高速永磁无刷直流电机转子涡流损耗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速电机由于转速高、体积小、功率密度高,在涡轮发电机、涡轮增压器、高速加工中心、飞轮储能、电动工具、空气压缩机、分子泵等许多领域得到了广泛的应用。永磁无刷直流电机由于效率高、气隙大、转子结构简单,因此特别适合高速运行。高速永磁无刷直流电机是目前国内外研究的热点,其主要问题在于:(1)转子机械强度和转子动力学;(2)转子损耗和温升。本文针对高速永磁无刷直流电机主要问题之一的转子涡流损耗进行了深入分析。转子涡流损耗是由定子电流的时间和空间谐波以及定子槽开口引起的气隙磁导变化所产生的。首先通过优化定子结构、槽开口和气隙长度的大小来降低电流空间谐波和气隙磁导变化所产生的转子涡流损耗;通过合理地增加绕组电感以及采用铜屏蔽环的方法来减小电流时间谐波引起的转子涡流损耗。其次对转子充磁方式和转子动力学进行了分析。最后制作了高速永磁无刷直流电机样机和控制系统,进行了空载和负载实验研究。论文主要工作包括:
     一、采用解析计算和有限元仿真的方法研究了不同的定子结构、槽开口大小、以及气隙长度对高速永磁无刷直流电机转子涡流损耗的影响。对于2极3槽集中绕组、2极6槽分布叠绕组和2极6槽集中绕组的三台电机的定子结构进行了对比,利用傅里叶变换,得到了分布于定子槽开口处的等效电流片的空间谐波分量,然后采用计及转子集肤深度和涡流磁场影响的解析模型计算了转子涡流损耗,通过有限元仿真对解析计算结果加以验证。结果表明:3槽集中绕组结构的电机中含有2次、4次等偶数次空间谐波分量,该谐波分量在转子中产生大量的涡流损耗。采用有限元仿真的方法研究了槽开口和气隙长度对转子涡流损耗的影响,在空载和负载状态下的研究结果均表明:随着槽开口的增加或者气隙长度的减小,转子损耗随之增加。因此从减小高速永磁无刷电机转子涡流损耗的角度考虑,2极6槽的定子结构优于2极3槽结构。
     二、高速永磁无刷直流电机额定运行时的电流波形中含有大量的时间谐波分量,其中5次和7次时间谐波分量合成的电枢磁场以6倍转子角速度相对转子旋转,11次和13次时间谐波分量合成的电枢磁场以12倍转子角速度相对转子旋转,这些谐波分量与转子异步,在转子保护环、永磁体和转轴中产生大量的涡流损耗,是转子涡流损耗的主要部分。首先研究了永磁体分块对转子涡流损耗的影响,分析表明:永磁体的分块数和透入深度有关,对于本文设计的高速永磁无刷直流电机,当永磁体分块数大于12时,永磁体分块才能有效地减小永磁体中的涡流损耗;反之,永磁体分块会使永磁体中的涡流损耗增加。为了提高转子的机械强度,在永磁体表面通常包裹一层高强度的非磁性材料如钛合金或者碳素纤维等。分析了不同电导率的包裹材料对转子涡流损耗的影响。然后利用涡流磁场的屏蔽作用,在转子保护环和永磁体之间增加一层电导率高的铜环。有限元分析表明:尽管铜环中会产生涡流损耗,但正是由于铜环良好的导电性,其产生的涡流磁场抵消了气隙磁场的谐波分量,使永磁体、转轴以及保护环中的损耗显著下降,整体上降低了转子涡流损耗。分析了不同的铜环厚度对转子涡流损耗的影响,研究表明转子各部分的涡流损耗随着铜屏蔽环厚度的增加而减小,当铜环的厚度达到6次时间谐波的透入深度时,转子损耗减小到最小。
     三、对于给定的电机尺寸,设计了两台电感值不同的高速永磁无刷直流电机,通过研究表明:电感越大,电流变化越平缓,电流的谐波分量越低,转子涡流损耗越小,因此通过合理地增加绕组电感能有效的降低转子涡流损耗。
     四、研究了高速永磁无刷直流电机的电磁设计和转子动力学问题。对比分析了平行充磁和径向充磁对高速永磁无刷直流电机性能的影响,结果表明:平行充磁优于径向充磁。设计并制作了两种不同结构的转子:单端式轴承支撑结构和两端式轴承支撑结构。对两种结构进行了转子动力学分析,实验研究表明:由于转子设计不合理,单端式轴承支撑结构的转子转速达到40,000rpm以上时,保护环和定子齿部发生了摩擦,破坏了转子动平衡,导致电机运行失败,而两端式轴承支撑结构的转子成功运行到100,000rpm以上。
     五、最后制作了平行充磁的高速永磁无刷直流电机样机和控制系统,进行了空载和负载实验研究。对比研究了PWM电流调制和铜屏蔽环对转子损耗的影响,研究表明:铜屏蔽环能有效的降低转子涡流损耗,使转子损耗减小到不加铜屏蔽环时的1/2;斩波控制会引入高频电流谐波分量,使得转子涡流损耗增加。通过计算绕组反电势系数的方法,得到了不同控制方式下带铜屏蔽环和不带铜屏蔽环转子永磁体温度。采用简化的暂态温度场有限元模型分析了转子温升,有限元分析和实验计算结果基本吻合,验证了铜屏蔽环的有效性。
Due to small volume, high power density, high-speed motors are extensively used in industry applications such as compressors, centrifuges, vacuum pumps, turbo generators, flywheel applications, tooling machines and so on. Because of high efficiency, large airgap and simple rotor structure, PM BLDC motors are very suitable for high-speed operation. The main problems of high-speed PM BLDC motors are: (1) rotor mechanical design and rotor dynamics, (2) rotor loss and rotor temperature.
     Rotor loss is a major problem in high-speed PM BLDC motors, as it reduces the power efficiency and may demagnetize the magnets. The rotor eddy current is mainly caused by the space harmonics and time harmonics of armature current, as well as the airgap permeance variation due to slot-openings. This dissertation focuses mainly on the analysis and reduction of rotor eddy-current loss in high-speed PM BLDC motors including optimizing stator structure, slot opening, airgap length and utilizing of a conductive copper shield between the sleeve and magnets.
     Firstly, the influence of various stator structures (2p-3s non, 2p-6s over and 2p-6s non), slot opening width and airgap length on the rotor loss was studied, with both analytical calculation and FE simulation. Space harmonics of armature mmf are calculated with current-sheet method and Fourier analysis. The rotor loss is then derived with an improved model which takes into account the skin depth and the eddy-current reaction field. The results show that 2p-3s non exhibits high even-order space harmonics of stator mmf, and consequently causes much rotor loss. Bigger airgap length and smaller slot openings are preferred from the point view of reducing the rotor eddy-current loss.
     Secondly, the effect of segmenting magnets on rotor loss is analyzed. Only when the number of the magnet segments is bigger than 12, the eddy-current loss in magnets can be reduced. The influence of the conductivity of retaining sleeve on the rotor eddy-current loss in high-speed PM BLDC motors is analyzed with FEM. The loss in the Titanium sleeve is much higher than that in the carbon fiber sleeve. However, the eddy current in the Titanium sleeve smoothens the field in the magnets, hence, reduces the loss in the magnets. Furthermore, the influence of the copper shield between the retaining sleeve and magnets is inspected. Although eddy-current loss occurs in the shield, the losses in the other rotor parts are dramatically reduced, resulting in a much lower overall rotor loss. The relationship between the thickness of copper shield and the rotor eddy-current loss is also examined.
     Thirdly, for a given motor envelope, two high-speed PM BLDC motors with different winding inductances are designed. The research shows that big winding inductance can smooth the winding current and reduce rotor eddy-current loss.
     Fourthly, influence of parallel and radial magnetization for surface mounted magnets on the performance of a high-speed PM BLDC motor is comparatively studied. It shows that parallel magnetization is better than radial magnetization. Two kinds of mechanical systems with different stator cooling and bearing lubrication are designed. Rotor dynamics of two kinds of bearing supporting systems are comparatively studied and it shows that bearings introduce low-frequency cylindrical and conical vibration modes and the rotor natural frequencies can be improved by changing the bearing supporting from single side to double sides.
     At the last, a control system based on MC33035 for high-speed PM BLDC is developed to provide a reliable experiment environment for no-load and load operations. The effects of PWM current control and copper shield on the rotor eddy-current loss are investigated. It shows that the rotor eddy-current loss can be dramatically reduced by using copper shield and the PWM current control method will introduce high order time harmonics causing additional rotor eddy-current loss. The experiment results are validated by transient temperature finite element simulation.
引文
[1]沈建新,超高速永磁无刷电机拓扑结构与控制策略的研究,浙江省自然科学基金(Y104442)申请报告,2004.
    [2]徐永向,单霍尔传感器高速永磁同步电机的控制与转子损耗研究,博士学位论文,2005.10,哈尔滨工业大学.
    [3]M.A.Rahman,A.Chiba,T.Fukao,Super high speed electrical machines-summary,Proceeding of IEEE Power Engineering Society General Meeting,2004,Vol.2,pp.1272-1275.
    [4]J.Huppunen,High-speed solid-rotor induction machine-electromagnetic calculation and design,PhD dissertation 2004,Lappeenranta University of Technology,Lappeenranta,Finland.
    [5]M.Ikeda,S.Sakabe,K.Higashi,Experimental study of high-speed induction motor varying rotor core construction,IEEE Trans.on Energy Conversion,vol.5,no.1,1990,pp.98-103.
    [6]J.Lahteenmaki,Design and voltage supply of high-speed induction machines,PhD dissertation 2002,Helsinki University of Technology,Espoo,Finland.
    [7]A.Arkkiol,T.Jokinen,E.Lantto,Induction and permanent magnet synchronous machines for high-speed applications,Proceedings of the Eighth International Conference on Electrical Machine and System 2005,Vol.2,27-29 sept.2005,pp.871-876.
    [8]M.Hippner,R.G.Harley,Looking for an optimal rotor for high speed permanent magnet synchronous machine,Proceedings of IEEE IAS Annual Meeting,Houston,TX,4-9 Oct.1992,pp.265-270.
    [9]Y.Honda,S.Yokote,T.Higaki,Y.Takeda,Using the halbach magnet array to develop an ultrahigh-speed spindle motor for machine tools,Proceedings of the 32nd IEEE IAS Annual Meeting,5-9 Oct.1997,New Orleans,LA,pp.56-60.
    [10]B.V.Jayawant,M.Maynard,R.Anbarasu,Design of high-speed permanent magnet machines in magnetic bearings,Proceeding of the 7th IEE International Conference on Electrical Machines and Drives 2001,1995,pp.418-422.
    [11]K.Miyashita,S.Yamashita,S.Tanabe,T.Shimosu,H.Sento,Development of a high speed 2-pole permanent magnet synchronous motor,IEEE Trans.on Power Apparatus Systems,vol.99,no.6,1980,pp.2175-2183.
    [12]M.R.Shah,S.B.Lee,Rapid analytical optimization of eddy-current shield thickness for associated loss minimization in electrical machines,IEEE Trans.on Industry Applications,vol.42,no.3,2006,pp.642-649.
    [13]A.A.Pride,P.R.Evison,100 to 140krpm PM motor/generators for EV applications,Proceeding of IEE Colloquium on Electrical Machine Design for All-Electric and Hybrid-Electric Vehicles 1999,pp.6/1-6/5.
    [14]N.Toshihiko,T.Yosuke,Y.Yukio,I.Seiichi,160,000-r/min,2.7-kW electric drive of supercharger for automobiles,Proceeding of International Conference on Power Electronics and Drive Systems 2005,28-01 Nov.2005,Vol.2,pp.1380-1385.
    [15]I.Takahashi,T.Koganezawa,G.J Su,K.Ohyama,A super high speed PM motor drive system by a quasi-current source inverter,IEEE Trans.on Industry Applications,vol.30,no.3,1994,pp.683-690.
    [16]Z.Q.Zhu,J.D.Ede,D.Howe,Design criteria for brushless dc motors for high-speed sensorless operation,International Journal of Applied Electro-magnetics and Mechanics 2002,Vol.15,pp.79-87.
    [17]L.Y.Xu,C.J.Wang,Implementation and experimental investigation of sensorless control schemes for PMSM in super-high variable speed operation,Proceedings of the 33rd IAS Annual Meeting 1998,12-15 Oct.1998,Vol.1,pp.483-489.
    [18]O.Aglen,Back-to-back tests of a high-speed generator,Proceedings of the IEEE International Electric Machines and Drives Conferences 2003,Vol.2,1-4 June 2003,pp.1084-1090.
    [19]H.Polinder,On the losses in a high-speed permanent-magnet generator with rectifier with special attention to the effect of a damper cylinder,PhD dissertation 97,Technische Universiteit Delft.
    [20]H.Hofmann,S.R.Sanders,High-speed synchronous reluctance machine with minimized rotor losses,IEEE Trans.on Industry Applications,vol.36,no.2,2000,pp.531-539.
    [21]W.L.Soong,G.B.Kliman,R.N.Johnson,R.A.White,J.E.Miller,Novel high-speed induction motor for a commercial centrifugal compressor,IEEE Trans.on Industry Applications,vol.36,no.3,2000,pp.706-713.
    [22]黄允凯,余莉,胡虔生,高速永磁电动机设计的关键问题,微电机,2006年,第39卷,第8期,pp.6-9.
    [23]方瑞明,高速变频电机设计与电机智能设计方法的研究,博士学位论文,2002.8,东南大学.
    [24]王继强,高速永磁电机的机械和电磁特性研究,博士学位论文,2007.3,沈阳工业大学.
    [25]J.D.Ede,Z.Q.Zhu,D.Howe,Optimal split ratio for high-speed Permanent magnet brus/fless DC motors,Proceedings of the 5th International Conference on Electrical Machines and Systems 2001,18-20 Aug,pp.909- 912.
    [26]Y.K.Huang,J.G.Zhu,Y.G.Guo,Z.W.Lin,Q.S.Hu,Design and analysis of a high-speed claw pole motor with soft magnetic composite core,IEEE Trans.on Magnetics,vol.43,no.6,2007,pp.2492-2494.
    [27]H.Toda,K.Senda,M.Ishida,Effect of material properties on motor iron loss in PM brushless DC motor,IEEE Trans.on Magnetics,vol.41,no.10,2005,pp.3937-3939.
    [28]J.J.H.Paulides,G.W.Jewell,D.Howe,An evaluation of alternative stator lamination materials for a high-speed,1.5MW,permanent magnet generator,IEEE Trans.on Magnetics,vol.40,no.4,2004,pp.2041-2043.
    [29]N.Bianchi,S.Bolognani,F.Luise,Potentials and limits of high-speed PM motors,IEEE Trans.on Industry Applications,vol.40,no.6,2004,pp.1570-1578.
    [30]N.Bianchi,S.Bolognani,F.Luise,Analysis and design of a PM brushless motor for high-speed operations,IEEE Trans.on Energy Conversion,vol.20,no.3,2005,pp.629-636.
    [31]N.Bianchi,S.Bolognani,F.Luise,High speed drive using a slotless PM motor,IEEE Trans.on Power Electronics,vol.21 no.4,2006,pp.1083-1090.
    [32]S.M.Jang,S.S.Jeong,D.W.Ryu,S.K.Choi,Comparison of three types of PM brushless machines for an electro-mechanical battery,IEEE Trans.on Magnetics,vol.36,no.5,2000,pp.3540-3542.
    [33]V.S.Ramsden,P.A.Watterson,G.P.Hunter,J.G.Zhu,W.M.Holliday,H.C.Lovatt,W.Wu,B.A.Kalan,S.C.Collocott,J.B.Dunlop,P.B.Gwan,B.C.Mecrow,High-performance electric machines for renewable energy generation and efficient drives,Renewable Energy,vol.22,2001,pp.159-167.
    [34]S.M.Jang,S.H.Lee,H.W.Cho,S.K.Cho,Analysis of unbalanced force for high-speed slotless permanent magnet machine with halbach array,IEEE Trans.on Magnetics,vol.39,no.5,2003,pp.3265-3267.
    [35]沈建新,费伟中,陈利根,气隙磁场波形及磁瓦充磁方式对无刷直流电动机性能的影响,微特电机,2006年第6期.
    [36]Z.Q.Zhu,J.D.Ede,D.Howe,Design criteria for brushless dc motors for high-speed sensorless operation,International Journal of Applied Electromagnetics and Mechanics,vol.15,no.1-4,2001/2002,pp.79-87.
    [37]S.X.Chen,M.A.Jabbar,Q.D.Zhang,Z.J.Liu,New challenge:electron magnetic design of BLDC motors for high speed fluid film bearing spindles used in hard disk drives,IEEE Trans.on Magnetics,vol.32,no.5,1996,pp.3854-3856.
    [38]N.Dravid,Performance prediction for a permanent magnet two-pole synchronous machine for a flywheel energy storage system, Aerospace Power & Electronics Workshop, 8 Oct. 2003, Cleveland, Ohio.
    [39] F. Dubas, C. Espanet, A. Miraoui, Design of a high-speed permanent magnet motor for the drive of a fuel cell air-compressor, Proceedings of IEEE International Conference on Vehicle Power and Propulsion 2005, 7-9 Sept. 2005, pp. 603-610.
    [40] J. D. Ede, Z. Q. Zhu, D. Howe, Design considerations for high-speed sensorless permanent magnet brushless DC motors, Proceedings of the 2nd International Conference on Power Electronics, Machines and Drives 2004, 31 March-2 April, pp. 686- 690.
    [41] S. M. Jang, H. W. Cho, S. K. Choi, Design and analysis of a high-speed brushless DC motor for centrifugal compressor, IEEE Trans. on Magnetics, vol. 43, no. 6, 2007, pp. 2573-2575.
    [42] S. Koichi, A trial production of small size ultra-high speed drive system, Ansoft Corp. [43] Z. J. Liu, S. X. Chen, Q. D. Zhang, Design of brushless dc spindle motors for high speed HDD recording, IEEE Trans. on Magnetics, vol. 34, no. 2,1998, pp. 483-485.
    [44] A. S. Nagorny, N. V. Dravid, R. H Jansen, B. H. Kenny, Design aspects of a high speed permanent magnet synchronous motor generator for flywheel applications, Proceeding of IEEE International Conference on Electric Machines and Drives 2005,15-18 May 2005, pp. 635-641.
    [45] F. X. Wang, M. Zong, W. P. Zheng, Design features of high speed PM machines, Proceedings of the 6th International Conference on Electrical Machines and Systems 2003. 9-11 Nov. 2003, pp 66-70.
    [46] W. S. Wang. Design of high speed flywheel motor/generator for aerospace applications, PhD dissertation 2004, The Pennsylvania State University.
    [47] T. Yu, F. X. Wang, J. Q. Wang, F. G. Zhang, Investigation on structure of stator core and winding for high speed PM machines, Proceedings of the Eighth International Conference on Electrical Machine and System 2005, Vol. 2, pp. 903- 906.
    [48] Z. Q. Zhu, K. Ng, D. Howe, Design and analysis of high-speed brushless permanent magnet motors, Proceeding of 8th International Conference on Electrical Machines and Drives 97,1-3 September 1997, No. 444, pp. 381-385.
    [49] C. Zwyssig, J. W. Kolar, W. Thaler, M. Vohrer, Design of a 100 W, 500000 rpm permanent-magnet generator for Mesoscale Gas Turbines, Proceedings of IEEE IAS Annual Meeting 2005, pp. 253-260.
    [50] K. Atallah, D. Howe, Rotor loss in permanent-magnet brushless ac machines, IEEE Trans. on Industry Applications, vol. 36, Nov. 2000, pp. 1612-1618.
    [51] F. Deng, Commutation-caused eddy-current losses in permanent-magnet brushless DC motors, IEEE Trans. on Magnetics, vol. 33, no. 5, 1997, pp. 4310-4317.
    [52] S. M. A. Sharkh, M. R. Harris, N. T. Irenji, Calculation of rotor eddy-current loss in high-speed PM alternators, Proceeding of 8th International Conference on Electrical Machines and Drives 97, 1-3 September 1997, No. 444, pp. 170-174.
    [53] Z. Q. Zhu, K. Ng, N. Schofield, D. Howe, Improved analytical modeling of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets, IEE Proceeding on Electric Power Applications, vol. 151, no. 4, Nov. 2004, pp. 641-650.
    [54] K. Reichert, G. Pasquarella, High-speed electric machines, status, trends and problems, Proceeding of IEEE/KTH Stockholm Power Tech. Conference, Stockholm, Sweden, June 18-22, 1995, pp. 41-49.
    [55] S. M. Jang, H. W. Cho, S. H. Lee, H. S. Yang, Y. H. Jeong, The influence of magnetization pattern on the rotor losses of permanent magnet high-speed machines, IEEE Trans. on Magnetics, vol. 40, no. 4, 2004, pp. 2062-2064.
    [56] H. W. Cho, S. M. Jang, S. K. Choi, A design approach to reduce rotor losses in high-speed permanent magnet machine for turbo-compressor, IEEE Trans. on Magnetics, vol. 42, no. 10, 2006, pp. 3521-3523.
    [57]A.Yasuaki,M.Koji,O.Ken,Simulations and experiments on eddy current in Nd-Fe-B magnet,IEEE Trans.on Magnetics,vol.41,no.10,2005,pp.3790-3792.
    [58]D.Ishak,Z.Q.Zhu,D.Howe,Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole,IEEE Trans.on Magnetics,vol.41,no.9,2000,pp.2462-2469.
    [59]H.Polinder,M.J.Hoeijmakers,Eddy-current losses in the segmented surface-mounted magnets of a PM machine,IEE Proceeding on Electric Power Applications,Vol.146,no.3,May 1999,pp.261-266.
    [60]H.Toda,Z.P.Xia,J.B.Wang,K.Atallah,D.Howe,Rotor eddy-current loss in permanent magnet brushless machines,IEEE Trans.on Magnetics,vol.40,July 2004,pp.2104-2106.
    [61]W.Wu,J.B.Dunlop,S.J.Collocott,Modeling of eddy current losses in a surface mounted NdFeB permanent magnet generator,Proceedings of the Seventeenth International Workshop on Rare-earth Magnets and Applications,Newark,Delaware,USA,18-22 August 2002,pp.323-328.
    [62]K.Yoshida,Y.Hita,K.Kesamaru,Eddy-current loss analysis in PM of surface-mounted-PM SM for electric vehicles,IEEE Trans.on Magnetics,vol.36,no.4,2000,pp.1941-1944.
    [63]H.Polinder,M.J.Hoeijmakers,Effect of a shielding cylinder on the rotor losses in a rectifier-loaded PM machine,Proceedings of IEEE IAS Annual Meeting 2000.
    [64]J.L.F.vanderVeen,L.J.J.Offringa,A.J.A.Vandenput,Minimizing rotor losses in high-speed high-power permanent magnet synchronous generators with rectifier load,IEE Proceeding on Electric Power Applications,Vol.144,No.5,September 1997,pp.331-337.
    [65]F.Z.Zhou,J.X.Shen,W.Z.Fei,R.G.Lin,Study of retaining sleeve and conductive shield and their influence on rotor loss in high-speed PM BLDC motors,IEEE Trans.on Magnetics,vol.42,no.10,2006,pp.3398-3400.
    [66]S.A.Shark,N.T.IrenjI,M.Harris,Effect of power factor on rotor loss in high-speed PM alternators,Proceeding of the 9th International Conference on Electrical Machines and Drives 1999,pp.346-350.
    [67]邓旺群,高德平,涡轴发动机动力涡轮转子高速动平衡技术研究,航空动力学报,第18卷,第5期,2003,pp.669-675.
    [68]J.D.Ede,Z.Q.Zhu,D.Howe,Rotor resonances of high-speed permanent-magnet brushless machines,IEEE Trans.on Industry Applications,vol.38,no.6,2002,pp.1542-1547.
    [69]B.Andreas,S.Tobias,K.Markus,Fixation of buried and surface-mounted magnets in high-speed permanent-magnet synchronous machines,IEEE Trans.on Industry Applications,vol.42,no.4,2006,pp.1031-1037.
    [70]V.Lelos,S.Manifold,J.Granier,Structural properties and testing of a composite banding used in high-speed rotors,IEEE Trans.on Magnetics,vol.43,no.1,2007,pp.250-253.
    [71]E.C.Lovelace,T.M.Jahns,T.A.Keim,J.H.Lang,Mechanical design considerations for conventionally laminated,high-speed,interior PM synchronous machine rotors,IEEE Trans.on Industry Applications,vol.40,no.3,2004,pp.806-812.
    [72]J.X.Shen,Z.Q.Zhu,D.Howe,Sensorless flux-weakening control of permanent magnet brushless machines using third harmonic back EMF,IEEE Trans.on Industry Applications,vol.40,no.6,2004,pp.1629-1636.
    [73]J.X.Shen,S.Iwasaki,Sensorless control of ultrahigh-speed PM brushless motor using PLL and third harmonic back EMF,IEEE Trans.on Power Electronics,vol.53,no.2,2006,pp.421-428.
    [74]L.Zhao,C.H.Ham,Q.Han,T.X.Wu,L.Zheng,K.B.Sundaram,J.Kapat,L.Chow,Design of optimal digital controller for stable super-high-speed permanent-magnet synchronous motor,IEE Proceeding on Electric Power Applications,Vol.153,No.2, March 2006,pp.213-218.
    [75]S.I.Park,T.S.Kim,S.C.Ahn,D.S.Hyun,An improved current control method for torque improvement of high-speed BLDC motor,Proceedings of the 18th IEEE Annual Applied Power Electronics Conference and Exposition 2003,pp.294-299.
    [76]K.H.Kim,M.J.Youn,Performance comparison of PWM inverter and variable DC link inverter schemes for high-speed sensorless control of BLDC motor,Electronics Letters,10th October 2002 Vol.38,no.21,pp.1294-1295.
    [77]C.Zwyssig,S.D.Round,J.W.Kolar,Power electronics interface for a 100 W,500000rpm gas turbine portable power unit,Proceedings of the 21st IEEE Applied Power Electronics Conference and Exposition 2006,19-23 March 2006,pp.283-289.
    [78]J.B.Zou,Y.X.Xu,J.H.Hu,H.W.Zhu,Sinusoidal commutation of a high speed PM synchronous motor with one discrete hall sensor,Proceeding of IEEE International Power Electronics Congress 2002,20-24 Oct.2002,pp.115-119.
    [79]B.H.Bae,S.K.Sul,J.H.Kwon,J.S.Byeon,Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor,IEEE Trans.on Industry Applications,vol.39,no.3,2003,pp.811-818.
    [80]R.C.Becerra,M.Ehsani,High-speed torque control of brushless permanent magnet motors,IEEE Trans.on Industrial Electronics,vol.35,no.3,1988,pp.402-406.
    [81]C.Y.Bian,S.Y.Ren,L.Y.Ma,Sensorless DTC of super high-speed PMSM,Proceedings of the IEEE International Conference on Automation and Logistics 2007,August 18-21,2007,Jinan,China,pp.3060-3064.
    [82]Md.MuminulI.Chy.,M.Nasir Uddin,Nonlinear controller based high speed control of IPMSM,Proceedings of International Conference on Electrical and Computer Engineering 2006,19-21 December 2006,Dhaka,Bangladesh,pp.477-480.
    [83]J.A.Haylock,B.C.Mecrow,A.G.Jack,D.J.Atkinson,Enhanced current control of high-speed PM machine drives through the use of flux controllers,IEEE Trans.on Industry Applications,vol.35,no.5,1999,pp.1030-1038.
    [84]G.Jang,M.G.Kim,A bipolar-starting and unipolar-running method to drive a hard disk drive spindle motor at high speed with large starting torque,IEEE Trans.on Magnetics,vol.41,no.2,2005,pp.750-755.
    [85]B.H.Kenny,P.E.Kascak,R.Jansen,T.Dever,W.Santiago,Control of a high-speed flywheel system for energy storage in space applications,IEEE Trans.on Industry Applications,vol.41,no.4,2005,pp.1029-1038.
    [86]H.Kim,K.K.Huh,R.D.Lorenz,T.M.Jahns,A novel method for initial rotor position estimation for IPM synchronous machine drives,IEEE Trans.on Industry Applications,vol.40,no.5,2004,pp.1369-1378.
    [87]T.H.Kim,M.Ehsani,Sensorless control of the BLDC motors from near-zero to high speeds,IEEE Trans.on Power Electronics,vol.19,no.6,2004,pp.1635-1645.
    [88]M.Morimoto,K.Aiba,T.Sakurai,A.Hoshino,M.Fujiwara,Position sensorless starting of super high-speed PM generator for micro gas turbine,IEEE Trans.on Industrial Electronics,vol.53,no.2,2006,pp.415-420.
    [89]M.N.Uddin,M.A.Rahman,High-speed control of IPMSM drives using improved fuzzy logic algorithms,IEEE Trans.on Industrial Electronics,vol.54,no.1,2007,pp.190-199.
    [90]C.Y.Wang,L.Y.Xu,A novel approach for sensorless control of PM machines down to zero speed without signal injection or special PWM technique,IEEE Trans.on Power Electronics,vol.19,no.6,2004,pp.1601-1607.
    [91]J.S.Yim,W.J.Lee,S.K.Sui,H.S.Yang,J.T.Kim,Sensorless vector control of super high speed yurbo compressor,Proceedings of the 20th IEEE Applied Power Electronics Conference and Exposition 2005,6-10 March 2005,pp.950- 953.
    [92]Y.Li,N.Ertugrul,A Novel,Robust DSP-based indirect rotor position estimation for permanent magnet AC motors without rotor saliency,IEEE Trans.on Power Electronics,vol.18,no.2,2003,pp.539-546.
    [93]王凤翔,高速电机的设计特点及相关技术研究,沈阳工业大学学报,第28卷第3期,2006年6月,pp.258-264.
    [94]余莉,胡虔生,易龙芳,崔杨,黄允凯,高速永磁无刷直流电机铁耗的分析和计算,2007年,第34卷,第4期,pp.10-14.
    [95]邹继斌,徐永向,于成龙,正弦波无刷直流电机的新型转子位置检测方法,中国电机工程学报,第22卷,第12期,2002年12月,pp.47-55.
    [96]李鲲鹏,胡虔生,黄允凯,计及绕组电感的永磁无刷直流电动机电路模型及其分析,中国电机工程学报,第24卷,第1期,2004年1月,pp.76-80.
    [97]王晋,陶桂林,周理兵,丁永强,基于换相过程分析的无刷直流电动机机械特性的研究,中国电机工程学报,第25卷,第14期,2005年7月,pp.141-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700