基于振动信号特征提取与表达的旋转机械状态监测与故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在机械设备状态监测与故障诊断研究中,故障特征的提取及表达关系到故障诊断的可靠性与准确性,因此是机械设备故障研究中的关键问题。本文应用时域绝对自相关统计分析、时频分析中小波的分形分析、基于高阶统计量的独立分量分析与盲分离,对旋转机械中的轴承与齿轮的不同状态的振动信号进行特征提取与表达、及分类研究。
     第一章阐明了机械设备状态监测与故障诊断的选题意义及研究内容,回顾了现有的检测方案及技术手段。分析了现有的振动信号分析方法:时域统计分析、时频分析、基于高阶统计量分析的独立分量分析及盲信号分离。基于轴承、齿轮的振动分析,指出本论文的主要研究内容。
     第二章提出了一种基于绝对自相关统计分析信号周期瞬态成分检测方法及故障特征极坐标增强表达方法,首先计算信号的时间平均函数,接着计算其自相关函数,再利用快速傅里叶变换计算自相关函数的频谱,根据频谱确定信号的主要频率成分,分别按照这些主要频率成分的周期建立极坐标映射,并将各映射表示在极坐标图上,当对应于周期极坐标图上出现增强的特征表示,即判定待检测信号中存在有此周期的瞬态成分。所提出的方法可以有效的分辨出轴承的状态以及其对应的故障。
     第三章主要研究了小波变换分形方法在轴承状态分类中的应用。首先对信号进行小波变换,通过小波反变换得到不同尺度下的细节信号,并结合原始信号的功率谱特点,选取能够充分反映信号频率——能量特征的尺度,然后计算这些尺度下各细节信号的方差,再取对数,对这些对数值进行最小二乘法直线拟合,得到拟合直线的斜率,最后利用斜率计算出表征信号复杂程度的分形维数,通过分形维数对轴承状态进行分类研究。分析结果表明,此种方法可以有效的区分轴承的正常、外圈故障、滚珠故障状态。
     第四章研究了独立分量分析的基本理论及其在-维振动信号特征提取的应用研究。首先对统计独立性及不相关性进行了说明,接着研究了独立分量分析的一般模型,并对其可解性、不确定性进行了探讨。之后着重研究了非高斯性度量的对照函数:峭度、负熵、互信息,以及在进行独立分量分析之前对信号进行的预处理方法:零均值化与白化。研究了独立分量分析快速算法(FastICA)及其实现,并利用仿真分析说明ICA的不确定性。在FastICA基础上研究了一维振动信号的高阶统计信息特征提取,利用ICA基滤波相关特征(IFC)对齿轮箱振动信号进行特征提取与状态模式分类,取得了良好的效果。
     第五章研究了盲卷积分离的故障特征提取方法。首先建立了更能体现机械设备振动卷积混合特点的盲卷积混合及分离模型,接着推导了两信号源两传感器盲卷积系统的分离求解过程;然后在分离信号与源信号之间的交叉残余误差(RCTE)的分离性能评判基础上,提出了一种基于限值RCTE的控制迭代准则。并针对旋转机械振动信号的特点生成仿真信号,将该方法应用于旋转机械振动信号瞬态成分与噪声卷积混合问题,仿真试验结果表明了该算法的有效性。
     第六章总结全文并提出了研究展望。
Fault feature extraction and representation is the most crucial problem for the reliability and accuracy in the mechanical condition monitoring and fault diagnosis. This dissertation explores the applications of the theories with absolute value of autocorrelation, wavelet fractal analysis, independent component analysis and blind source separation in the feature extraction, representation and classification of vibration signal for the rotary machinery, such as bearing and gear.
     In chapter 1, at first, the significances and content of mechanical condition monitoring and fault diagnosis are pointed out, the current detection scheme and technical means are reviewed for the condition monitoring of bearing and gear, then the applications of the time domain statistical analysis, time-frequency representation, independent component analysis and blind source separation are reviewed as well, lastly, the contents, the focuses and the innovations of this dissertation are pointed out.
     Detection of signal transients based on the absolute value of autocorrelation and the representation of enforced fault feature in the polar coordinates are proposed in chapter 2. The new method is done in four steps:first, calculates the time average function of the original signal; second calculates the autocorrelations of the time average function; third, calculates the spectrum of the autocorrelations by fast Fourier transform; fourth, the enforced fault feature is represented in the polar coordinates corresponding the possible periods of the transients. The experimental verification shows the effectiveness of the new proposed method for bearing condition monitoring.
     The applications of the fractal analysis based on wavelet transform to the classification of bearing's vibration signals are studied in chapter 3. Firstly the acceleration signals are decomposed to detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals are calculated and then fractal dimensions of the acceleration signals are estimated from the slop of the variance progression. The fractal dimensions are significantly different among the different working conditions of the bearings and showes a high reproducibility. The results suggest that the wavelet-based fractal analysis is effective for classifying the working conditions of bearing.
     The basic theory of independent component analysis and its application to feature extraction from one-dimension vibration signal are studied in chapter 4. Firstly, the ICA general model and the dissimilarity between statistical independence and uncorrelated property are reviewed, then the contrast functions:kurtosis, negentropy and mutual information for measures of nongaussianity are presented, also is the centering and whitening for preprocessing for ICA. Secondly, the FastICA algorithm is studied. Finally, a new feature called ICA filtered correlation feature is quantitatively calculated by the transformed coefficients. The new feature has the clear class property and can be applied for signal classification.
     Blind source separation for convolutive mixtures and its application to machine vibrations are studied in chapter 5. First reviews the general concept of blind source separation, especially the theory for convolutive mixtures, the model of convolutive mixture and two deconvolution structures:Recursive and Direct structures, then presents a BSS algorithm for convolutive mixtures based on RCTE threshold control criteria, last the simulation testing points out good performance for simulated mixtures.
     Chapter 6 gives the conclusions and the prospect about this study.
引文
[1]陈克兴,李川奇.1991.设备状态监测与故障诊断技术[M].北京:科学技术文献出版社.
    [2]黄文虎,夏松波.1998.不断总结经验,将我国设备监测与诊断技术提高到新的水平[J].中国设备管理,11:3-5.
    [3]H. C. Choe, Yulun Wan, Andrew K.Chan.1997.Neural pattern identification of railroad wheel-bearing faults from audible acoustic signals:comparison of FFT, CWT and DWT features, SPIE Proceedings on Wavelet Applications[C], April, Vol.3087, pp.480-496.
    [4]F. D. Irani, et al.2002先进道旁车辆状态监视系统的开发和应用,国外铁道车辆,39(2),pp.39-45.
    [5]朱忠奎.2004.旋转机械非平稳特征表示和提取与故障诊断研究[D].合肥:中国科学技术大学.
    [6]刘瑞扬,王毓民.2005.铁路货车滚动轴承早期故障轨边声学诊断系统原理及应用[M].北京:中国铁道出版社.
    [7]虞和济,陈长征,张省等.2000.基于神经网络的智能诊断[M].北京:冶金工业出版社.
    [8]温熙森,胡茑庆,邱静.1997.模式识别与状态监控[M].长沙:国防科技大学出版社.
    [9]钟秉林,黄仁等.2002.机械故障诊断学[M].北京:机械工业出版社.
    [10]贾继德.2004.往复机械非平稳信号的特征提取及诊断研究[D].合肥:中国科学技术大学
    [11]何清波.2007.多元统计分析在设备状态监测诊断中的应用研究[D].合肥:中国科学技术大学.
    [12]Sheng-Fa Yuan and Fu-Lei Chu.2006. Support vector machines-based fault diagnosis for turbo-pump rotor[J]. Mechanical Systems and Signal Processing,20:939-952.
    [13]R. L. Florom, J. E. Hiatt, and R.L. Smith.1987. Wayside Acoustic Detection of Railroad Roller Bearing Defects[C]. Paper No.87-WART-11.
    [14]R. L. Smith, J. E. Bambara, and R. L. Florom.1988. Railcar Bearing End-Life Failure Distances and Acoustical Defect Censuring Methods[C]. ASME Paper presented at the Winter Annual Meeting, Chicago, IL.
    [15]J. E. Cline and J. R. Bilodeau.1998. Acoustic Wayside Identification of Freight Car Roller Bearing Detects[C]. Proceedings of the 1998 ASME/IEEE Joint Railroad Conference, Apr 15-16, pp.79-83.
    [16]Daubechies I.1990. The Wavelet Transform:Time-Frequency Localization and Signal Analysis[J]. IEEE Transactions on Information Theory. Vol.36, No.9,pp961-1005.
    [17]Almeidalb.1994.The Fractional Fourier-Transform and Time-Frequency Representions[J].IEEE Transactions on Signal Processing, Vol.42, No.11, pp3084-3091.
    [18]Lee SK.1997. White PR.Higher-order time-frequency analysis and its application to fault detection in rotating machinery[J]. Mechanical Systems and Signal Processing, Vol.11, No.4, pp637-650.
    [19]Yazici B, Kliman GB.1999. An adaptive statistical time-frequency method for detection of broken bars and bearing faults in motors using stator current[J]. IEEE Transactions on Industry Applications,Vol.35, No.2, pp442-452.
    [20]Blodt M, Chabert M, Regnier J, et al.2006. Mechanical load fault detection in induction motors by stator current time-frequency analysis[J]. IEEE Transactions on Industry Applications,Vol.42,No.6,pp1454-1463.
    [21]W.J.Wang,P.D.McFadden.1995. Application of orthogonal wavelets to early gear damage detection[J]. Mechanical Systems and Signal Processing, Vol.9, No.5,497-507.
    [22]C.Capdessus,M.Sidahmed,J.L.Lacoume.2000. Cyclostationary process:application in gear faults diagnosis[J]. Mechanical systems and signal processing,Vol.14,No.3,371-385.
    [23]Jing Lin.2000. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis[J] Journal of Sound and Vibration, Vol.234, No.l,135-148
    [24]H.Zheng,Z.Li,X.Chen.2002. Gear fault diagnosis based on continuous wavelet transform[J]. Mechanical Systems and Signal Processing,Vol.16,No.2,447-457.
    [25]Q.Sun,Y.Tang.2002. Singularity analysis using continuous wavelet transform for bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, Vol.16,No.6,1025-1041.
    [26]Gabor D.1946. Theory of communication[J]. J IEEE.93:429-457.
    [27]葛哲学,沙威.2007.小波分析理论与Matlab R2007实现.北京:电子工业出版社.
    [28]Wigner E P.1932. On the quantum correction for thermodynamic equilibrium[J]. Physics Review,40:749-759.
    [29]Ville J.1948.Theory et applications de la notion de signal analytique[J]. Cables et Transmission,2A:61-74.
    [30]T.A.C.M.Classen.1983. The aliasing Problem in Discrete-Time Wigner Distributions[J]. IEEE Trans. on ASSP.1067-1072.
    [31]Costa A.H, Boudreaux-Bartels,G.F.1994. A comparative study of alias-free time-frequency representations[C]. Proceeding of the IEEE-SP International Symposium,76-79.
    [32]Richman M S,Parks T W,Shcnoy R G.1998. Discrete-time,discrete-frequency, time-frequency analysis[J].IEEE Trans.SP,46(6):1517-1527.
    [33]张贤达,保铮.1998.非平稳信号分析与处理[M].北京:国防工业出版社.
    [34]L.Cohen.1989. Time-frequency distribution-a review[J].Proceedings of the IEEE.77(7):941- 981.
    [35]Boashash B, O’Shea P.1994. Polynomial Wigner-Ville Distributions and Their Relationship to Time-Varying Higher Order Spectra[J]. IEEE Trans.SP,42(1):216-220.
    [36]Velez E F, Absher R G.1989. Smoothed Wigner-Ville Parametric Modeling for the Analysis of Nonstationary Signals[C].IEEE International Symposium. Vol.1:506-510.
    [37]Velez E F, Absher R G.1989. Transient analysis of speech signals using the Wigner time-frequency representation[C]. ICASSP-89.vol.4:2242-2245.
    [38]Auger F, Flandrin P.1995. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 43(5):1068-1089
    [39]Grossmann,J.Morlet.1984. Decomposition of Hardy functions into square integrable wavelets of constant shape[C]. SIAM J.Math.Anal. Vol.15,723-736.
    [40]Daubechies.1988. Orthogonal bases of compactly support wavelets[J].Comm.On pure Math, 12(6):909-996
    [41]S.Mallat.1989. A theory for multi-resolution signal decomposition:the wavelet representation[J]. IEEE Transactions on pattern analysis and machine intelligence.11(7):674-693.
    [42]S.Mallat.1989. Multi-resolution approximation and wavelet orthogonal bases of L2(R).IEEE Trans.Amer.Math,38(2):69-87.
    [43]Wang W J, McFadden P D.1995. Application of orthogonal wavelets to early gear damage detection[J]. Mechanical Systems and Signal Processing,9(5):497-507.
    [44]R. B. W. Heng and M. J. M. Nor,1998. Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition[J]. Appl. Acoust, vol.53, no.1-3, pp.211-226.
    [45]P. D. Mcfadden and J. D. Smith,1984. Vibration monitoring of rolling element bearings by the high-frequency resonance technique-Areview[J]. Tribol.Int., vol.17, no.1, pp.3-10.
    [46]T. Kaewkongka, Y. H. J. Au, R. T. Rakowski, and B. E. Jones,.2003. A comparative study of short time Fourier transform and continuous wavelet transform for bearing condition monitoring [J]. Int. J. Comadem, vol.6, no.1, pp.41-48.
    [47]B. S. Kim, S. H. Lee, M. G. Lee, J. Ni, J. Y. Song, and C.W. Lee.2007. A comparative study on damage detection in speed-up and coast-down process of grinding spindle-typed rotor-bearing system[J]. Mater. Process. Technol.,vol.187/188, pp.30-36.
    [48]W. Wang, F. Ismail, and M. F. Golnaraghi.2001. Assessment of gear damage monitoring techniques using vibration measurements[J]. Mech. Syst. Signal.Process., vol.15, no.5, pp. 905-922.
    [49]W. Wang, F. Ismail, and F. Golnaraghi.2004. A neuro-fuzzy approach to gear system monitoring[J]. IEEE Trans. Fuzzy Syst, vol.12, no.5, pp.710-723.
    [50]X. Li and X. Yao.2005. Multi-scale statistical process monitoring in machining[J].IEEE Trans. Ind. Electron., vol.52, no.3, pp.924-927.
    [51]G. G. Yen and K. C. Lin.2000. Wavelet packet feature extraction for vibration monitoring[J] IEEE Trans. Ind. Electron, vol.47, no.3, pp.650-667.
    [52]赵纪元,何正嘉.1995.小波包-自回归谱及其在振动诊断中的应用[J].振动工程学报,Vo1.8,No.3,198-203.
    [53]林京.1999.机械动态信号的小波处理技术[D].西安:西安交通大学博士学位论文.
    [54]R.Rubini,U.Meneghetti.2001. Application of the envelope and wavelet transform analysis for the diagnosis of incipient faults in ball bearings[J]. Mechanical Systems and Signal Processing 15(2),287-302.
    [55]Z.K.Peng, Peter W.Tse, F.L.Chu.2005. A comparison study of improved Hilbert-Huang transform and wavelet transform:Application to fault diagnosis for rolling bearing[J]. Mechanical Systems and Signal Processing,19:974-988.
    [56]Rafiee,M.A.Rafiee,P. W.Tse.2010. Application of mother Wavelet functions for automatic gear and bearing fault diagnosis[J].Expert Systems with Applications,37:4568-4579.
    [57]Norden E Huang,Zheng Shen,Steven R.Long.1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C].Proceedings of the Royal Society London.A454:903-995.
    [58]D.Pines,L.Salvino.2002. Health monitoring of one dimensional structure using empirical mode decomposition and the Hilbert-Huang transform[C]. Proceeding of SPIE, 4701:127-143.
    [59]Yang J.N.,Lei Y.,Lin S.2004. Hilbert-Huang based approach damage detection[J]. Journal of Engineering Mechanics(ASCE),130(1):85-95.
    [60]Ruqiang Yan,Gao R.X.2006. Hilbert-Huang Transform-Based Vibration Signal Analysis for Machine Health Monitoring[J].IEEE Transactions on Instrumentation and Measurement,55: 2320-2329.
    [61]Qiuhui Chen,Norden Huang,Sherman Riemenschneider,Yuesheng Xu.A.2006. B-spline approach for empirical mode decompositio[J].Advanced inComputational Mathematics.24: 171-195.
    [62]邓拥军,王伟.2001.EMD方法及Hilbert变换边界问题的处理[J].科学通报,46(3):257-263.
    [63]黄大吉,赵进平.2003.希尔伯特-黄变换的端点延拓[J].海洋学报,25(1):1-11.
    [64]刘慧婷,张旻,程家兴.2004.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,40(16):84-86.
    [65]Norden E.Huang,Zheng Shen,Steven R.Long.1999. A New View of Nonlinear Water Waves: The Hilbert Spectrum[J]. Annu.Rev. Fluid Mech.31:417-457.
    [66]Zhaohua Wu, Norden E.Huang.2009. Ensemble Empirical Mode Decomposition:A Noise Assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis,1(1):1-41.
    [67]Jutten C, Herault J.1991. Blind separation of sources, Part 1:an adaptive algorithm based on neuromimetic architecture[J]. Signal Processing,24:1-10.
    [68]P. Comon.1994. Independent component analysis, a new concept?[J]. Signal Processing,36: 287-314.
    [69]Comon P, Lebrun J.2003. Contrast functions for deterministic blind source separation[J]. Signal Processing Advances in Wireless Communications, pp457-461.
    [70]Bell and T. Sejnowski.1995. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation,7:1129-1159.
    [71]Cichocki A,Unbehauen R.1994. Robust learning algorithm for blind separation of signals[J]. Electronic letters,30(17):1386-1387.
    [72]Cichocki A,Unbehauen R.1996. Robust neural networks with on-line learning for blind identification and blind separation of sources[J]. IEEE Transactions on Circuits and Systems, 43(11):894-906.
    [73]Pham D T.Garrat P and Jutten C.1992. Separation of a mixture of independent sources through a maximum likelihood approach[C]. In Proceedings of EUSIPCO, pp.771-774.
    [74]Pham D T.1996. Blind separation of instantaneous mixture of sources via an independent component analysis[J]. IEEE Transactions on Signal Processing,44(11):2768-2779.
    [75]Cardoso J F.1997. Infomax and maximum likelihood for source separation[J]. IEEE Letters on Signal Processing,4(4):112-114.
    [76]Amari S I and Cichocki A.1998. Adaptive blind signal processing-neural network approaches[C]. Proceedings of the IEEE,86(10):2026-2048.
    [77]Yang H H, Amari S I and Cichocki A.1997. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutal information[J]. Neural Computation,7(9): 1457-1482.
    [78]S. I. Amari.1998. Natural gradient works efficiently in learning[J]. Neural Computation.10 (2):251-276.
    [79]A Hyvarinen, E. Oja.2000. Independent Component Analysis:Algorithm and Applications[J]. Neural Networks,13:411-430.
    [80]S. Ikeda and K. Toyama.2000. Independent Component Analysis for Noisy Data-MEG Data Analysis[J]. Neural Networks,13:1063-1074.
    [81]Tzyy-Ping Jung, Scott Makeig and Martin J.Mckeown.2001. Imaging Brain Dynamics Using Independent Component Analysis[C]. Proceedings of the IEEE, VOL.89, NO.7:1107-1122.
    [82]Ricardo Vigario, Jaakko Sarela and Veikko Jousmaki.2000. Independent Component Approach to the Analysis of EEG and MEG Recordings[J]. IEEE Transactions on Biomedical Engineering, VOL.47, NO.5:589-593.
    [83]Jianting Cao, Noboru Murata and Shun-ichi Amari.2003. A Robust Approach to Independent Component Analysis of Signals with High-Level Noise Measurements[J]. IEEE Transactions on Neural Networks, VOL.14, NO.3:631-645.
    [84]Arnaud Delorme and Scott Makeig.2004. EEGLAB:an Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis[J]. Journal of Neuroscience Methods,134:9-21.
    [85]Jose P.Marques, Jose Rebola and Patricia Figueiredo.2009. ICA Decomposition of EEG Signal for MRI Processing in Epilepsy[J]. Human Brain Mapping,30:2986-2996.
    [86]Marian Stewart Bartlett, Javier R. Movellan and Terrence J.Sejnowski.2002. Face Recognition by Independent Component Analysis[J]. IEEE Transactions on Neural Networks, Vol.13, No.6:1450-1464.
    [87]Pong C.Yuen and J.H.Lai.2002. Face Representation Using Independent Component Analysis[J]. Pattern Recognition,35:1247-1257.
    [88]孙农亮,于雯雯,曹茂永.2008.基于PCA和ICA的虹膜识别方法[J].中国图象图形学报,13(9):1701-1706.
    [89]王卫东,韩斌,杨静宇.2008.基于PCA及ICA的双空间特征提取算法[J].中国图象图形学报,13(11):2163-2169.
    [90]刘骏伟,吴飞,庄越挺.2003.基于SVM和ICA的视频帧字幕自动定位与提取[J].中国图象图形学报,8(11):1334-1340.
    [91]曹杰,龚声蓉,刘纯平.2007.一种基于ICA的多源图像融合算法[J].中国图象图形学报,12(10):1857-1860.
    [92]邹原,万明习,朱海军.2001.噪音源谐波噪声独立分量分离估计方法[J].声学学报,26(11):521-526.
    [93]彭煊,刘金福,王炳锡.2002.基于独立分量分析的语音增强[J].信号处理,18(5):477-479.
    [94]孔薇,杨杰,周越.2004.基于独立成分分析的强背景噪声去噪方法[J].上海交通大学学报,38(12):1957-1961.
    [95]Qingbo He, Zhihua Feng, Fanrang Kong,2007. Detection of signal transients using independent component analysis and its application in gearbox condition monitoring[J] Mechanical Systems and Signal Processing,21(5):2056-2071.
    [96]金岩.2007.基于小波变换与独立分量分析的内燃机振动声特性研究[D].浙江大学博士学位论文.
    [97]季忠,金涛,杨炯明.2005.基于独立分量分析的消噪方法在旋转机械特征提取中的应用[J].中国机械工程,16(1):50-53.
    [98]杨世锡,焦卫东,吴绍同,2004.基于独立分量分析特征提取的复合神经网络故障诊断法[J].振动工程学报,17(4):438-441.
    [99]吴英姿,鲍雪山,徐新盛.2008.应用频域ICA对参考输入进行预处理的ANC系统[J].振动与冲击,27(8):81-84.
    [100]Xu YG, Wang TY, Leng YG, et al.2005. Fault feature extraction of mechanical equipments based on ICA and HHT[C].9th World Multi-Conference on Systemics, Cybernetics and Informatics,6:109-114.
    [101]Roan MJ, Erling JG, Sibul LH.2002. A new, non-linear, adaptive, blind source separation approach to gear tooth failure detection and analysis[J].MECHANICAL SYSTEMS AND SIGNAL PROCESSING,16:719-740.
    [102]焦卫东.2003.基于独立分量分析的旋转机械故障诊断方法研究[D].杭州:浙江大学.
    [103]G.Gelle, M.Colas, GDelaunay.2000. Blind sources separation applied torotating machines monitoring by acoustical and vibrations analysis[J]. Mechanical Systems and Signal Processing,14(3),427-442.
    [104]G.Gelle, M.Colas.2001. Blind sources separation:A tool for rotating machine monitoring by vibrations analysis[J]. Journal of Sound and Vibration,248(5),865-885.
    [105]盛兆顺,尹琦玲.2003.设备状态监测与故障诊断技术及应用[M].北京:化学工业出版社.
    [106]Lou X S.2000. Fault Detection and Diagnosis for Rolling Element Bearing[D]. Case Western Reserve University.pp.28-35.
    [107]樊永生.2009.机械设备诊断的现代信号处理方法[M].北京:国防工业出版社.
    [108]D.BENTLY.1989. Predictive maintenance through the monitoring and diagnostics of rolling element bearings. BENLY Nevada Co.Applications Note,ANO44,pp.2-8.
    [109]Angrisani, P. Daponte, M. D’Apuzzo.1999. A method for the automatic detection and measurement of transients. Part Ⅱ:applications [J]. Measurement,25,31-34.
    [110]P. Ravier, P.O. Amblard.1998. Combining an adapted wavelet analysis with fourth-order statistics for transient detection[J]. Signal Processing 70:115-128.
    [111]J. Antoni.2006 The spectral kurtosis:a useful tool for characterising nonstationary signals [J]. Mechanical Systems and Signal Processing,20(2),282-307.
    [112]Xinsheng Loul,2004. Bearing fault diagnosis based on wavelet transform and fuzzy inference[J]. Mechanical Systems and Signal Processing, vol.18, pp.1077-1095.
    [113]T.B. Brotherton, T. Pollard 1992. Applications of time-frequency and time-scale representations to fault detection and classification[C]. Proceedings of the IEEE Signal Processing International Symposium on Time-Frequency and Time-Scale Analysis, Orlando, FL, vol.2242, pp.95-98.
    [114]H.C. Choe, C.E. Poole, and A.M. Yu.1995. Novel Identification of Intercepted Signals from Unknown Radio Transmitters[C]. Proceedings of the SPIE Wavelet Applications, vol.2419, pp.504-517.
    [115]D.-M. Yang, A.F. Stronach, and P. MacConnel.2002. Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural network[J]. Mechanical Systems and Signal Processing, vol.16 (2-3), pp.391-411.
    [116]J.A. Leonard, M.A. Kramer.1991. Radial basis function networks for classifying process faults[J]. IEEE Control Systems Magazine, pp.31-38.
    [117]Chow, R.N. Sharpe, and J. Hung.1993. On the application and design of artificial neural network for motor fault detection[J]. IEEE Transactions on Industrial Electronics, vol.40 (2), pp.189-196.
    [118]L.P. Heck, K.C. Chou.1994. Gaussian mixture model classifier for machine monitoring[C]. Proceedings of the IEEE world Congress on Computational Neural Network and International Conference on Intelligence, vol.7, pp.4493-4496.
    [119]Li,B. Chow, M. Tipsuwan,Y. Hung, J.C.2000. Neural-network-based motor rolling bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, vol.47,No.5,pp.1060-1070.
    [120]G. Lipovszky, K.Solyomuari, and G. Varga.1990. Vibration testing of machines and their maintenance[J].Amsterdam, the Netherlands:Elsevier.
    [121]T.A.Harris.1991. Rolling bearing analysis[M]. New York:Wiley.
    [122]Donley, W.Stokes, G.S.Jeong, K.K.Suh, and S.G. Jung.1996. Validation of finite element models for noise/vibration/harshness simulation[J]. Sound Vib.,vol.30,No.8,pp.18-23.
    [123]B.B.Mandelbrot.1967. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension[J]. Science, New Series, Vol.156, No.3775. pp.636-638.
    [124]B. B. Mandelbrot and H. W. Van Ness.1968. Fractional Brownian motions. fractional noises, and applications[J]. SIAM Rev. vol.10. pp.422-436.
    [125]Masaki Sekine, Toshiyo Tamura, Metin Akay.2002. Discrimination of Walking Patterns Using Wavelet-Based Fractal Analysis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol.10, No.3.
    [126]B. B. Mandelbrot.1983. The fractal geometry of nature[J]. New York:Freeman.
    [127]Daubechies,1988. Orthonormal bases of compactly supported wavelets Commun[J]. Pure. Appl. Math., pp.909-996.
    [128]W. G.Wornell and A. V. Oppenheim.1992. Estimation of fractal signals from noisy measurement using wavelets[J]. IEEE Trans. Signal Processing, vol.40, pp.611-623.
    [129]Akay and E. J. H. Mulder.1998. Effects of maternal alcohol intake on fractal properties in human fetal breathing dynamics[J]. IEEE Trans.Biomed. Eng., vol.45, pp.1097-1103.
    [130]Flandrin.1989. On the spectrum of fractional Brownian motions[J]. IEEE Trans. Inform. Theory, Vol.35, pp.197-199.
    [131]Flandrin, P.1992. Wavelet analysis and synthesis of fractional Brownian motion[J]. IEEE Trans. Inform. Theory, Vol.38, no. Part 2, pp.910-917.
    [132]B. B. Mandelbrot and H. W. Van Ness.1968. Fractional Brownian motions. fractional noises, and applications[j]. SIAM Rev. Vol.10, pp.422-436.
    [133]Junyan Yang, Youyun Zhang, Yongsheng Zhu.2007. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J]. Mechanical Systems and Signal Processing, vol.21, Issue 5, pp.2012-2024.
    [134]GREGORY W.WORNELL.1993. Wavelet-Based Representations for the 1/f Family of Fractal Processes[C]. PROCEEDINGS OF THE IEEE,Vol.81, No.10.
    [135]P.O. Hoyer and A. Hyvarinen.2000. Independent Component Analysis Applied to Feature Extraction from Colour and Stereo Images [J]. Network:Computation in Neural Systems, 11(3):191-210.
    [136]Hyvarinen and P. O. Hoyer.2000. Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces[J]. Neural Computation, 12(7):1705-1720.
    [137]Hyvarinen, E. Oja.2000. Independent component analysis:algorithms and applications [J]. Neural Networks,13:411-430.
    [138]Jones M, Sibson R.1987. What is projection pursuit?[J]. Journal of the Royal Statistical Society.150:1-36.
    [139]Hyvarinen A.1998. New approximations of differential entropy for independent component analysis and projection pursuit[J]. Advances in Neural Information Processing Systems, 10:273-279.
    [140]史习智.2008.盲信号处理:理论与实践[M].上海:上海交通大学出版社.
    [141]Qingbo He, Ruxu Du, Fanrang Kong.2008. ICA Based Feature Extraction from One-Dimensional Signal for Machine Condition Monitoring[C]I2MTC,May 12-15.
    [142]N.Bouguerriou, M.Haritopoulos, C.Capdessus, L.Allam.2005. Novel cyclostationarity based blind source separation algorithm using second order statistical properties:Theory and application to the bearing defect diagnosis[J]. Mechanical Systems and Signal Processing 19: 1260-1281.
    [143]Yong-Jun Shen, Shao-Pu Yang.2006. A new Blind-Source-Separation method and its application to fault diagnosis of rolling bearing[J].International Journal of Nonlinear Sciences and Numerical Simulation,7(3),245-250.
    [144]Nabil Charkani, Yannick Deville.1999. “Self-adaptive separation of convolutively mixed signals with a recursive structure". Part I:Stability analysis and optimization of asymptotic behaviour[J]. Signal Processing,73:225-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700