液压挖掘机作业及行走系统节能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文结合机械部跨世纪优秀人才专项基金资助项目(96250404)“液压挖掘机电子节能控制系统研究”及教育部骨干教师基金项目“提高工程车辆液力机械传动系统动力性与经济性的电控方法研究”,在对国内外液压挖掘机功率匹配控制技术研究的基础上,研制开发了液压挖掘机功率匹配控制系统。
    液压挖掘机功率匹配控制系统,是以泵的工作压力为依据,通过微机的计算可实现自动选择作业工况,完成挖掘机作业时发动机的转速设定,采用转速感应控制系统实现发动机—泵环节的功率匹配;将发动机、变量泵、多路阀和负载作为一个整体,采用协调控制策略,准确地对发动机—泵和泵—负载环节的功率进行协调,提高了系统功率利用率,减少了系统能量损失;设计了挖掘机直线行走马达同步控制回路。建立了系统的数学模型,研究了动力作业开环系统的输入输出特性,分析了变量泵—定量马达开式回路特性,说明了泵的恒功率控制对节能的重要性。论文借鉴先进的智能制理论,提出新的挖掘机节能控制调节方法,并开发出相应的智能型节能控制器。在液压挖掘机节能控制试验台上对节能控制系统进行了试验检验,柴油机的油耗测量表明,单神经元PID节能控制系统的平均节能效果在8.5%以上,协调控制节能效果明显。试验结果证明了本论文设计的节能控制系统工作可靠,使用的智能节能控制理论正确,节能效果显著。论文研究的结果对当今国内挖掘机的节能控制系统开发有重要的参考价值,具有重要的理论意义和实用价值。
Engineering machines almost are high-power construction machinery. Hydraulic excavator, as the main products of the engineering machines, energy-saving has been a key subject due to lots of reasons, such as continual variety of load, wide range of the variety, worldly energy crisis, and the higher consciousness of the protecting entironment. With the perfecting of the integrative technique between mechanics and electronics continuously, the study on the electronic energy-saving control system of the hydraulic excavator becomes the one of the important developing trends in the engineering machines.
    The existing foreign hydraulic excavators have witnessed obvious energy-saving especially by equipped with different electronic control systems respectively, and have improved energy-saving for different extent. Comparing with the advanced foreign excavators, energy-saving control technology of domestic excavators still is in the primary stage.
    Even though some universities and corporations, like Zhejiang University and Guangxi Yuchai Limited Company, have obtained outstanding achievement, but there still are biggish disparities between foreign hydraulic excavators and domestic excavators in the energy-saving, operational reliability. So, it has great significance both theoretical and experimental that to study on the energy saving technology of the hydraulic excavators. The aims of this study are, enhancing the competitive capacity of the domestic excavators and improving the energy saving effect of the control system of the domestic excavators.
    The dissertation, tied with the projects, special fund of the Ministry of
    mechanical for excellent talents (96250404), and the fund of the Ministry of Education for the backbone teacher. Analyzing present energy-saving technology on domestic hydraulic excavator and its primary energy-losing firstly, and then investigates energy-saving by incorporating the engine, hydraulic system and load to a dynamic system. The dissertation introduces a new method of energy-saving control in the excavator, and comes with an advanced, intellectualized controller. The innovations in this dissertation are as following: 1. The dissertation analyzes present research situation of hydraulic excavator, introduces the working principle of several advanced hydraulic excavator energy-saving control system, and summarizes the difference between the foreign hydraulic excavators and domestic excavators. As well as points out the research direction and developing trend of hydraulic excavator energy-saving, explains the purpose and significance of research on hydraulic excavator energy-saving control. 2. Energy-losing and energy-saving control theory analysis (1) Analysis of hydraulic excavator energy-saving control theory By analyzing Universal Characteristic Curve and Speed Adjusting Curve of diesel engine, the maximum power point and the minimum oil consuming, which are at different rotation speed when the engine is at the same accelerator position, could be found. So it is important to set the engine rotation speed according to load (on different working station). From Rotation Speed-Oil Consumption Curve, the oil consuming will see rising sharply when the rotation speed waves. The above analysis proves that steady rotation is the most importance to energy-saving. hydraulic excavator energy-saving can be realized via controlling on hydraulic pressure system and power system. (2) Analysis of hydraulic excavator energy-losing The dissertation has discovered various ways of hydraulic excavator energy-losing when working, via analyzing control circuits on hydraulic excavator. The primary energy-losing is brought by the power no-matching between engine and pump, and by the power no-matching between hydraulic system and load, the rest loss is shared by the mechanic losing, kinetic energy-losing and potential energy-losing, pressure losing of
    pipeline and low efficiency of pump. The key to energy-saving is to control the flux of hydraulic system according to load regardless of which of the following has been chosen: Positive flux control, Negative flux control and Load Sensing control. 3. Design on the energy-saving control system of the hydraulic excavator Based on the characteristic of hydraulic excavator, the dissertation has incorporated engine, variable pump and load as a dynamic system for energy-saving researching. The power mode of the engine could be marked to 4 levers according the working status. Then self-adaptation control system of the power matching was designed via the exported pump pressure. When the system working, with the load changing, put filtered pump pressure, measured in several working circulations, into controller to get right position of the accelerator and practical rotation speed in power matching principle. The method of adjusting exported power is always set in this way, and it could be achieved that self-matching between the power mode of the engine and working status of the excavator. Improving the using ratio of the fuel oil could be obtained by this method. The dissertation has employed the control method of the rotate speed sensing control. Then power matching are realized by adjusting pump displacement in the certain working status, when the waves of the engine rotate speed and the system pressure have brought by the instantaneous variety of the load. The reason of the power no-matching between engine and pump, pump and load was analyzed first time. And harmonized control method of the power matching between engine and pump, pump and load is brought forward innovatively in this paper. The detailed technique is to realize self-adjusting of the valve opening, by virtue of proportional controlled pilot operated valve, which equip the function of measuring displacement. Transmission theory of the running-equipment was analyzed depending on the energy-saving. Linear running synchronous control circuit of the running motor was designed innovatively, which controlled by flow dividing valve.
    4. Building the mathematics model of the control system The mathematics models of the drive-working system, which obtained engine, variable displacement pump, valve and cylinder, were built in this paper. Opening-loop transfer function of the system is gained by simplifying the mathematics models. Researching the characteristic of the opened control system of the power working status by the module of Matlab, established the base for the simulink study of the intelligent control arithmetic. Analyzing the characteristic of the running system, which consist of the fixed displacement motor and variable displacement pump, its result indicates that performing constant horsepower control of the variable displacement pump is the most important in the energy-saving control of the running system. 5. The arithmetic study of intelligent control system Lucubrating the theories of the fuzzy control and nerve net control, self-adaptation fuzzy PID controller and single nerve cell PID controller of the dynamical system were designed. The simulink test result indicates that self-adaptation fuzzy PID controller and single nerve cell PID controller could effectively stabilize the rotate speed of the engine in the course of load changing. Comparing two kinds of intelligent control arithmetic, single nerve cell PID controller is the better. 6. Test-bed experiments of energy saving intelligent control system The test was done in the energy-saving control test-bed, which the aim is for validating the reliability and practical effect of the single nerve cell PID controller of the excavator. Experiment proved dynamic pattern mentioned in this dissertation could control the engine perfectly through computer no matter what working stage the hydraulic excavator has been in, middle position loss, over flow loss and loss of flux modulating have been cut down accordingly, oil consuming also showed the average result of the energy-saving control system was above 8.5 percent. Short term overloading has been realized through second level overflow control, which has heightened the efficiency as well as boosted safety. Oil consuming and system radiation has been reduced effectively via automatic idle speed system; the performance of the whole working system has been improved
引文
[1] 张铁、朱明才,工程建设机械机电液一体化,石油大学出版,2001 年6 月第一版
    [2] 伏洪兴,现代电子技术在液压挖掘机上的应用,工程机械,1996.11
    [3] 朱齐平,进口工程机械使用维修手册主编,辽宁科学技术出版社, 2001.4 第一版
    [4] 同济大学主编,单斗液压挖掘机,北京-中国建筑工业出版社,1986.12
    [5] 伏洪兴.现代电子技术在液压挖掘机上的应用,工程机械,1996.11
    [6] 刘振军.日立EX 系列液压挖掘机机电一体化控制系统分析,建筑机械,1998.1
    [7] 周萍孙跃东.挖掘机发动机-变量泵系统经济匹配的研究,工程机械,2000.7
    [8] 王强龚烈航.工程机械电液控制的现状与未来,工程机械,1996.8
    [9] 冯培恩,液压挖掘机的今天和明天,国外工程机械,1985
    [10] Kamiliawa; Nobuhisa (Neyagawa, JP); Nishida; Kimio (Hirakata,JP), Constant power displacement control cut off system with adjustable relief valve, U.S. Patent 5077974, January 7, 1992
    [11] Russ Henke, The evolution of load-sensing hydraulics, Diesel Progress: Engine & Drives. July-August 1998
    [12] Russ Henke, Proper Definition of Operating Parameters Key To Optimizing Hydraulic System Design. Diesel Progress: Engine & Drives, August. 1998
    [13] 和卫星陆森林陈雪芳等.单斗液压挖掘机的节能控制系统,机械工业自动化,1999.6
    [14] 高峰冯培恩潘双夏高宇等. 液压挖掘机节能控制, 工程机械与维修,2001.12 ,P40~43
    [15] 丁仲毅刘晋军.液压挖掘机节能控制系统的研究与开发,建筑机械,2000.6
    [16] 彭天好杨华勇傅新.液压挖掘机全功率匹配与协调控制,机械工程学报,2001.11
    [17] 潘天宏.液压挖掘机节能控制系统的研究,排灌机械,1999.2
    [18] 王晨应富强.液压挖掘机的智能化节能控制策略,浙江工业大学学报,2000.6
    [19] 郭晓方李伟哲黄宗益,液压挖掘机的发动机-泵的联合控制系统研究,同济大学学报,1999.6
    [20] 张卫东.小松PC200—5 液压挖掘机的自动预热与防过热功能,筑路机械与施工机械化,2002.1
    [21] 黄宗益王康,液压挖掘机节能控制,建筑机械,1997.6
    [22] 黄宗益.液压挖掘机的电子控制,建筑机械,1997.3
    [23] 路晶,王庆波.韩国大宇挖掘机—Ⅲ型EPOS 系统,建筑机械,1998.8
    [24] 同济大学主编.单斗液压挖掘机,中国建筑机械出版社,1986
    [25] R.K.Tessmann, LT.Hong, Hydraulic Pump Performance as a Function of Speed and Pressure, SAE96174I
    [26] R.N.Hancox, Hydraulic SyStem bor Excavator, U. S. Patent 3406850, OCT.22,1968
    [27] Soon-Yong Chun; Bo Hyeok Seo, Design of an artificial intelligence controller for effective control of engine speed and pump flow according to working condition of an excavator, Computer' Comznunicatio4 Control and Power Engineering. Proceedings. TENCON '93., 1993 IEEE Region 10 Conference on Part: 4'0000, 1993, Page(s): 361 -365 voL4
    [28] 陈正利,我国挖掘机行业面对加入“WTO”的若干思考,液压气动于传动,建筑机械,2000.6
    [29] 吉林工业大学等编写,工程机械液压与液力传动下册,北京-机械工业出版社,1979.7
    [30] 吉林工业大学等编写,工程机械液压与液力传动上册,北京-机械工业出版社,1979.6
    [31] 朱予姝,未来液压挖掘机的节能性,矿山机械,1999.9
    [32] 高峰,液压挖掘机节能控制技术的研究,浙江大学博士学位论文
    [33] 米伯林奚泉.国外液压挖掘机与液电自动控制,现代化农业,1998.4
    [34] 邹占江朱钒邹占江等.挖掘机中节能措施,1997.8
    [35] 金立生.液压挖掘机PID 专家节能用专家控制系统研究,吉林工业大学硕士学位论文,2000.3
    [36] Kazuo Uehara and Hiroyoshi Tominaga. Energy Saving on Hydraulic Systems of Excavators, SAE paper, 821057
    [37] Shahram TafazoIi, Peter D.Lawrence, S.E.Salcudean, Identification of inertial and Friction Parameters for Excavator Arms, IEEE TRANSATIONS ON ROBOTICS AND AUTOMATION, VOL.15, NO.5, OCTOBER 1999
    [38] 龚向东,机电一体化液压挖掘机控制策略的研究,浙江大学博士学位论文,浙江大学,1996.4
    [39] 张晓华. 控制系统数字仿真与CAD [M]. 北京:机械工业出版社,1999 .10
    [40] 黄宗益,液压挖掘机全功率控制,建筑机械,1997 年第七期,P34~P39
    [41] 宋又廉张谦.随负载调节液压泵工作压力流量的节能液压系统,起重运输机械,1998.1
    [42] 徐家蓓,控制系统数字仿真[M]. 北京:北京理工大学出版社,1998.1
    [43] 金力生,液压挖掘机电子节能控制系统研究,吉林大学博士学位论文,2003
    [44] 张宝彬.车用液压机械无级变速器变参数PID 控制研究.北京理工大学硕士学位论文,2000.6
    [45] 宋锦春,周生浩,程乃士等.车辆无级变速器液压系统的模糊控制. 中国机械工程第2003.14(8)
    [46] 刘修骥.车辆传动系统分析.国防工业出版社.1998.1
    [47] 姜玉宪朱恩王卫红. 控制系统仿真[M]. 北京:北京航空航天大学出版社,1998.8
    [48] 施阳,MATLAB 语言精要及动态仿真工具SIMULINK [M]. 西安:西北工业大学出版社,1997.6
    [49] 张志涌,精通MATLAB(5.3 版) [M]. 北京:北京航空航天大学出版社,2000.8
    [50] 范影乐杨胜天李轶. MATLAB 仿真应用详解[M]. 北京:人民邮电出版社,2001.7
    [51] 李强赵伟. MATLAB 数据处理与应用[M]. 北京:国防工业出版社,2001.1
    [52] 谢庆生、尹健、罗延科编著,机械工程中的神经网络方法,北京-机械工业出版社,2003
    [53] 闻新周露李东江等. MATLAB 模糊逻辑工具箱的分析与应用[M]. 北京:科学出版社,2001.4
    [54] W. A. Kwong and K. M. Passino. Dynamically focused fuzzy learning control. IEEE Trans. on Systems, Man, and Cybernetics, 26(1):53-74, February 1996
    [55] E. G. Laukonen and K. M. Passino. Training fuzzy systems to perform estimation and identification. Engineering Applications of Artificial Intelligence, 8(5):499-514, 1995
    [56] S. K. Sin and R. J. P. Defigueiredo. Fuzzy system design through fuzzy clustering and optimal predefuzzification. In proc. of the 2nd IEEE conf. on Fuzzy Systems, pages 190-195, San Francisco, CA, March 1993
    [57] J. M. Mendel. Fuzzy logic systems for engineering: A tutorial. Proc. of the IEEE, Special Issue on Fuzzy Logic in Engineering Applications, 83(3):345-377, March 1995
    [58] W. Kickert and H. Van Nauta Lemake. Application of a fuzzy controller in a warm water plant. Automatica, 12(4):301-308, April 1976
    [59] 李斌、雷渊超,模糊控制与模糊神经网络研究的现状及展望,北京轻工业学院学报,1995 年6 月第13 卷第1 期,P30~P34
    [60] 李士勇,模糊控制、神经控制和智能控制论,哈尔滨工业大学出版社, 1998.9第二版
    [61] 张化光、何希勤等著,模糊自适应控制理论及其应用,北京航空航天大学出版社,2002 年7 月第一版
    [62] 李俊明、付维坊、程子键、王海峰,液压系统自适应模糊控制的学习机制与方法,机电工程,1999 年第六期,P14~P15
    [63] 张曾科,模糊数字在自动化技术中的应用,北京:清华大学出版社,1997
    [64] 郑训、张铁、黄厚宝等编著,工程机械通用总成,机械工业出版社,2001年5 月第一版,P203
    [65] 周士昌主编,液压气动系统设计运行禁忌470 例,北京-机械工业出版社,2002
    [66] 周士昌主编,液压系统设计图集,北京-机械工业出版社,2003
    [67] 周连山,庄显义编著,液压系统的计算机仿真,北京-国防工业出版社,1986.6
    [68] 吴振顺编著,液压系统仿真与CAD,哈尔滨-哈尔滨工业大学出版社, 2000.11
    [69] 官忠范主编,液压传动系统,北京-机械工业出版社,1997.7 第3 版
    [70] 吉林工业大学等编写,工程机械液压与液力传动下册,北京-机械工业出版社,1979.7
    [71] 吉林工业大学等编写,工程机械液压与液力传动上册,北京-机械工业出版社,1979.6
    [72] 贾铭新主编,液压传动与控制解难和练习,北京-国防工业出版社,2003
    [73] 郭士偿编,电子控制比例阀,台北-全华科技图书公司出版,1988.1
    [74] 王积伟、吴振顺主编,控制工程基础,北京-高等教育出版社,2001.8
    [75] 路甬祥、胡大宏编著,电液比例控制技术,北京-机械工业出版社,1988.11
    [76] 王占林著,近代液压控制,北京-机械工业出版社,1997
    [77] 黄曼磊唐嘉亨郭镇.柴油机调速系统的数学模型,哈尔滨工程大学学报,1997.6
    [78] 赵光宙高军杨志家,柴油机模型参数自适应调速系统的研究,内燃机工程,1995.4
    [79] 韩申、边耀潭主编,发动机原理,交通出版社出版,1988 年6 月,第1 版
    [80] 张连方等. 柴油机原理. 上海:上海交通大学出版社,1987.12
    [81] 董敬庄志常思勤. 汽车拖拉机发动机. 北京:机械工业出版社,1996.5
    [82] 李伟华卓斌金昶明等.柴油机调速系统动态调节过程的计算机仿真及参数优化,内燃机学报,1999.4
    [83] 张连方等. 柴油机原理. 上海:上海交通大学出版社,1987.12
    [84] 黄文梅杨勇熊桂林等.系统仿真分析与设计. 长沙:国防科技大学出版社,2001.12
    [85] Karen L. Butler. A Matlab-Based Modeling and Simulation Package for Electric and Hybrid Electric Vehicle Design [J]. IEEE TRANSACTION ON VEHICLAR TECHNOLOGY, VOL. 48, NO. 6, NOVERBER 1999, 1770~1777
    [86] Chung-Hung Pan and John J. Moskwa. Dynamic Modeling and Simulation of the Ford AOD Automobile Transmission [J]. SAE 950899, 1689~1697
    [87] Feredoom Jamzadeh, Tung-Ming Hsieh, Keith Struthers. Dynamic Simulation Modeling For Heavy Duty Automatic Transmission Control Development [J]. SAE 922441, 704~715
    [88] 董景新赵长德熊沈蜀郭美凤编著,控制工程基础,北京:清华大学出版社,2003
    [89] 阳含和,机械控制工程(上册),北京:机械工业出版社,1986
    [90] John Van De Vegte, Feedback Control System (3rd ed), Prentice-hall. Inc., Englewood: Cliffs, New Jersey
    [91] 高钟毓机电控制工程,北京:清华大学出版社,2002
    [92] 何克忠李伟计算机控制系统,北京:清华大学出版社,1998
    [93] 李强赵伟. MATLAB 数据处理与应用[M]. 北京:国防工业出版社,2001.1
    [94] 张雄飞刘平. 也谈开发硬件中断虚拟驱动程序[J]. 电脑编程技巧与维 护,2001.8,31~32
    [95] 张元良孙世强. Windows95 下中断处理程序与Win32 应用程序通讯的几种方法[J]. 工业控制计算机,2001.4,27~28
    [96] 刘其锋. WIN95 下虚拟设备驱动程序设计开发[J]. 电子技术应用,2000.4,15~17
    [97] [美] David J. Kruglinski,Scot Wingo,George Shepherd. 希望图书创作室译. Programming Visual C+ +技术内幕6.0(第五版) [M]. 北京:北京希望电子出版社,1999.5
    [98] [美] Kate Gregory. 前导工作室译. Visual C+ +6 开发使用手册[M]. 北京:机械工业出版社,1999.2
    [99] [美] H. M. Deitel,P. J. Deitel. 薛万鹏译. C/C+ +程序设计大全[M]. 北京:机械工业出版社,1997.8
    [100] 柳永新杨东凯蒋晓瑜. Windows C 程序设计入门与提高[M]. 北京:清华大学出版社,1999.6
    [101] 窦振中编著,PIC 系列单片机原理和程序设计,北京-北京航空航天大学出版社,1998
    [102] 施威铭研究室著,PIC 单片机轻松入门,北京-清华大学出版社,2001.9
    [103]郝红伟、施光凯,Origin 6. 0 实例教程,晨曦工作室,北京-中国电力出版社,2000.8.
    [104]章卫国杨向忠.模糊控制理论与应用.西北工业大学出版社,2000.10
    [105]李兰生邹占江.液压挖掘机工作装置专家模糊控制系统的研究,矿山机械,1998.3
    [106]李朝青编.单片机原理及接口技术,北京航天航空出版社
    [107] FP-2000/200 Series POSITIIVE DISPLACEMENT TYPE FLOW DETECTOR INSTTUCTION MANUAL
    [108] DF-2410 DIGITAL FLOW METER INSTRUTION MANUAL
    [109]Gregory W. Davis. The Development of an Electro-Hydraulically Controlled, Five-Speed Transmission for a Hybrid Electric Vehicle [J]. SAE 980830, 109~118
    [110]Yoshishige Ohyama. An Algorithm of Optimum Torque Control for Hybrid Vehicle [J]. SAE 980890, 1~10
    [111]F.BAKHTIARI NEJAD and S.AZADI. Vehicle Velocity Control Using Fuzzy Self-Tuning Method [J]. Vehicle System Dynamics. 29 (1998), 331~338
    [112]Nianzhuluo,Frank J Fronczak,and Norman H,Beachley Comparision of Analytcial and experimental investigations of a Hydraulic Multi-Circuit Sequential Apportioning System,SAE,Vol.99,1990
    [113]E.mann New Technology for Powershift Transmissions in Hydrostatically Driven Wheel Excavators and Wheel Loaders, SAE, Vol.99, 1990
    [114]A Transmission Control System for Construction Machinery,Kohei Kussaka and Yasunori Dnkura,SAE,Vol.99,1990
    [115]K.A.Edge and K.R.A.Figueredo Microprocessor —Based Model Reference Adaptive Control of an Electro—Hydraulic Servomechanism, SAE, Vol.89, 1989
    [116] Leon Liebenberg and Joham J. Kruger, Computer Control Hydrostatic Transmission with Traction Control for Vehicles, SAE,Vol.99,1990
    [117]A. Mylers, "Controlling Variable Displacement Hydraulic pumps for Energy Conservation", Paper 750807, SAE Meeting, Milwaukee, Sept.1975
    [118] W. T. Stephens and H. N. Underwood, “New Concept in Hydraulic Control Controls for Mobile Equipment”, Paper 650669, SAE Meeting, Milwaukee, Sept.965
    [119] Yasuo Aoki, Kazuo Uehara, Kazuyuki Hirose, Tedao Kara Kama, Kouichi Morita, Teruo Akiyam, And Yosuke Oda, Load Sensing FIuid Power System, SAE941714
    [120] Brigitta Lantto, Jan-Ove Palmberg and Petter Krus, Static and Dynamic Performance of Mobile Load-Sensing Systems with Two Different Types of Pressure-Compensated Valves, SAE90 1 552
    [121] W. Backe and B. Zalle Electro hydraulic Load sensing SAE911814
    [122] Azam S. Qureshi, Energy Conservation and Proportional Control with Load Sensing Hydraulic Systems, SAE810929
    [123] Nam, Sang-Yop (Seoul, KR), Multiprocessor system for hydraulic excavator, U.S. Patent 5347448, September 13, 1994
    [124]Devier, Lonnie J. (Dunlap, IL); Lunzman; Stephen V. (Chillicothe, IL), Power management control system of hydraulic work machine, U.S. Patent 5967756, October 19, 1999
    [125] 刘金琨.先进PID 控制及其MATLAB 仿真.电子工业出版社,2003.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700