而减小。电流效率均超过100%,可能和钽存在低价态有关。
     精馏提纯乙醇钽过程中,在气相温度为46.7℃、气压为200Pa时,有饱和碳氢化合物馏出。精馏时间对产品质量的影响较小,精馏中期产品稍微好于精馏前期和精馏后期。随金属钙添加量的增加,乙醇钽产率减小且精馏时间延长。回流比的增加使乙醇钽纯度提高,特别是铌和硫含量大幅降低,但产品直收率急剧下降,渣率明显上升。以精馏回收后的乙醇为溶剂电化学合成乙醇钽,回收率显著提高,升至90%以上。当采用纯度较高的钽板为原料并在密封性好的精馏装置中进行提纯时,乙醇钽纯度可以达到99.999%,主族元素、活泼金属、过渡金属、铝和铌等杂质元素的含量均优于SAFC Hitech(原Epichem)公司的5N标准。红外光谱和化学键一一对应,并和文献报道结果十分吻合。核磁共振相应的各峰面积之比与氢原子数量比例相吻合。
     以钽板为阳极,不锈钢板为阴极,以季铵盐溶于相应的醇为电解液,通过电化学合成并蒸馏提纯,成功制备出丙醇钽、异丙醇钽及丁醇钽。产物经红外光谱、拉曼光谱检测,吸收峰和各化学键很好对应。核磁共振对应的各峰面积之比与氢原子数量比例相吻合。ICP-Mass分析结果表明,丙醇钽、异丙醇钽和丁醇钽的纯度分别为99.998%、99.998%和99.997%。丙醇钽挥发性最好,丁醇钽其次,异丙醇钽最差,800℃热处理后的总失重率分别为95%、88%和75%。通过苯甲酸失重速率计算出用于后续计算钽醇盐蒸汽压的k值,通过朗缪尔方程并结合上述k值,计算出三种钽醇盐在蒸发阶段的蒸汽压,和文献报道的数据基本一致。通过克劳修斯-克拉佩龙方程计算出三种钽醇盐的蒸发焓。
     本论文研究了电化学合成乙醇钽过程中钽阳极的电化学行,可以为合成钽醇盐提供理论指导;探讨了各种因素对电化学合成乙醇钽及其精馏提纯的影响,可以为小规模生产高纯钽醇盐提供技术指导,为产业化的设备选择提供技术原型;研究了钽醇盐热分解特性,可以为MOCVD前驱体的选择提供理论依据。
With the fast development of very large scale integration (VLSI), the device feature size scales down, resulting in the thinning of the gate dielectric. The tunneling current increases exponentially as the gate dielectric thickness decreases, which leads to unbearable power consumption and device performance problems. A solution is to use materials with large dielectric constants to replace conventional SiO2 dielectric layer. Tantalum pentoxide (Ta2O5) is considered one of the promising candidates as a capacitor insulator in dynamic random access memories (DRAM) and as an ultra large scale integrated circuits (ULSI) gate dielectric due to its high dielectric constant (about 26) and compatibility with ULSI processing. Tantalum alkoxides are widely used precursors in chemical vapor depositon (CVD) and atomic layer deposition (ALD) processes of oxides. Aimed at some shortages such as long flow path, bad work environment, high cost and low recovery rate, a new preparation technology of tantalum alkoxides using electrosynthesis and purification was proposed in this paper. The electrochemical behaviors of tantalum in ethanol containing supporting electrolytes, the electrosynthesis of tantalum ethoxide and its technology and theory of distillation purification were systematically investigated, and some meaningful results were obtained.
     The electrochemical behaviors of tantalum in ethanol solutions containing Et4NOl, Et4NBr and BU4NHSO4 were investigated using cyclic voltammetry, linear polarization, potentiostatic current-time transient and impedance techniques. The results revealed that, when an anodic potential was imposed on the tantalum, it suffered from pitting corrosion in Et4NCl or Et4NBr ethanol solution, while uniform corrosion occurred in BU4NHSO4 ethanol solution. The pitting potential of tantalum in ethanol solution containing Cl- and Br- increased with the increase of scan rate, while current density of tantalum in ethanol solution containing HSO4 was proportional to the square root of the scan rate. The increase of solution temperature could accelerate the dissolution of tantalum, and the apparent activation energy of tantalum in ethanol solution containing Cl-, Br- and HSO4 ions were 36.25,44.17 and 43.39 kJ/mol, respectively. The pitting potential of tantalum in ethanol solution decreased with the increase of supporting electrolyte concentrations, while the passive film thickness of tantalum in ethanol solution containing HSO4 began to thin with the increase of HSO4 concentrations. In the ethanol solution containing Cl- or Br-, the pitting corrosion occurred when the potential was higher than 2.0 V, the pitting potential and repassivation potential increased but the current density decreased with the increase of water content, while in the ethanol solution containing HSO4, tantalum was still in the incubation period and the current density increased with the increase of water content.
     The cell voltage sharply decreased at the early stage of electrolysis, and then began to stabilize in the medium term, finally increased gradually. The current density was basically linear with the cell voltage. Under the same conditions, the cell voltage and current density of tantalum in the solution containing BU4NHSO4 were the highest, followed by Et4NCl, Et4NBr was the lowest. The cell voltage increased with the increase of electrode distance and current density, but decreased with the increasing BU4NHSO4 concentration and solution temperature. All the current efficiency was higher than 100%, which was related to low valence of tantalum.
     Saturated hydrocarbon was distilled when gas phase temperature was 46.7℃at 200 Pa pressure. The distillation time had little effect on the product quality, and the quality of the middle stage was somewhat better than that of the early and late stage. The yield of tantalum ethoxide decreased and the distillation time was prolonged with the increase of calcium weight. When increasing the reflux ratio, the purity of tantalum ethoxide was enhanced, the direct recovery rate of the product sharply decreased, and the residue rate rose obviously. The recovery rate significantly increased and it could rise to 90%when using the ethanol recovered from distillation as solvent in the electrosyntheis of tantalum ethoxide. The purity of tantalum ethoxide could reach 99.999%by using high purity tantalum plates as raw materials and purifying in the distillation device with excellent sealing performance, and the impurity contents such as main group elements, reactive metals, transition metals, aluminium and niobium were superior to that of 5N standard of SAFC Hitech company. Infraed spectrum conformed to chemical bonds excellently, which was consistent with the results reported in literature. The peak area ratio of nuclear magnetic resonance coincided with number ratio of hydrogen atoms.
     Tantalum propoxide (Ta(OPrn)5), tantalum isopropoxide (Ta(OPr')5) and tantalum butoxide (Ta(OBun)5) were successfully prepared by electrosynthesis and distillation purification, using tantalum plate as anode, stainless steel plate as cathode and solutions of quaternary ammonium salt in the corresponding alcohol as electrolytes. Measured by fourier transform infrared spectra (FT-IR) and raman spectra, the absorption peaks of the product were excellently consistent with chemical bonds. The peak area ratio of nuclear magnetic resonance coincided with number ratio of hydrogen atoms. The analysis results of ICP-Mass revealed that the purity of Ta(OPrn)5, Ta(OPrl)5 and Ta(OBun)5 was 99.998%,99.998% and 99.997%, respectively. The volatility of Ta(OPrn)5 was the best, followed by Ta(OBun)5, and Ta(OPr')5 was the poorest, and the total weight loss rate(heat treatment at 800℃) was 95%,88% and 75%, respectively. The value of k was obtained by calculating the weight loss rate of benzoic acid, and the vapor pressure of tantalum alkoxides was calculated using Langmuir equation and k value aforementioned. The data of vapor pressure were basically consistent with the results reported in literature. Enthalpies of vaporization for tantalum alkoxides were calculated from the vapor press-temperature data using the Clausius-Clapeyron equation.
     In this paper, the electrochemical behaviors of tantalum in the electrosynthesis of tantalum ethoxide were investigated, which could provide theoretical guidance for the electrosynthesis of tantalum alkoxides; the influence of various factors on the electrosynthesis and distillation purification of tantalum ethoxide was studied, which could provide technical guidance for the small scale production of high purity tantalum alkoxides, and could provide technical prototype for the equipment selection of industrialization; the thermal decomposition characteristics of tantalum alkoxides were also studied, which could provide theoretical basis for the selection of MOCVD precursors.
引文
[1]Kingon A I, Maria J P, Streiffer S K. Alternative dielectrics to silicon dioxide for memory and logic devices [J]. Nature,2000,406(6799):1032-1038
    [2]周晓强,凌惠琴,毛大立,等.高介电常数栅介质材料研究动态[J].微电子学,2005,35(2):163-168
    [3]杨雪娜,王弘,张寅,等.High-κ材料研究进展与存在的问题[J].人工晶体学报,2004,(05):731-735
    [4]Tewg J. Zirconium-doped tantalum oxide high-κ:gate dielectric films [D]. Texas: Texas A&M University,2004
    [5]Wilk G D, Wallace R M, Anthony J M. High-κ:gate dielectrics:Current status and materials properties considerations [J]. Journal of Applied Physics,2001,89: 5243-5275
    [6]http://www.itrs.net/Links/2004Update/2004_03_PIDS.pdf
    [7]Lo S H, Buchanan D A, Taur Y, et al. Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's [J]. Electron Device Letters, IEEE,1997,18(5):209-211
    [8]Muller D A, Sorsch T, Moccio S, et al. The electronic structure at the atomic scale ofultrathin gate oxides [J]. Nature,1999,399:758-761
    [9]Tang S, Wallace R M, Seabaugh A, etal. Evaluating the minimum thickness of gate oxide on silicon using first-principles method [J]. Applied Surface Science, 1998,135:137-142
    [10]Neaton J B, Muller D A, Ashcroft N W. Electronic Properties of the Si/SiO2 Interface from First Principles [J]. Physical Review Letters,2000,85(6): 1298-1301
    [11]Lu J. Hafnium-doped tantalum oxide high-κ:gate dielectric films for future CMOS technology [D]. Texas:Texas A&M University,2007
    [12]Yu B, Wang H, Riccobene C, et al. Limits of gate-oxide scaling in nano-transistors[C]. IEEE Symposium on VLSI Technology Digest of Technical Papers.2000.90-91
    [13]Stathis J H, Vayshenker A, Varekamp P R, et al. Breakdown measurements of ultra-thin SiO2 at low voltage[C]. IEEE Symposium on VLSI Technology Digest of Technical Papers.2000.94-95
    [14]Min C, Vande Voorde P, Cox M, et al. Boron diffusion and penetration in ultrathin oxide with poly-Si gate [J]. Electron Device Letters, IEEE,1998, 19(8):291-293
    [15]黄安平.反应溅射沉积高介电Ta2O5薄膜研究[D].北京:北京工业大学,2004
    [16]Agrawal R. Fabrication, characterization and Hall mobility analysis of MOS devices with low-k and high-k:dielectric materials [D]. Arlington:The University of Texas at Arlington,2007
    [17]Sze S. Physics of semiconductor devices [M]. New York:John Wiley& Sons, 1981
    [18]SpigaS, WiemerC, Tallarida G, et al. Structural characterization of epitaxial Y2O3 on Si(001) and of the Y2O3/Si interface [J]. Materials Science and Engineering B,2004,109(1-3):47-51
    [19]Wolfframm D, Ratzke M, Kappa M, et al. Pulsed laser deposition of thin PrxOy films on Si(100) [J]. Materials Science and Engineering B,2004,109(1-3): 24-29
    [20]武德起,赵红生,姚金城,等.高介电栅介质材料研究进展[J].无机材料学报,2008,23(5):865-871
    [21]Legrand J, Lhostis S, Chang Y, et al. Electrical characterization of SrTiO3 thin films deposited on Si(001) substrate by liquid injection MOCVD [J]. Microelectronic Engineering,2004,72(1-4):310-314
    [22]Albertin K F, Pereyra I, Alayo M I. MOS capacitors with PECVD SiOxNy insulating layer [J]. Materials Characterization,2003,50(2-3):149-154
    [23]Wallace R M. Challenges for the characterization and integration of high-κ dielectrics [J]. Applied Surface Science,2004,231-232:543-551
    [24]Kwo J, Hong M, Kortan A R, et al. Properties of high k gate dielectrics Gd2O3 andY2O3for Si[J]. Journal of Applied Physics,2001,89(7):3920-3927
    [25]Sammelselg V, Rammula R, Aarik J, et al. XPS and AFM investigation of hafnium dioxide thin films prepared by atomic layer deposition on silicon [J]. Journal of Electron Spectroscopy and Related Phenomena,2007,156-158: 150-154
    [26]Gang H, Lide Z. Current progress of Hf (Zr)-based high-κ; gate dielectric thin films [J]. Journal of Materials Science& Technology,2007,23(4):433-448
    [27]Sahiner M A, Woicik J C, Gao P, et al. Pulsed laser deposition and characterization of Hf-based high-κ dielectric thin films [J]. Thin Solid Films, 2007,515(16):6548-6551
    [28]刘璟,王琴,龙世兵,等.高k介质在浮栅型非挥发性存储器中的应用[J].微电子学,2009,39(03):414-419
    [29]Robertson J. Band structures and band offsets of high k dielectrics on Si [J]. Applied Surface Science,2002,190(1-4): 2-10
    [30]Peacock P W, Robertson J. Band offsets and Schottky barrier heights of high dielectric constant oxides [J]. Journal of Applied Physics,2002,92(8): 4712-4721
    [31]Beyers R. Thermodynamic considerations in refractory metal-silicon-oxygen systems [J]. Journal of Applied Physics,1984,56(1):147-152
    [32]蔡苇,符春林,陈刚.高K介质材料的研究进展[J].半导体技术,2007,(02):97-100
    [33]Gusev E P, Cabral C, Copel M, et al. Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications [J]. Microelectronic Engineering,2003,69(2-4):145-151
    [34]Perkins C M, Triplett B B, McIntyre P C, et al. Thermal stability of polycrystalline silicon electrodes on ZrO2 gate dielectrics [J]. Applied Physics Letters,2002,81(8):1417
    [35]Wong H, Iwai H. On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors [J]. Microelectronic Engineering, 2006,83(10):1867-1904
    [36]Ezhilvalavan S, Tseng T Y. Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application A review [J]. Journal of Materials Science:Materials in Electronics,1999,10(1): 9-31
    [37]Ma T P. High-κ gate dielectrics for scaled CMOS technology. In:6th International Conference on Solid-State and Integrated-Circuit Technology. IEEE, 2001.297-302
    [38]Guha S, Narayanan V. High-κ/Metal Gate Science and Technology [J]. Annual Review of Materials Research,2009,39(1):181-202
    [39]Chiu F C, Wang J J, Lee J Y, et al. Leakage currents in amorphous Ta2O5 thin films [J]. Journal of Applied Physics,1997,81(10):6911-6915
    [40]Ahn K Y, Forbes L. Zirconium-doped tantalum oxide films [P]. US 7601649, 2009-10-13
    [41]郭青蔚,王肇信.现代铌钽冶金[M].北京:冶金工业出版社,2009
    [42]吴铭.钽、铌冶金工艺学[M].北京:中国有色金属工业总公司,1986
    [43]幸良佐.钽铌冶金[M].北京:冶金工业出版社,1982
    [44]Maeng S M. Corrosion studies on a tantalum and β tantalum coated steel [D]. New Jersey:New Jersey Institute of Technology,2005
    [45]Bansal N P. Low-temperature synthesis, pyrolysis and crystallization of tantalum oxide gels [J]. Journal of Materials Science,1994,29(19):5065-5070
    [46]Reisman A, Holtzberg F, Berkenblit M, et al. Reactions of the group VB pentoxides with alkali oxides and carbonates. III. Thermal and X-Ray phase diagrams of the system K2O or K2CO3 with Ta2O5 [J]. Journal of the American Chemical Society,1956,78(18):4514-4520
    [47]Masse J P, Szymanowski H, ZabeidaO, etal. Stability and effect of annealing on the optical properties of plasma-deposited Ta2O5 and Nb2O5 films [J]. Thin Solid Films,2006,515(4):1674-1682
    [48]Kim I, AhnS, ndash, etal. Microstructure and electrical properties of tantalum oxide thin film prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition [J]. Japanese Journal of Applied Physics,1994, 33(12A):6691-6698
    [49]Jeon S R, Han S W, Park J W. Effect of rapid thermal annealing treatment on electrical properties and microstructure of tantalum oxide thin film depostited by plasma-enhanced chemical vapor depostion [J]. Journal of Applied Physics, 1995,77(11):5978-5981
    [50]Shiho H, Kato H, Hashimoto S, et al. Tantalum oxide film, use thereof, process for forming the same and composition [P]. US 6806210,2004-10-19
    [51]肖斌,汪家友,苏祥林,等.BST材料在DRAM电容中的应用研究[J].压电与声光,2005,27(3):287-290
    [52]Streiffer S K, Kingon A I. New recipe for a wee DRAM [J]. Nature,1995, 377(6546):194
    [53]Zhang J Y, Boyd I W, Mooney M B, et al. Thin tantalum pentoxide films deposited by photo-induced chemical vapor deposition using an injection liquid source [J]. Applied Physics A,2000,70(6):647-649
    [54]Atanassova E, Spassov D, Paskaleva A, et al. Influence of oxidation temperature on the microstructure and electrical properties of Ta2O5 on Si [J]. Microelectronics Journal,2002,33(11):907-920
    [55]Seki S, Unagami T, Tsujiyama B. Electrical characteristics of the RF magnetron-sputtered tantalum pentoxide-silicon interface [J]. Journal of the Electrochemical Society,1984,131(11):2621-2625
    [56]Murawala P A, Sawai M, Tatsuta T, etal. Structural and electrical properties of Ta2O5 grown by the plasma-enhanced liquid souce CVD using penta ethoxy tantalum souce [J]. Japanese Journal of Applied Physics,1993,32:368-375
    [57]Jolly F, Passacantando M, Salerni V, etal. Structural and electrical properties of Ta2O5 thin films deposited on Si (100) from Ta(OC2H5)5 precursor [J]. Journal of Non-Crystalline Solids,2003,322(1-3):233-239
    [58]ZengW, EisenbraunE, Frisch H, etal. CVD of tantalum oxide dielectric thin films for nanoscale device applications [J]. Journal of the Electrochemical Society,2004,151(8):F172-F177
    [59]Boyd I W, Zhang J-Y. Low temperature photo formation of tantalum oxide [J]. Microelectronics Reliability,2000,40(4-5):649-655
    [60]Huang C J. Room-temperature formation of tantalum oxide films by liquid phase deposition [J]. Thin Solid Films,2005,478(1-2):332-337
    [61]佟洪波,柳青.薄膜电致发光材料的研究进展[J].表面技术,2008,37(3):65-67
    [62]Alam M J, Cameron D C. Investigation of annealing effects on sol-gel deposited indium tin oxide thin films in different atmospheres [J]. Thin Solid Films,2002, 420-421:76-82
    [63]Kukli K, Ihanus J, Ritala M, et al. Properties of Ta2O5-based dielectric nanolaminatesdeposited by atomic layer epitaxy [J]. Journal of the Electrochemical Society,1997,144(1):300-306
    [64]施朝霞,朱大中.基于标准CMOS工艺的新型pH值传感器[J].固体电子学研究与进展,2009,29(1):152-155
    [65]Chou J C, Li Y S, Chiang J L. Simulation of Ta2O5-gate ISFET temperature characteristics [J]. Sensors and Actuators B:Chemical,2000,71(1-2):73-76
    [66]Kwon D-H, Cho B-W, Kim C-S, et al. Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET [J]. Sensors and Actuators B:Chemical,1996,34(1-3):441-445
    [67]Gebbert A, Alvarez-Icaza M, Stoecklein W, et al. Real-time monitoring of immunochemical interactions with a tantalum capacitance flow-through cell [J]. Analytical Chemistry,1992,64(9):997-1003
    [68]Blouke M, Nelson M D, Serra M, etal. Recent advances in short-wavelength AR coatings for thinned CCDs[C]. Proceedings of SPIE.1992.497-507
    [69]张永爱,许华安,郭太良.阳极氧化法制备Ta2O5绝缘膜及性能研究[J].功能材料,2009,40(06):977-980
    [70]Krishnan R R, Gopchandran K G, MahadevanPillai V P, etal. Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films [J]. Applied Surface Science,2009,255(16):7126-7135
    [71]He X, Wu J, Li X, et al. Characterization of high quality tantalum pentoxide film synthesized by oxygen plasma enhanced pulsed laser deposition [J]. Thin Solid Films,2009,518(1):94-98
    [72]张光勇,薛亦渝,郭培涛,等.电子束蒸发沉积Ta2O5光学薄膜的研究[J].压电与声光,2008,30(1):12-15
    [73]Chandra S V J, Uthanna S, Rao G M. Effect of substrate temperature on the structural, optical and electrical properties of dc magnetron sputtered tantalum oxide films [J]. Applied Surface Science,2008,254(7):1953-1960
    [74]FrankeE, Schubert M, Trimble C L, etal. Optical properties of amorphous and polycrystalline tantalum oxide thin films measured by spectroscopic ellipsometry from 0.03 to 8.5 eV [J]. Thin Solid Films,2001,388(1-2):283-289
    [75]He X, Wu J, Li X, et al. Effects of the post-annealing ambience on the microstructure and optical properties of tantalum oxide films prepared by pulsed laser deposition [J]. Journal of Alloys and Compounds,2009,478(1-2):453-457
    [76]Sieber I V, Schmuki P. Porous tantalum oxide prepared by electrochemical anodic oxidation [J]. Journal of the Electrochemical Society,2005,152(9): C639-C644
    [77]Masuda Y, Wakamatsu S, Koumoto K. Site-selective deposition and micropatterning of tantalum oxide thin films using a monolayer [J]. Journal of the European Ceramic Society,2004,24(2):301-307
    [78]Lintanf-Salaiin A, Mantoux A, Djurado E, et al. Atomic layer deposition of tantalum oxide thin films for their use as diffusion barriers in microelectronic devices [J]. Microelectronic Engineering,2010,87(3):373-378
    [79]Zhang G, XueY, Guo P, et al. Optical properties and microstructure thin films prepared by ion assisted electron beam evaporation [J]. Journal of Wuhan University of Technology(Materials Science Edition),2008,23(5): 632-637
    [80]Wei W, Macak J M, Schmuki P. High aspect ratio ordered nanoporous films by anodization of Ta [J]. Electrochemistry Communications,2008,10(3): 428-432
    [81]闫志巧,熊翔,肖鹏,等.化学气相沉积法制备Ta2O5薄膜的研究进展[J].功能材料,2006,37(4):511-514
    [82]Atanassova E, Spasov D. Thermal Ta2O5-alternative to S1O2 for storage capacitor application[J]. Microelectronics Reliability,2002,42(8):1171-1177
    [83]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006
    [84]Briand D, Mondin G, Jenny S, et al. Metallo-organic low-pressure chemical vapor deposition of TaaOs using TaC2H30O5N as precursor for batch fabrication of microsystems [J]. Thin Solid Films,2005,493(1-2):6-12
    [85]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004
    [86]Kulisch W, GillilandD, Ceccone G, et al. Ion beam sputtering of Ta2O5 films on thermoplast substrates as waveguides for biosensors [J]. Journal of Vacuum Science& Technology B:Microelectronics and Nanometer Structures,2009, 27(3):1180-1190
    [87]Hudner J, Hellberg P E, Kusche D, et al. Tantalum oxide films on silicon grown by tantalum evaporation in atomic oxygen [J]. Thin Solid Films,1996, 281-282(1-2):415-418
    [88]吴宜勇,李邦盛,王春青.单原子层沉积原理及其应用[J].电子工业专用设备,2005,(6):6-10
    [89]Heil S B S, Roozeboom F, Sanden M C M v d, et al. Plasma-assisted atomic layer deposition of Ta2O5 from alkylamide precursor and remote O2 plasma [J]. Journal of Vacuum Science& Technology A:Vacuum, Surfaces, and Films, 2008,26(3):472-480
    [90]王利,程鑫彬,王占山,等.离子束辅助沉积薄膜工艺[J].红外与激光工程,2007,36(6):896-898
    [91]NatishanP M, McCafferty E, PuckettP R, et al. Ion beam assisted deposited tantalum oxide coatings on aluminum [J]. Corrosion Science,1996,38(7): 1043-1049
    [92]Tepehan F Z, Ghodsi F E, Ozer N, et al. Optical properties of sol-gel dip-coated Ta2O5 films for electrochromic applications [J]. Solar Energy Materials and Solar Cells,1999,59(3):265-275
    [93]冯端,师昌绪,刘治国.材料科学导论-融贯的论述[M].北京:化学工业出版社,2002
    [94]马志伟,米仪琳,张铭,等.氧气氛退火对磁控溅射Ta2O5薄膜结构、表面形貌及电学性能的影响[J].北方工业大学学报,2007,19(3):58-61
    [95]郭培涛,薛亦渝,张光勇,等.氧化钽薄膜表面形貌和光学性能的研究[J].真空,2007,44(5):32-35
    [96]伍彦,姚文清,朱永法.Ta2O5/Si薄膜界面结构及光催化活性[J].物理化学学报,2007,23(5):625-629
    [97]Zhu M, Miao W, Zhang Z. The optical properties of nanostructured Ta2O5 films [J]. Rare Metals Materials And Engineering,2006,35(S3):488-489
    [98]黄蕙芬.具有优良绝缘性能的Ta2O5介质膜[J].东南大学学报(自然科学版),1999,29(6):36-39
    [99]Zhang S, Fu Z, Ke L, etal. C-V and DLTS studies of Al/Ta2O5/n-Si structures with Ta2O5 thin films deposited by pulsed laser deposition [J]. Progress in Natural Science,1998,8(2):243-248
    [100]Ndiege N, Subramanian V, Shannon M A, etal. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition [J]. Thin Solid Films,2008,516(23):8307-8314
    [101]Piret F, Singh M, Takoudis C G, etal. Optical properties in the UV range of a Ta2O5 inverse opal photonic crystal designed by MOCVD [J]. Chemical Physics Letters,2008,453(1-3):87-91
    [102]Imai Y, Watanabe A, MukaidaM, et al. Stoichiometry of tantalum oxide films prepared by KrF excimer laser-induced chemical vapor deposition [J]. Thin Solid Films,1995,261(1-2):76-82
    [103]Tabuchi T, Sawado Y, Uematsu K, et al. Application of penta-di-methyl-amino-tantalum to a tantalum source in chemical vapor deposition of tantalum oxide films [J]. Japanese Journal of Applied Physics, 1991,30:L1974-L1977
    [104]Kim J, Won S, Kim W, et al. Method of forming metallic oxide films using atomic layer deposition [P]. US 2008/0026596,2008-01-31
    [105]Kher S, Nguyen S, Narwankar P, et al. Precursors and hardware for CVD and ALD[P]. US 2008/0063798,2008-03-13
    [106]Pinzelli L, Gros-Jean M, Brechet Y, et al. High-κ; dielectric deposition in 3D architectures:The case of Ta2O5 deposited with metal-organic precursor TBTDET[J]. Microelectronics Reliability,2007,47(4-5):700-703
    [107]Forsgren K, Harsta A. Halide chemical vapour deposition of Ta2O5 [J]. Thin Solid Films,1999,343-344:111-114
    [108]Four S, Devine R A B, Luo E Z, et al. Properties of tantalum pentoxide (Ta2O5) obtained by plasma assisted deposition using a TaF5 source [J]. Journal of Non-Crystalline Solids,1999,254(1-3):139-145
    [109]Tanimoto S, Matsui M, Kamisako K, et al. Investigation on leakage current reduction of photo-CVD tantalum oxide films accomplished by active oxygen annealing [J]. Journal of the Electrochemical Society,1992,139(1):320-328
    [110]Fang Q, Zhang J Y, Wang Z M, et al. Interface of tantalum oxide films on silicon by UV annealing at low temperature [J]. Thin Solid Films,2003, 428(1-2):248-252
    [111]Yu J J, Zhang J Y, Boyd I W. UV annealing of ultrathin tantalum oxide films [J]. Applied Surface Science,2002,186(1-4):57-63
    [112]Salaun A L, Mantoux A, Blanquet E, et al. ESD and ALD depositions of Ta2O5 thin films investigated as barriers to copper diffusion for advanced metallization [J]. Journal of the Electrochemical Society,2009,156(5):H311-H315
    [113]Tominaga K, Muhammet R, Kobayashi I, et al. Preparation of (111)-oriented β-Ta2O5 thin films by chemical vapor deposition using metalorganic precursors [J]. Japanese Journal of Applied Physics,1992,31:L585-L587
    [114]Alen P, Vehkamaki M, Ritala M, et al. Diffusion barrier properties of atomic layer deposited ultrathin Ta2O5 and TiO2 Films [J]. Journal of the Electrochemical Society,2006,153(4):G304-G308
    [115]Bradley D C, Wardlaw W, Whitley A. Normal alkoxides of quinquevalent tantalum [J]. Journal of the Chemical Society,1955:726-728
    [116]Bradley D C, Mehrotra R C. Metal alkoxides [M]. London:Academic Press, 1978
    [117]http://www.sigmaaldrich.com/united-states.html
    [118]Schloh M. Preparation of high-purity metal powder from metal alkoxides [P]. EP 0667200,1995-08-16
    [119]Turova N Y, Korolev A V, Tchebukov D E, et al. Tantalum(V) alkoxides: Electrochemical synthesis, mass-spectral investigation and oxoalkoxocomplexes [J]. Polyhedron,1996,15(21):3869-3880
    [120]Bradley D C, Wardlaw B N C a W. Normal alkoxides of quinquevalent niobium [J]. Journal of the Chemical Society,1956:2381-2384
    [121]Bradley D C, Charkravarti B N, Chatterjee A K, etal. Niobium and tantalum mixed alkoxides [J]. Journal of the Chemical Society,1958:99-101
    [122]Bradley D C, Wardlaw W, Whitley A. Structural chemistry of the alkoxides. Part V. Isomeric butoxides and pentyloxides of quinquevalent tantalum [J]. Journal of the Chemical Society,1956:1139-1142
    [123]Mehrotra R C, Kapoor P N. Organic compounds of niobium and tantalum: Alcoholysis reactions of niobium and tantalum penta-alkoxides [J]. Journal of the Less Common Metals,1966,10(5):354-361
    [124]Bradley D C, Chakravarti B N, Wardlaw W. Structural chemistry of the alkoxides. Part VIII. Isomeric butoxides and pentyloxides of niobium [J]. Journal of the Chemical Society,1956:4439-4442
    [125]Bradley D, Holloway H. Metal oxide alkoxide polymers:part Ⅱ. The hydrolysis of tantalum pentaethoxide [J]. Canadian Journal of Chemistry,1961,39(9): 1818-1826
    [126]Bradley D, Holloway H. Metal oxide alkoxide polymers:part IV. The hydrolysis of some tantalum alkoxides [J]. Canadian Journal of Chemistry,1962,40(1): 62-72
    [127]Prakash S, Kapoor P N, Kapoor R N. Bromide Alkoxides of Tantalum [J]. Journal fur Praktische Chemie,1967,36(1-2):24-28
    [128]Kapoor R N, Prakash S, Kapoor P N. Organic compounds of niobium and tantalum. Reactions of niobium and tantalum pentaethoxides with glycols [J]. Zeitschrift fur Anorganische und Allgemeine Chemie,1967,351(3-4): 219-224
    [129]Kapoor P N, Mehrotra R C. Organic compounds of tantalum reactions of tantalum penta-ethoxide with organic esters [J]. Journal of the Less Common Metals,1966,10(1):66-70
    [130]Prakash S, Kapoor R N. Organic compounds of niobium and tantalum reactions of niobium and tantalum pentaethoxides with a-hydroxy carboxylic acids [J]. Inorganica Chimica Acta,1971,5:372-374
    [131]Kapoor P N, Mehrotra R C. Organic compounds of niobium and tantalum IV. Reactions of niobium and tantalum pentaethoxides with β-diketones [J]. Journal of the Less Common Metals,1965,8(5):339-346
    [132]Mehrotra R C, Kapoor P N. Organic compounds of tantalum:I. Reactions of tantalum penta-ethoxide with β-ketoesters [J]. Journal of the Less Common Metals,1964,7(6):453-457
    [133]Mehrotra R, Kapoor R, Prakash S, et al. Organic compounds of niobium and tantalum. Reactions of niobium and tantalum pentaethoxides with ethyl benzoylacetate [J]. Australian Journal of Chemistry,1966,19(11):2079-2081
    [134]Mehrotra R C, Rai A K, Bohra R. Organic Compounds of Vth group Elements. I. Reactions of tantalum penta-ethoxide with oximes and diethyl-hydroxylamine [J]. Zeitschrift fur Anorganische und Allgemeine Chemie,1973,399(3):338-344
    [135]Bains M, Bradley D. Coordination complexes of metal alkoxides:Part Ⅱ. Metal alkoxide-ethylenediamine complexes [J]. Canadian Journal of Chemistry, 1962,40(12):2218-2228
    [136]Zhu Y, Yu F, Man Y, et al. Preparation and performances of nanosized Ta2O5 powder photocatalyst [J]. Journal of Solid State Chemistry,2005,178(1): 224-229
    [137]Takahara Y, Kondo J N, Takata T, et al. Mesoporous tantalum oxide. Ⅰ. Characterization and photocatalytic activity for the overall water decomposition [J]. Chemistry of Materials,2001,13(4):1194-1199
    [138]Kominami H, Miyakawa M, Murakami S, et al. Solvothermal synthesis of tantalum (V) oxide nanoparticles and their photocatalytic activities in aqueous suspension systems [J]. Physical Chemistry Chemical Physics,2001,3(13): 2697-2703
    [139]Sreethawong T, Ngamsinlapasathian S, Suzuki Y, et al. Nanocrystalline mesoporous Ta2O5-based photocatalysts prepared by surfactant-assisted templating sol-gel process for photocatalytic H2 evolution [J]. Journal of Molecular Catalysis A:Chemical,2005,235(1-2):1-11
    [140]宋磊,李铭华,徐玉恒,等.钽酸锂晶体的生长及其物理性能的研究[J].人工晶体学报,1994,23(2):146-150
    [141]Puyoo-Castaings N, Duboudin F, RavezJ, etal. LiTaO3 ceramics obtained by a gelation process [J]. Materials Research Bulletin,1987,22(2):261-268
    [142]Phule P P, Deis T A, Dindiger D G. Low temperature synthesis of ultrafine LiTaO3 powders [J]. Journal of Materials Research,1991,6(7):1567-1573
    [143]Jean J H. Chemical preparation of spherical lithium tantalate powder [J]. Journal of Materials Science,1990,25(4):2267-2273
    [144]Satapathy S, Gupta P K, Srivastava H, et al. Effect of capping ligands on the synthesis and on the physical properties of the nanoparticles of LiTaO3 [J]. Journal of Crystal Growth,2007,307(1):185-191
    [145]Youssef S, Al Asmar R, Podlecki J, et al. Characterization of LiTaO3 thin films fabricated by sol-gel technique [J]. Microelectronics Journal,2007,38(1):63-66
    [146]但迪迪,张德银,李坤,等.不同下电极对Sol-Gel LiTaO3薄膜性能的影响[J].江苏工业学院学报,2008,20(1):5-8
    [147]张熙,张德银,彭卫东,等.钽酸锂薄膜溶胶凝胶制备工艺研究[J].电子元件与材料,2007,26(10):29-32
    [148]张德银,黄大贵,李金华,等.ITO衬底上LiTaO3薄膜的制备与介电特性[J].红外与毫米波学报,2007,26(3):170-173
    [149]李智华.KTN薄膜制备与PLD机理研究[D].武汉:华中科技大学,2004
    [150]Hirano S I, Yogo T, Kikuta K I, et al. Preparation of potassium tantalate niobate by Sol-Gel method [J]. Journal of the American Ceramic Society,1992,75(6): 1701-1704
    [151]Wu H G, Wang S M, Xu Z X, et al. Fabrication and electrical properties of KTN multilayer thin films [J]. Materials Letters,2003,57(18):2742-2745
    [152]钟志成,张端明,刘素玲,等.用Sol-Gel法制备粉料及KTN陶瓷烧结研究[J].华中理工大学学报,1998,26(11):101-103
    [153]王龙海,罗英军,王世敏,等.Sol-Gel法制备KTN薄膜厚度及均匀性控制[J].电子元件与材料,2000,19(2):5-7
    [154]周军连,张树人,刘敬松,等.钽酸锶铋陶瓷的锆钛酸铅纳米粉掺杂改性研究[J].电子元件与材料,2003,22(11):13-15
    [155]Aguilar G G, Costa M E V, Salvado I M M. Improving the synthesis and properties of SBT thin films by using SBT seeds [J]. Journal of the European Ceramic Society,2005,25(12):2331-2335
    [156]Wang W, Jia D C, Zhou Y, et al. Synthesis and properties of sol-gel SBT powder and film [J]. Ceramics International,2002,28(6):609-615
    [157]Tai W P, Kim J G, Oh J H, et al. Preparation and humidity-sensing properties of nanostructured potassium tantalate thin films [J]. Journal of Materials Science: Materials in Electronics,2004,15(1):25-28
    [158]Huang Z, Donohue P P, Zhang Q, et al. Comparative micro structure and electrical property studies of lead scandium tantalate thin films as prepared by LDCVD, sol-gel and sputtering techniques [J]. Journal of Physics D:Applied Physics,2003,36(3):270-279
    [159]Abothu I R, Komarneni S, Paik D-S, et al. Nanocomposite versus sol-gel processing of barium magnesium tantalate [J]. Journal of Electroceramics,1999, 3(1):65-71
    [160]Arakawa S, Nitta H, Hayashi S. Synthesis of lanthanum lithium tantalate powders and thin films by the sol-gel method [J]. Journal of Crystal Growth, 2001,231(1-2):290-294
    [161]Mohammadi M R, Fray D J. Development of nanocrystalline TiO2-Er2O3 and TiO2-Ta2O5 thin film gas sensors:Controlling the physical and sensing properties [J]. Sensors and Actuators B:Chemical,2009,141(1):76-84
    [162]Saygin-HinczewskiD, Koc K, Sorar I, et al. Optical and structural properties of Ta2O5-CeO2 thin films [J]. Solar Energy Materials and Solar Cells,2007, 91(18):1726-1732
    [163]Maeda N, Wada N, Onoda H, et al. Preparation and optical properties of sol-gel derived Er3+-doped Al2O3-Ta2O5 films [J]. Optical Materials,2005,27(12): 1851-1858
    [164]Kristof J, Szildgyi T, HorvdthE, et al. Investigation of IrO2/Ta2O5 thin film evolution [J]. Thermochimica Acta,2004,413(1-2):93-99
    [165]Kristof J, Szildgyi T, HorvdthE, et al. Investigation of RuO2/Ta2O5 thin film evolution by thermogravimetry combined with mass spectrometry [J]. Thin Solid Films,2005,485(1-2):90-94
    [166]Yoon K H, Noh Y H, Lee B D, et al. Dielectric properties of (x)Ta205-(1-x)Nb205 thin films prepared by Sol-Gel process [J]. Journal of the Ceramic Society of Japan,2004,112(1305):S1602-S1605
    [167]Turova N Y, Turevskaya E P, Kessler V G, et al. The chemistry of metal alkoxides [M]. New York:Kluwer Academic Publishers,2002
    [168]董占能,赵兵,郭玉忠.金属醇盐的合成(Ⅰ)[J].云南化工,1997,(3):45-49
    [169]潘东晖,傅光辉,杜家峰.金属醇盐的合成及应用[J].化学通报,1989,(11):13-18
    [170]王世敏,邝安祥.金属醇盐的合成[J].湖北大学学报(自然科学版),1989,11(4):8-12
    [171]Zell F. Process for preparing tantalum alkoxides and niobium alkoxides [P]. US 6548685,2003-04-15
    [172]Bradley D, Mehrotra R, Rothwell I, et al. Alkoxo and aryloxo derivatives of metals [M]. London:Academic Press,2001
    [173]Chamberlain L R, Rothwell I P, Huffman J C. Chemistry of sterically crowded aryloxide ligands.4. Synthesis and structure of mixed chloro aryloxides of tantalum [J]. Inorganic Chemistry,1984,23(17):2575-2578
    [174]Mehrotra R C. Synthesis and reactions of metal alkoxides [J]. Journal of Non-Crystalline Solids,1988,100(1-3):1-15
    [175]Thomas I. The preparation of alkoxides and triethylsilanolates of Ti, Zr, V, Nb, Ta, and Sn from the dialkylamides [J]. Canadian Journal of Chemistry,1961, 39(6):1386-1388
    [176]Bradley D C. Dialkylamido-derivatives of Titanium, Zirconium, and Tantalum[C]. Proceedings of the Chemical Society.1959.225-226
    [177]Wang R, Folting K, Huffman J C, etal. Synthesis and solid state structure of tetra(2,6-di-isopropylphenoxy)-hexamethoxy-di-tantalum(V), Ta2(OC6H3PrI2)4(OCH3)6[J]. InorganicaChimicaActa,1986,120(1):81-83
    [178]董占能,赵宾,郭玉忠.金属醇盐的合成(Ⅱ)[J].云南化工,1997,(4):58-60
    [179]周幸福,褚道葆,顾家山,等.钛醇盐电化学合成的研究[J].化学学报,2000,58(11):1327-1331
    [180]褚道葆,周幸福,林昌健,等.电化学合成金属醇盐的研究[J].高等学校化学学报,2000,21(1):133-135
    [181]Garnovskii A D, Kharisov B I. Direct Electrosynthesis of Metal Complexes [M]. Switzerland:Elsevier Science,1999
    [182]Shreider V A, Turevskaya E P, Koslova N I, et al. Direct electrochemical synthesis of metal alkoxides [J]. InorganicaChimicaActa,1981,53:L73-L76
    [183]Tripp T. Production of sols by electrolysis [P]. GB 1246032,1971-09-15
    [184]Tripp T. Production of alkoxides [P]. US 3730857,1973-05-01
    [185]Eisenbach W, Lehmkuhl H, Wilke G. Process for the electrochemical synthesis of organic metal compounds [P]. CA 1024466,1978-01-17
    [186]Lehmkuhl H, Eisenbach W. Electrochemical sythesis of orgamic compounds of metals, Ⅶ. Electrosyntheis of alkoxides and acetylacetonates of iron, cobalt and nickel [J]. Justus Liebigs Annalen der Chemie,1975,1975(4):672-691
    [187]Eisenbach W, Lehmkuhl H, Wilke G. Process for the electrochemical synthesis of organic metal compounds [P]. US 3964983,1976-06-22
    [188]Kuck M, Miller G, Coll-Palagos M. Electrochemical process for metal alkoxides[P]. US 4250000,1981-02-10
    [189]Shreider V A, Turevskaya E P, Kozlova N I, et al. Direct electrochemical synthesis of metal alcoholates [J]. Russian Chemical Bulletin,1981,30(8): 1363-1367
    [190]Schaefer W. Verfahren zur herstellung hochreiner nickelalkoxide [P]. DD 158410,1983-01-12
    [191]Banait J S, Pahil P K. Electrochemical synthesis of copper(II) carboxylates [J]. Polyhedron,1985,4(6):1031-1033
    [192]Banait J S, Pahil P K. Electrochemical reactions at sacrificial electrodes.2. Electrochemical synthesis of copper alkoxides [J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry,1986,16(9):1217-1224
    [193]Banait J S, Pahil P K. Electrochemical reactions at sacrificial electrode, part Ⅲ. Electrochemical synthesis of unique copper alkoxides [J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry,1988,18(4):309-315
    [194]Banait J S, Singh B. Electrochemical reactions at sacrificial electrodes, part X: Synthesis of cadmium chelate [J]. Journal of the Electrochemical Society of India,1996,45(2):103-109
    [195]Banait J S, Singh B, Kaur H. Electrochemical reactions at sacrificial electrodes: Synthesis of zinc (II) alkoxides. Part XVII [J]. Indian journal of chemistry Sect A: Inorganic, physical, theoretical& analytical,2007,46(2):266-268
    [196]Banait J S, Singh B, Rala S. Electrochemical reactions at sacrificial electrodes. Part-XX. Synthesis of coordination compounds of antimony(III) alkoxides [J]. Journal of the Indian Chemical Society,2007,84(1):25-28
    [197]Banait J S, Singh B, Rala S. Electrochemical reactions at sacrificial electrodes. Part-XIX. Synthesis of antimony(III) alkoxides [J]. Journal of the Indian Chemical Society,2007,84(2):135-138
    [198]Kovsman E P, Andruseva S I, Solovjeva L I etal. Electrochemical synthesis of metal alkoxides. Prospects of commercial alkoxides production [J]. Journal of Sol-Gel Science and Technology,1994,2(1):61-66
    [199]Berezkin M, Chernykh I, Polyakov E, et al. Electrochemical synthesis of niobium(V) ethylate [J]. Russian Journal of Applied Chemistry,2006,79(5): 741-745
    [200]Berezkin M, Polyakov E, Turygin V, et al. Electrochemical synthesis of niobium methylate [J]. Russian Journal of Electrochemistry,2007,43(10): 1200-1202
    [201]Singh B, Kaur H. Electrochemical reactions at sacrificial electrodes. Part-ⅩⅩⅢ: Direct electrochemical synthesis of bismuth(Ⅲ) alkoxides [J]. Journal of the Indian Chemical Society,2008,85(8):849-851
    [202]Tomilov A. Electrochemical syntheses in absolute alcohols (Review) [J]. Russian Journal of Electrochemistry,2000,36(2):100-116
    [203]Yang S H, Chen Y M, Yang H P, et al. Preparation of high-purity tantalum ethoxide by vacuum distillation [J]. Transactions of the Nonferrous Metals Society of China,2008,18(1):196-201
    [204]杨声海,潘泽强,李朝晖,等.“牺牲”阳极法合成乙醇钽研究[J].稀有金属材料与工程,2006,35(4):625-628
    [205]Yang S H, Cai Y N, Yang H P, et al. Electrochemical synthesis and characterization of tantalum alkoxides [J]. Transactions of Nonferrous Metals Society of China,2009,19(6):1504-1508
    [206]Yang H P, Yang S H, Cai Y N, etal. Electrochemical behavior of tantalum in anhydrous ethanol [J]. Journal of the Electrochemical Society,2010,157(3): in press
    [207]Yang H P, Yang S H, Cai Y N, et al. Effect of bromide ions on the corrosion behaviour of tantalum in anhydrous ethanol [J]. Electrochimica Acta,2010,55: 2829-2834
    [208]吴治,韦统师.烷氧基金属化合物的制取方法[P].CN 1052339,1991-06-19
    [209]莫春生,黄锡麟,钟起玲.烷氧基钨(Ⅵ)的电化学合成及性质[J].江西师范大学学报(自然科学版),1993,17(1):49-53
    [210]邓红梅,朱吉庆.烷氧基金属化合物的电化学合成[J].湖南化工,1994,(1):16-19
    [211]周幸福,褚道葆,顾家山,等.“牺牲”阳极法制备金属醇盐[J].精细化工,2000,17(S1):25-27
    [212]周幸福,韩爱杰,褚道葆,等.电合成系列锌配合物及纳米ZnO的制备[J].化学学报,2002,60(11):2064-2068
    [213]周幸福,韩爱杰,褚道葆,等.电化学合成镍配合物的研究[J].有机化学,2002,22(8):571-574
    [214]许红梅,潘献晓,费小丹,等.电化学合成法制备钛酸四丁酯的研究[J].化学世界,2006,(9):544-547
    [215]周晓波.乙醇钛的电合成及应用研究[D].杭州:浙江工业大学,2008
    [216]马淳安,周晓波.乙醇钛的绿色电化学合成研究[J].浙江工业大学学报,2009,37(3):259-262
    [217]陈艺锋,王宇菲,符金开,等.电化学直接合成已醇铌研究[J].稀有金属材料与工程,2009,(S1):117-121
    [218]Hochido Y, Kadokura H, Tanabe S, et al. Process for purifying niobium alkoxides and tantalum alkoxides [P]. US 5919963,1999-06-06
    [219]Reuter K, Zell F, Ebner M. Process for the preparation of high-purity zirconium, hafnium, tantalum and niobium alkoxides [P]. US 7273943,2007-09-25
    [220]Shindo Y, Yamaguchi S. High purity tantalum for thin film formation and its production [P]. JP 2000-212678,2000-08-02
    [221]Toshiyuki S, Masami K, Koichi N. Purification of tantalum alkoxide [P]. JP 06-192148,1994-07-12
    [222]Toshiyuki S, Masami K, Koichi N. Purification of tantalum alkoxide, high-purity tantalum alkoxide and gas phase growth using the same material [P]. JP 06-220069,1994-08-09
    [223]Masahiko K, Hiroshi U, Kazuyoshi H. Purification of metal alkoxide [P]. JP 10-036299,1998-02-10
    [224]Minoru T, Mitsuaki N, Hidechika Y. Method for purifying tantalum alkoxide [P]. JP 2002-161059,2002-06-04
    [225]查全性.电极过程动力学导论(第二版)[M].北京:科学出版社,1987
    [226]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社,2003
    [227]刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987
    [228]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002
    [229]吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社,1998
    [230]宋光铃,曹楚南,林海潮.电化学控制条件下不可逆电极过程交流阻抗的统一换算电路和电化学参数解析[J].中国腐蚀与防护学报,1994,8(2):113-122
    [231]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003
    [232]张华.现代有机波谱分析[M].北京:化学工业出版社,2005
    [233]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社,2002
    [234]杨德钧,沈卓身.金属腐蚀学(第2版) [M].北京:冶金工业出版社,1999
    [235]杨武,顾濬溶祥,黎樵燊,等.金属的局部腐蚀:点腐蚀·缝隙腐蚀·晶间腐 蚀·成分选择性腐蚀[M].北京:化学工业出版社,1999
    [236]任建军左.铝阳极氧化膜的蚀孔形貌与蚀孔生长机理研究[J].中国腐蚀与防护学报,2003,(04)
    [237]藤岛昭,陈震,姚建年.电化学测定方法[M].北京:北京大学出版社,1995
    [238]张彰.非水介质中电解氧化法合成制备纳米Fe2O3的研究[D],2007
    [239]Kaesche H. Microtunnelling during selective alloy dissolution and during pitting [J]. Materials and Corrosion,1988,39(4):153-161
    [240]Amin M A, Abd El-Rehim S S, El-Sherbini E E F, et al. Pitting corrosion studies on Al and Al-Zn alloys in SCN- solutions [J]. Electrochimica Acta,2009, 54(18):4288-4296
    [241]Amin M A, Abdel Rehim S S. Pitting corrosion of lead in sodium carbonate solutions containing NO3- ions [J]. Electrochimica Acta,2004,49(15): 2415-2424
    [242]Hoar T P, Mears D C, Rothwell G P. The relationships between anodic passivity, brightening and pitting [J]. Corrosion Science,1965,5(4):279-289
    [243]Hassan H H. Effect of chloride ions on the corrosion behaviour of steel in 0.1M citrate [J]. Electrochimica Acta,2005,51(3):526-535
    [244]Haruna T, Macdonald D D. Theoretical prediction of the scan rate dependencies of the pitting potential and the probability distribution in the induction time [J]. Journal of the Electrochemical Society,1997,144(5):1574-1581
    [245]Hassan H H, Fahmy K. Pitting Corrosion of Tin by Acetate Anion in Acidic Media [J]. International Journal of Electrochemical Science,2008,3:29-43
    [246]Park J J, Pyun S I. Pit formation and growth of alloy 600 in Cl- ion-containing thiosulphate solution at temperatures 298-573 K using fractal geometry [J]. Corrosion Science,2003,45(5):995-1010
    [247]Ibrahim M A M, Abd El Rehim S S, Hamza M M. Corrosion behavior of some austenitic stainless steels in chloride environments [J]. Materials Chemistry and Physics,2009,115(1):80-85
    [248]Abd El Rehim S S, Foad El-Sherbini E E, Amin M A. Pitting corrosion of zinc in alkaline medium by thiocyanate ions [J]. Journal of Electroanalytical Chemistry,2003,560(2):175-182
    [249]Hills G J, Schiffrin D J, Thompson J. Electrochemical nucleation from molten salts-I. Diffusion controlled electrodeposition of silver from alkali molten nitrates [J]. Electrochimica Acta,1974,19(11):657-670
    [250]Amin M A, Abd El Rehim S S, El Sherbini E E F. AC and DC studies of the pitting corrosion of Al in perchlorate solutions [J]. Electrochimica Acta,2006, 51(22):4754-4764
    [251]胡茂圃.腐蚀电化学[M].北京:冶金工业出版社,1991
    [252]Lee C P, Chen Y Y, Hsu C Y, et al. Enhancing pitting corrosion resistance of AlxCrFeL5MnNio.5 high-entropy alloys by anodic treatment in sulfuric acid [J]. Thin Solid Films,2008,517(3):1301-1305
    [253]Moreira A H, Benedetti A V, Sumodjo P T A, et al. Electrochemical behaviour of heat-treated AI-Zn-Mg alloys in chloride solutions containing sulphate [J]. Electrochimica Acta,2002,47(17):2823-2831
    [254]Ramgopal T. Localized corrosion of tantalum in chloride-containing methanol solutions-Effect of water concentration [J]. Corrosion,2005,61(8):757-765
    [255]Han S B, Song Y J, Lee J M, etal. Platinum nanocube catalysts for methanol and ethanol electrooxidation [J]. Electrochemistry Communications,2008, 10(7):1044-1047
    [256]Hassan H H, Abd El Rehim S S, Mohamed N F. Role of C1O4- in breakdown of tin passivity in NaOH solutions [J]. Corrosion Science,2002,44(1):37-47
    [257]Refaey S A M, Taha F, Abd El-Malak A M. Inhibition of stainless steel pitting corrosion in acidic medium by 2-mercaptobenzoxazole [J]. Applied Surface Science,2004,236(1-4):175-185
    [258]De Chialvo M R G, Salvarezza R C, Vasquez Moll D, et al. Kinetics of passivation and pitting corrosion of polycrystalline copper in borate buffer solutions containing sodium chloride [J]. Electrochimica Acta,1985,30(11): 1501-1511
    [259]Bard A J, Faulkner L R. Electrochemical methods, fundamentals and applications [M]. New York:John Wiley& Sons,2001
    [260]潘春跃.合成化学[M].北京:化学工业出版社,2005
    [261]Kukli K, Aarik J, Aidla A, et al. In situ study of atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O [J]. Applied Surface Science,1997,112:236-242
    [262]姚玉英.化工原理(第二版)(下册)[M].天津:天津科学技术出版社,2005
    [263]Kunte G V, et al., Thermogravimetric evaluation of the suitability of precursors for MOCVD [J]. Measurement Science and Technology,2008,19(2):1-7
    [264]Wright S F, Dollimore D, Dunn J G, et al. Determination of the vapor pressure curves of adipic acid and triethanolamine using thermogravimetric analysis [J]. Thermochimica Acta,2004,421(1-2):25-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700