内置混合式转子结构可控磁通永磁同步电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文对永磁同步电机各种弱磁调速方法进行了深入分析研究,认识到V.Ostovic所提出的三明治式转子结构可控磁通电机——记忆电机的不足之处,提出了3种适用于不同极数的内置混合式转子结构可控磁通永磁同步电机。新结构电机充分利用钕铁硼永磁体剩磁密度B_r和矫顽力H_c都很高,而铝镍钴永磁体B_r很高而H_c很低的特点,在转子内同时放置两种永磁体,科学分配两者的尺寸,使两者在磁性能上合理配合,在保障电机各项基本性能的前提下,实现宽范围弱磁调速。电机运行时,通过闭环工作的调速控制系统在定子绕组上施加方向和幅值均受控的直轴电流矢量i_d脉冲,改变铝镍钴磁化方向和剩磁强弱。正向强磁化后,两种永磁体磁化方向一致,虽然铝镍钴对气隙永磁磁通贡献不大,却将钕铁硼贡献的磁通推向定子,气隙永磁磁通最强;两者磁化方向相反时,铝镍钴将钕铁硼产生的磁通在转子内部分旁路,气隙永磁磁通被削弱,被削弱的大小是可以控制的。每次重新磁化后永磁磁场能够保持住,而称为记忆电机。
     研制了模拟内置混合式转子结构可控磁通永磁同步电机工作机理的静止磁路装置。经过试验分析,认知了该电机磁通可控的原理,从而了解在控制转子永磁磁通的过程中钕铁硼和铝镍钴两种永磁体的磁化过程和磁化后工作点的变化规律;为了进一步加深分析和理解,同时给出了相应的等效磁路图。
     利用有限元法对3种电机进行了磁场分析和计算,给出在不同工况下电机内部磁场分布情况和气隙磁场波形,并对负载电流产生的交轴电枢反应磁动势对直轴永磁磁场的影响做了分析。计算结果表明,增大交轴磁路磁阻,既能减小交轴电感,降低交轴电抗压降,提高逆变器电压利用率,还能减小负载电流对直轴永磁磁通量的影响,有效提高电机弱磁及调速范围。
     给出了转子内永磁体尺寸选取一般原则。合理选择钕铁硼的宽度,使其尽可能多地贡献磁通量,气隙永磁主磁通主要由其产生;选择其厚度,除主要防止在极端情况下定子绕组产生的去磁磁动势造成不可逆的去磁外,还应该顾及永磁体成本、材料利用率和加工工艺性。合理选择铝镍钴宽度,可有效地调整可控磁通量大小,以调整弱磁倍数,其宽度为钕铁硼的0.5~0.7倍时,弱磁倍数就可以达3倍以上;选择其厚度,保证其与钕铁硼被i_d脉冲同向强磁化后,不应被钕铁硼再反向去磁而重新反向磁化,其总磁动势源比它为外部一对磁极磁路提供的磁动势高20~30%即可。
     编制出4极内置混合式转子磁路可控磁通永磁同步电机电磁计算设计程序,给出了算例,制做了样机,实验结果基本满足要求。
In this dissertation,diverse field-weakening methods are researched and analyzed in detail.Based on the deficiencies of composite-rotor controllable-flux PMSMs with sandwich structure proposed by Vlado Ostovic,three types of magnetic circuit structure of interior composite-rotor controllable-flux with different poles are proposed.Two kinds of PMs,NdFeB and AlNiCo,are fully used in the new structure motor.Their features,that NbFeB PM has high remanent flux density B_r as well as high coercive force H_c,and AlNiCo PM has high B_r but low H_c,are especially taken into account.These PMs are fitly placed in the rotor spaces,and their sizes are decided appropriately to make them work well together.With the proposed structure,the speed of PMSMs can be controlled by a field-weakening regime in significantly wide range without losing any basic performance of the motor.In the operating mode,if the controllable direct axis current vector pulses on stator windings are changed by the speed regulation driving system with close-loop structure,the magnetization direction and the retentiveness intensity of AlNiCo PMs are changed consequently.As the magnetization directions of both PMs are uniform,AlNiCo PMs will push the magnetic flux of NdFeB PMs to stator side,and the air-gap magnetic flux becomes strongest although AlNiCo PMs contributes little to it.As the magnetization directions of PMs are opposite,the air-gap magnetic flux is weakened because part flux of NdFeB PMs is bypassed by AlNiCo PMs.The proposed motor structures are named memory motors for their ability to preserve the controllable flux in rotor magnets.
     A static magnetic circuit device was designed to simulate the mechanism of controllable-flux PMSM.Related experiments revealed the principle of the interior composite-rotor controllable-flux PMSM.Consequently,the law of two kinds of PMs' action spot change during and after magnetization were cognized in the process of controlling rotor-flux.For more awareness and understanding of the magnetization,the equivalent magnetic circuits of different action spots were present.
     Finite-element method was adopted to analyze and calculate the magnetic field of 3 kinds of interior composite-rotor controllable-flux PMSM,and the internal magnetic field distribution and air-gap magnetic field waveforms in different work conditions are shown, and the impact on the d-axis PM-flux created by load current was analyzed.The increment of q-axis magnetic reluctance in interior composite-rotor controllable-flux PMSM can not only reduce the q-axis induction,decrease the quadrature axis inductive drop,raise the utilization ratio of input voltage from inverter,but also reduce the impact of q-axis armature-reaction magneto-motive potential generated by load current on d-axis PM flux, expend PM-flux weakening range and speed scope.
     The general principle of the rotor PM size selection was given.Reasonable choosing the NdFeB PM width make the NdFeB PMs contribute to PMs main air-gap flux as much as possible.In order to avoid the extreme cases that the NdFeB PMs is irreversibly degaussed by the demagnetizing magnetomotive force generated by the stator windings armature reaction,the NdFeB PM thickness should be decided reasonably.In addition,the cost of NdFeB PM,the utilization ratio of material and the processing technology also should be taken into account.By selecting AlNiCo PM reasonable width,the size of the controllable flux can be effectively adjusted,and then the field-weakening multiples are regulated.For example,when the AlNiCo PM length is equal to 0.5~0.7 times of NdFeB length,the field-weakening multiples can reach more than three times.Selecting magnetization direction length of AlNiCo PMs could follow two principles.One is that after the AlNiCo and NdFeB magnetized by the i_d pulse,the AlNiCo must not be demagnetized or remagnetized reversely by the NdFeB;the other one is that the total magnetomotive force source of AlNiCo is higher from 20%to 30%than the magnetomotive force for the external magnetic circuit.
     As an example,electromagnetic computing program for 4-pole interior composite-rotor controllable-flux PMSM was developed and a prototype was made.The experimental results coincide with expectation.
引文
[1]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [2]李钟明,刘卫国,刘景林.稀土永磁电机.北京:国防工业出版社,1999.
    [3]王秀和.永磁电机.北京:中国电力出版社,2007.
    [4]孙绪新,周寿增.稀土永磁电机的开发与应用.磁性材料及器件,2005,36(5):22-24,35.
    [5]Okuyama Y.稀土永磁同步电机的发展.国外大电机,1998,(3):7-16.
    [6]唐任远.稀土永磁电机的关键技术与高性能电机开发.沈阳工业大学学报,2005,27(2):162-170.
    [7]高勋章,罗飞路.稀土永磁电机研究现状与发展.中小型电机,1998,25(1):116-18.
    [8]张波.不同转子结构参数下永磁同步电动机高性能控制策略的研究.电气传动,1999,29(4):18-21.
    [9]韩英桃,周青苗.稀土永磁同步电动机变频调速系统最佳控制方案的探讨.微特电机,2000,28(2):31-33.
    [10]Tong Y,Morimoto S,Yakeda Y et al.Maximum efficiency control for permanent magnet synchronous motors.International Conference on Industrial Electronics,Control and Instrumentation,Kobe,Japan,1991,(1):283-88.
    [11]李烨,严欣严.永磁同步电动机伺服系统研究现状及应用前景.微电机,2001,34(4):30-33.
    [12]Jans T M.Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive.IEEE Transactions on Industry Applications,1987,23(4):681-689.
    [13]MacMinn S R,Jahns T M.Control techniques for improved high-speed performance of interior PM synchronous motor drives.IEEE Transactions on Industry Applications,1991,27(5):997-1004.
    [14]Morimoto S,Takeda Y,Hirasa T et al.Expansion of operating limits for PM motors by vector control considering inverter capacity.IEEE Transactions on Industry Applications,1990,26(5):866-87.
    [15]Schiferl R F,Lipo T A.Power capability of salient pole permanent magnet synchronous motors in variable speed drive applications.IEEE Transactions on Industry Applications,1990,26(1):115-123.
    [16]Zhu Z Q,Chen Y S,Howe D.Maximising the flux-weakening capability of permanent magnet brushless AC machine and drives.The Third International Power Electronics and Motion Control Conference,Beijing,China,2000,2:552-557.
    [17]Maric D S,Hiti S,Stancu C C et al.Two flux weakening schemes for surface-mounted permanent-magnet synchronous drives:design and transient response considerations.Proceedings of the IEEE International Symposium on Industrial Electronics,Bled,Slovenija,1999,2:673-678.
    [18]Morimoto S,Ueno T,Sanada M et al.Variable speed drive system of interior permanent magnet synchronous motors for constant power operation.Power Conversion Conference,Conference Record of the IEEE,Yokohama,Japan,1993,1:402-407.
    [19]Bae B H;Patel N,Schulz S et al.New field weakening technique for high saliency interior permanent magnet motor.The 38th IAS Annual Meeting,Industry Applications Conference,Salet Lake City,USA,2003,2:898-905.
    [20]Sebastian T,Slemon G R.Operating limits of inverter-driven permanent magnet motor drives.IEEE Transactions on Industry Applications,1987,23(2):327-333.
    [21]Zeng Z H,Zhou E,Liang D T.A new flux weakening control algorithm for interior permanent magnet synchronous motors.Proceedings of the 1996 IEEE IECON,22nd International Conference on Industrial Electronics,Control,and Instrumentation,Taipei,Tawian,1996,2:1183-1186.
    [22]Ionel D M,Eastham J F,Miller T J E et al.Design considerations for permanent magnet synchronous motors for flux weakening applications.IEE Proceedings of Electric Power Applications,1998,145(5):435-440.
    [23]徐衍亮.电动汽车用永磁同步电动机功率特性及弱磁扩速能力的研究(一)--恒转矩控制及弱磁控制时的功率特性.山东大学学报:工学版,2002,32(5):401-405.
    [24]徐衍亮.电动汽车用永磁同步电动机功率特性及弱磁扩速能力的研究(二)--最大输入功率弱磁控制的功率特性及等效电流控制策略.山东大学学报:工学版,2002,32(5):4012-417.
    [25]梁振鸿,温旭辉.应用过调制技术扩展永磁同步电机运行区域.电工电能新技术,2003,22(1):39-42
    [26]Chen J J,Chin K P.Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors.IEEE Transactions on Power Electronics,2003,18(4):929-936.
    [27]Di Napoli A,Honorati O,Santini E et al.The use of soft magnetic materials for improving flux weakening capabilities of axial flux PM machines.Industry Applications Conference,Conference Record of the 2000 IEEE,Chicago,USA,2000,1:202-207.
    [28]Xu L Y,Ye L R,Li Z et al.A new design concept of permanent magnet machine for flux weakening operation.IEEE Transactions on Industry Applications,1995,31(2):373-378.
    [29]Soong W L,Staton D A,Miller T J E.Design of a new axially-laminated interior permanent magnet motor.IEEE Transactions on Industry Applications,1995,31(2):358-367.
    [30]Morimoto S,Sanada M,Takeda Y.Performance of PM-assisted synchronous reluctance motor for high-efficiency and wide constant-power operation.IEEE Transactions on Industry Applications,2001,37(5):1234-1240.
    [31]Schmidt E,Brandl W.Comparative finite element analysis of synchronous reluctance machines with internal rotor flux barriers.IEEE International Conference on Electric Machines and Drives Conference,Cambridge,Massachusetts,USA,2001,1:831-837.
    [32]赵争鸣.新型同步磁阻永磁电机发展及现状.电工电能新技术,1998,17(3):22-25.
    [33]郭伟,赵争鸣.新型同步磁阻永磁电机的转矩特性和控制分析.电工技术学报,2005,20(1):54-59.
    [34]Chalmers B J,Akmese R,Musaba L.Design and field-weakening performance of permanent-magnet/reluctance motor with two-part rotor.Electric Power Applications,IEE Proceedings of Electric Power Applications,1998,145(2):133-139.
    [35]Bianchi N,Bolognani S.Performance analysis of an IPM motor with segmented rotor for flux-weakening applications.Ninth International Conference on Electrical Machines and Drives,Canterbury Christ Church College,UK,1999,1:49-53.
    [36]Bianchi N,Bolognani S,Chalmers B J..Salient-rotor PM synchronous motors for an extended flux-weakening operation range.IEEE Transactions on Industry Applications,2000,36(4):1118-1125.
    [37]许强,贾正春,许锦兴.作主轴传动的永磁同步电机弱磁控制系统.华中理工大学学报,1993,21(2):31-36.
    [38]尹华杰,蒋豪贤,谢运详,等.一种永磁同步电动机弱磁新方案.微电机,1999,32(2):13-15.
    [39]Spooner E,Khatab S A W,Nicolaou N G.Hybrid excitation of AC and DC machines.Fourth International Conference on Electrical Machines and Drives,London,UK,1989,1:48-52.
    [40]Amara Y,Lucidarme J,Gabsi Met al.A new topology of hybrid synchronous machine.IEEE Transactions on Industry Applications,2001,37(5):1273-1281.
    [41]Tapia J A,Leonardi F,Lipo T A.Consequent pole permanent magnet machine with field weakening capability[C].IEEE International Electric Machines and Drives Conference,Boston,USA,2001,1:126-131.
    [42]Zhang H J,Li Q F;An Z Let al.Theory and design of hybrid excitation permanent magnet synchronous generators.Proceedings of the Fifth International Conference on Electrical Machines and Systems,Shenyang,China,2001,2:898-900.
    [43]Naoe N,Fukami T.Trial production of a hybrid excitation type synchronous machine.IEEE International Conference on Electric Machines and Drives,Shenyang,China,2001,1:545-547.
    [44]张宏杰,唐任远.混合励磁永磁同步电机的原理与设计.电工电能新技术,2002,21(1):29-32.
    [45]徐衍亮,唐任远.混合励磁同步电机的结构、原理及参数计算.微特电机,2000,28(1):16-18,35.
    [46]杨儒珊,康惠骏,冯勇.混合励磁永磁同步电机的结构原理与控制方案.中小型电机,2005,32(5):6-9.
    [47]潘凤琰,张琪,黄苏融,等.混合励磁盘式电机的有限元分析.微特电机,2005,33(1):13-15.
    [48]金万兵,张东,安忠良,等.混合励磁永磁同步发电机的分析与设计研究.沈阳工业大学学 报,2004,26(1):26-29.
    [49]赵朝会,李遂亮,严仰光.混合励磁电机的研究现状及进展.河南农业大学学报,2004,38(4):461-464.
    [50]张琪,应红亮,黄苏融.旁路式混合励磁电机初探.电机与控制应用,2006,33(12):17-21.
    [51]葛笑,张琪,黄苏融.磁极分割型混合励磁电机等效磁路法分析.电机与控制应用,2006,33(1):11-16.
    [52]王群京,陈军,姜卫东,等.一种新型混合励磁爪极发电机的建模和计算.中国电机工程学报,2003,23(2):67-70,76.
    [53]寇宝泉,李春艳,程树康.可控磁通永磁同步电机弱磁新方案.中国科技论文在线,hppt://www.paper.edu.cn,2006.
    [54]Kou B Q,Li C Y,Cheng S K.A new flux weakening method of permanent magnet synchronous machine.Proceedings of the Eighth International Conference on Electrical Machines and Systems,Nanjing,China,2005,1:500-503.
    [55]Ostovic V.Memory motors-a new class of controllable flux PM machines for a true wide speed operation[C].Thirty-Sixth IAS Annual Meeting,Conference Record of the 2001 IEEE Industry Applications Conference,Chicago,USA,2001,(4):2577-2584.
    [56]Ostovic V.Memory motors.Industry Applications Magazine,2003,9(1):52-61.
    [57]胡淑华,郑宝财,唐任远.稀土永磁电机的发展趋势-大功率化、高功能化、微型化.电工技术杂志,1995,(4):5-27.
    [58]孙光飞,强文江.磁功能材料.北京:化学工业出版社,2006.
    [59]周寿增,董清飞.超强永磁体--稀土铁系永磁材料.北京:冶金工业出版社,1999.
    [60]王尔德,石刚,郭斌,等.稀土永磁材料研究新进展.粉末冶金技术,2005,23(1):55-61.
    [61]宋后定,陈培林.永磁材料及其应用.北京:机械工业出版社,1984.
    [62]Yosihiko O,梁春吉.稀土永磁同步电机的发展.国外大电机,1998,(3):7-16.
    [63]胡之光.电机电磁场的分析与计算.北京:机械工业出版社,1982.
    [64]罗荣杰.电机电磁场教程.杭州:浙江大学出版社,1993.
    [65]M.V.K.查理,P.P.席尔凡斯特.电磁场问题的有限元解法(史乃,唐任远译).北京:科学出版社,1985.
    [66]谢德馨,姚缨英,白保东等.三维涡流场的有限元分析(第3版).北京:机械工业出版社,2001.
    [67]张榴晨,徐松.有限元法在电磁计算中的应用(第2版).北京:中国铁道出版社,1994.
    [68]严登俊,黄学良,胡敏强.有限元网格生成技术分析.微特电机,1999,(1):34-37.
    [69]张文娟,李朗如.电动汽车用永磁无刷直流电动机瞬态磁场分析.微电机,2004,37(5):30-32,14.
    [70]雷银照,熊华俊,王书彬.线性瞬态涡流场定解问题中的法向边界条件与解的唯一性.中国电机工程学报,2003,23(4):81-85.
    [71]周克定.工程电磁场数值计算的理论方法及应用(第1版).北京:高等教育出版社,1994.
    [72]徐衍亮,许家群,唐任远.永磁同步电动机空载气隙永磁磁密波形优化.微特电机,2002,30(6):5-6.
    [73]徐广人,唐任远,安忠良.永磁同步电动机气隙磁场分析.沈阳电力高等专科学校学报,2001,(2):1-4.
    [74]胡敏强,严登俊,黄学良.适用于电机电磁场有限元分析的前处理软件系统.中小型电机,2000,27(1):12-16.
    [75]季小尹,张万红,钟顺虎.电机电磁场计算中对周期性边界条件的处理.电机技术,1998,(2):3-6.
    [76]王海峰,任章.ANSYS在永磁电机设计中的应用.中小型电机,2003,30(2):1-3.
    [77]Kwon O M,Surussavadee C,Chari M V K et al.Analysis of the far field of permanent-magnet motors and effects of geometric asymmetries and unbalance in magnet design.Magnetics,2004,40(2):435-442.
    [78]王兴华,励庆孚.永磁无刷直流电机磁阻转矩的解析计算方法.中国电机工程学报,2002,22(10):104-108.
    [79]王兴华,励庆孚.永磁无刷直流电机空载气隙磁场和绕组反电势的解析计算.中国电机工程学报,2003,23(3):126-131.
    [80]王凤翔,郑柒拾.永磁无刷直流电机的转矩计算及结构参数对转矩的影响.电机与控制学报,2001,5(2):107-111.
    [81]全国旋转电机标准化技术委员会秘书处.中小型电机标准汇编.北京:中国标准出版社,1998.
    [82]赵朝会,李遂亮,王新威,等.永磁同步电机气隙磁密影响因素的分析.河南农业大学学报,2005,39(3):338-344.
    [83]方日杰.电机制造工艺学.北京:机械工业出版社,2004。
    [84]吴硕麟.直接确定电机主要尺寸用方程的推导.电机技术,1995,(3):10-13.
    [85]傅丰礼,唐孝镐.异步电动机设计手手册.北京:机械工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700