静息态脑功能磁共振数据分析方法及在弱视神经机制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类大脑具有最复杂的体系框架,是一个高度复杂的网络系统,应用脑成像技术分析脑的功能与结构特性是认知科学中的重要研究内容。功能磁共振成像技术(functional magnetic resonance imaging,fMRI)基于血氧水平依赖原理(blood-oxygen level dependent,BOLD),具有无辐射性、无创性、高时空分辨率等多重优势,已成为脑科学研究的重要工具,受到临床、心理、神经和认知等领域的极大关注。静息态功能磁共振技术不需要被试做出反应,也不需要复杂精细的实验设计,容易被患者接受,非常适合临床上的应用和研究。
     大量研究表明,在静息状态下人脑存在着一种低频振荡现象。尽管目前还不清楚它的具体生理意义,但是它与某些疾病的生理病理以及静息状态人脑的脑功能有着密切的关系。本文围绕fMRI在脑科学研究中的应用,以静息状态下的fMRI数据研究方法为突破口,对独立成分分析(independent component analysis,ICA)、局域一致性(regional homogeneity,ReHo)、低频振荡振幅算法(amplitude of low frequency fluctuations,ALFF)等静息状态fMRI脑图像分析方法,进行了系统性的深入研究和探讨。以此为基础,结合认知科学和临床研究中的前沿课题,开展了对弱视患者的视觉皮层功能异常研究,从而加深对弱视神经机制的理解和认识。全文的主要内容如下:
     1、提出了具有三阶收敛的快速ICA算法。ICA方法可以从观测混合信号中分离出相互之间统计独立的源信号。本文引入负熵作为独立性的估计准则,给出ICA的一个优化模型。在此基础上,采用一种改进的牛顿迭代型的独立成分分析算法来提取fMRI信号中的各个独立成分;为加快收敛速度,对标准的牛顿迭代进一步修正,使算法具有三阶收敛。将该算法应用于fMRI大型数据的盲分离,并与目前广泛使用的另外两种算法比较,本文算法具有更快的收敛速度。
     2、提出了基于ReHo选取种子区域并进行功能连接的新方法。传统的功能连接分析中,种子区域的选择常常是基于激活图或是基于解剖知识,而没有利用到静息状态的功能数据。本文利用局域一致性分析静息状态下的fMRI数据,将感兴趣区域中ReHo值最大的点所在的小区域作为种子进行功能连接。将脑的功能连接研究和局域一致性分析相结合,为研究人脑静息状态功能连接网络提供了新的思路。应用该方法,发现并验证了正常被试静息视觉网络的存在。
     3、提出了利用静息状态fMRI数据,从功能连接的角度对屈光参差性弱视患者静息视觉网络进行研究的新思路。目前fMRI对弱视的研究多是基于有视觉刺激的情况下,本文采用ICA算法分离静息状态fMRI数据,针对ICA算法本身无法自动识别成分顺序问题,引入Goodness-of-fit方法提取静息状态下弱视患者和正常被试的静息视觉网络,将结果进行组内和组间分析。结果表明在屈光参差性弱视患者的静息视觉网络中,纹状皮层和纹外皮层均发生了明显的功能损害,其功能连接程度显著低于正常组,并且纹外皮层比纹状皮层损害更加严重,为深入研究弱视初、高级视觉皮层功能损害的神经机制提供了新的思路。
     4、提出了采用ALFF方法研究弱视患者皮层功能损害的新方法。目前绝大部分静息fMRI研究关注的是不同脑区低频振荡的同步性即功能连接,功能连接的异常说明其功能整和出现变化,但是无法说明是哪一个脑区有不同的神经元活动,而低频振荡幅度方法可以提示局部神经元的自发活动,说明神经元活动的能量。本文首先采用ALFF方法检测出人脑默认模式网络,所得结果与已知研究结果具有很大的一致性,表明ALFF是一个有效的研究大脑静息状态自发性低频振荡的方法。然后使用该方法研究弱视患者闭眼、健眼刺激、患眼刺激三种静息状态下大脑的激活情况。研究结果表明在三种静息状态下,大脑出现了不同的激活情况,健眼刺激时受到的外界视觉刺激最多,因此在视觉皮层纹外区,其ALFF值最大;而在患眼刺激时,患者需要更多的选择性注意,因此在与注意有关的额上回区域,其ALFF值最大,显示该技术在大脑皮层功能定位上具有良好的应用价值,从另一个角度为研究弱视神经机制提供了新的方法。
Human brain is a huge network system with the most complex structure. In cognitive neuroscience, the application of brain imaging techniques plays a very important role to understand the characteristics of brain. The functional magnetic resonance imaging (fMRI) based on the theory of blood-oxygen level dependent (BOLD) is a non-invasive and non-radiative technology, and it has high temporal and spatial resolution. The technology has become an important tool to do scientific researches on brain and has been concerned by many science branches, such as neuroscience, cognition, psychology and clinic et al. Resting-state functional MRI could be an advantageous choice for applications and clinical researches because it can be more easily accepted by patients without subjects’response and intricate experiment design.
     A lot of fMRI studies have demonstrated that there exist spontaneous low frequency fluctuations (LFFs) in the resting brain. Although the neurophysiological mechanisms of LFFs remain unclear, it has been suggested that LFFs are physiologically meaningful for keeping normal brain function and are associated with pathophysiology of the diseases. In this work, focused on the application of fMRI in brain network, aimed at clinical applications in diseases and understandings of brain complexity, systematic researches and explorations are conduced to analysis methods of resting-state fMRI, including independent component analysis (ICA), regional homogeneity (ReHo), amplitude of low frequency fluctuations(ALFF). On the basis, dysfunction study of the visual cortex in patients with amblyopia is studied so as to enhance the understanding of the pathological mechanism of amblyopia. The main contents in this dissertation can be stated as follows:
     1、A fast ICA algorithm with cubic convergence is prorosed. ICA is a new statistical signal processing technique. The goal of ICA is to recover independent sources given only sensor observations that are unknown linear mixtures of the unobserved independent source signals. In this paper, negentropy is introduced as measure of independence, and an optimization model for ICA is presented. A new Newton iterative algorithm based on the model is proposed. In order to accelerate the convergence, an improvement on Newton method is made which makes the convergence of the new algorithm cubic. Applying the algorithm and two other algorithms to invivo fMRI data, the results show that the new algorithm separates independent components stably. It has faster convergence speed and less computation than the other two algorithms.
     2、A novel approach of selecting“seed”regions based on ReHo in functional connectivity is proposed. In the previous methods,“seed”is selected utilizing prior anatomical information (i.e. knowledge-based) or activation maps (i.e. activation-based) without taking the natures of resting-state data into account. In this dissertation, ReHo is used to select the region with maximum ReHo value as“seed”in functional connectivity studies using“seed”correlation analysis. This provides a novel way to study the resting-state functional networks. By using the new method combing ReHo and functional connectivity, the resting-state visual network of human brains is identified in normal subjects.
     3、A new method to study the resting-state visual network of the anisometropic amblyopia patients is advanced from the perspective of functional connectivity only using the resting-state fMRI data. ICA is used to separate the fMRI data. Considering that ICA algorithm can hardly choose the optimal one of the separated components, goodness-of-fit method is introduced to extract the resting-state visual networks of the anisometropic amblyopia patients and normal controls. Intra-group analysis and inter-group analysis are performed. The results show that there are remarkable deficits on different levels of visual cortex in anisometropic amblyopia predominantly in the extrastriate cortex rather than the striate cortex. The resting-state fMRI provides a new way to investigate visual cortex deficit in amblyopia.
     4、A new method to study the functional impairment in amblyopia using ALFF is proposed. Most studies of resting-state fMRI have investigated LFFs from the aspect of temporal synchronization, i.e. functional connectivity between brain regions. Although a result of abnormal functional connectivity between two remote areas is comprehensive and integrative, one could not draw any conclusion about which area is abnormal from such an examination. The ALFF signal can reflect cerebral spontaneous neuronal activity, indicating the energy of neuronal activity. The dissertation explores default mode network in the resting brain using ALFF. Our result shows a large overlap with those known suggesting ALFF is an effective method to study spontaneous LFFs of the resting-state. In addition, the brain activation of amblyopia patients is studied for the three resting states: eye-closed, healthy eye-stimulated, suffering eye-stimulated. The results show different brain activations for the three resting states: healthy eye-stimulated has the most increased ALFF in the extrastriate areas of the visual cortex due to the most visual input; suffering eye-stimulated has the most increased ALFF in the superior frontal gyrus which is related to selective attention, due to poor sight demanding more efforts to attention. ALFF has potential in the clinical applications of localization of the brain cortex function and provides a different way to investigate the pathophysiological mechanisms in amblyopia.
引文
[1] Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near-infrared light. Biol Psychiatry, 2002, 52: 679~693.
    [2]唐孝威.脑功能成像.中国科学技术大学出版社, 1999.
    [3]包尚联.脑功能成像物理学.郑州大学出版社, 2006.
    [4] Belliveau JW, Kennedy DN, McKinstry RC. Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 1991, 254: 716~719.
    [5] Ogawa S, Lee TM, Ray AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci, 1990, 87: 9868~9872.
    [6] Moseley ME, Glover GH. Functional MR imaging: Capabilities and limitations. Neuroimaging Clin N Am, 1995, 5(2): 161~91.
    [7] Gore JC. Principles and practices of functional MRI of the human brain. J Clin Invest, 2003, 112(1): 4~9.
    [8] Buckner RL, Bandettini PA, Ocraven KM, et a1. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. PNAS, 1996, 93(25): 14878~14883.
    [9] Collins DL, Zijdenbos AP, Kollokian V, et al. Design and construction of a realistic digital brain phantom. IEEE Trans on Medical Imaging, 1998, 17: 463~468.
    [10] Talaraich J, Tournoux P. Co-planar stereotaxic atlas of the human brain. Thieme, 1988.
    [11]吴义根,李可. SPM软件包数据处理原理简介.中国医学影像技术, 2004, 20(11): 1768~1772.
    [12] Ramsey N, Hoogduin H, Jansma JM. Functional MRI experiments: acquisition, analysis and interpretation of data. Eur Neuro psychopharmacol, 2002, 12(6): 517~526.
    [13] Friston KJ. Data analysis: Basic concepts and overview. Welcome Department of Cognitive Neurology, London,UK, 1997, Chapter1: 4~9.
    [14] Poline JB, Holmes AP, et al. Statistical inference and the theory of random fields, Welcome Department of Cognitive Neurology, London,UK, 1995, Chapter4: 3~5.
    [15] Schmit horst VJ, Holland SK. Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data. Magnetic Resonance Imaging, 2004, 19(3): 365~368.
    [16] Jutten C, Herault J. Blind separation of sources: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991,24(1): 1~10.
    [17] Hyv?rinen A.A family of fixed-point algorithms for independent component analysis. In Proc IEEE Int Conf on Acoustics, Speech and Signal Processing (ICASSP’97), Munich, Germany, 1997: 3917~3920.
    [18] McKeown MJ, Sejnowski TJ. Independent component analysis of fMRI data: examining the assumptions. Human Brain Mapping, 1998, 6: 368~372.
    [19] Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution . Neural Computation, 1995, 7: 1129~1159.
    [20] Lai SH, Fang M. A novel local PCA-based method for detecting activation signals in fMRI. Magnetic Resonance Imaging, 1999, 17(6): 827~836.
    [21] Andersen AH, Gash DM, Avision MJ. Principal component analysis of the dynamic response measured by fMRI: A generalized linear systems framework. Magnetic Resonance Imaging, 1999, 17: 795~815.
    [22] Friman O, Borga M, Lundberg P, et al. Exploratory fMRI analysis by autocorrelation maximization. NeuroImage, 2002, 16: 454~464.
    [23] Morgan VL, Price RR, Arain A, et al. Resting functional MRI with temporal clustering analysis of localization of epileptic activity without EEG. Neuroimage, 2004, 21(1): 473~481.
    [24] Buerki M, Lovblad KO, Oswald H, et al. Multiresolution fuzzy clustering of functional MRI data, Neuro radiology, 2003, 45(10): 691~699.
    [25]张志强,王世杰,卢光明.功能磁共振数据处理分析的原理及应用[J].中国医学影像技术, 2004, 20(10): 1632~1635.
    [26] Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci, 2006, 29: 449~476.
    [27] Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Res Med, 1995, 34: 537~541.
    [28] Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2001, 10 (2): 685~694.
    [29] Uludag K, Dubowitz DJ, Yoder EJ, et al. CouPling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRl. Neuroimage. 2004,23(l): 148~155.
    [30] Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanarimaging using resting-state fluctuations. Neuroimage, 1998, 7: 119~132.
    [31] Cordes D. Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol, 2000, 21: 1636~1644.
    [32] Hampson M, Peterson BS, Skudlarski P, et al. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp, 2002,15: 247~262.
    [33] Fransson P. Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp, 2005, 26: 15~29.
    [34] Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA, 2003, 100: 253~258.
    [35] Laufs H. Electroencephalographic signatures of attentional and cogntive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA, 2003, 100: 11053~11058.
    [36] Fox MD, Corbetta M, Snyder AZ, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA, 2006, 103: 10046~10051.
    [37] Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev Neurosci, 2002, 3: 201~215.
    [38] Seeley WW. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007, 27: 2349~2356.
    [39] Hampson M, Driesen NR, Skudlarski P, et al. Brain connectivity related to working memory performance. J Neurosci, 2006, 26: 13338~13343.
    [40] Biswal B, Hudetz AG, Yetkin FZ, et al. Hypercapnia reversibly suppresses low frequency fluctuations in the human motor cortex during rest using echo-planar MRI. J Cereb Blood Flow Metab. 1997, 17: 301~30.
    [41] Peltier SJ. Functional connectivity changes with concentration of sevoflurane anaesthesia. Neuroreport , 2005, 16: 285~288.
    [42] Kiviniemi VJ, Haanpaa H, Kantola JH, et al. Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magn Reson Imaging, 2005, 23: 531~537.
    [43] Yang H, Long XY, Yang YH, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. NeuroImage, 2007, 36: 144–152.
    [44] Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia , 2006, 44: 2836~2845.
    [45] Mckeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data by blind separation intoindependent spatial components. Human Brain Mapping, 1998, 6(3): 160~188.
    [46] McKeown MJ, Sejnowski TJ. Independent component analysis of fMRI data: examing the assumptions. Human Brain Mapping, 1998, 6: 368-372.
    [47] Arfanaksi K, Cordes D, Haughton VM, et al. Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets. Mgan Reson Imaging, 2000, 18: 921~930.
    [48] McKeown MJ, Brown GG, Makeig S, et al. Analysis of fMRI data by blind separation into spatial independent component analysis. Human Brain Mapping, 1998, 6: 160~188.
    [49] Zang YF, Jiang TZ, Lu YL, et a1. Regional homogeneity approach to fMRI data analysis. Neuroimage, 2004, 22(1): 394~400.
    [50] Liu HH, Liu ZN, Liang M, et al. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport, 2006, 17(1): 19~22.
    [51] Yuan YG, Zhang ZJ, Bai F, et al. Abnormal neural activity in the patients with remitted geriatric depression: A resting-state functional magnetic resonance imaging study. Journal of Affective Disorders, 2008, 111(2): 145~152.
    [52] Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain&Development, 2007, 29(2): 83~91.
    [53] Cordes D, Haughton V, Arfanakis K, et al. Frequencies contributing to functional connectivity in the cerebral cortex in“resting-state”data. Am J Neuroradiol, 2001, 22: 1326~1333.
    [54] Zang YF, He Y, Zhu CZ, et al. A new marker for aging: amplitude of low frequency fluctuation of resting-state fMRI. 11th International Conference on Functional Mapping of the Human Brain (HBM'05), 2005, Toronto, Canada.
    [55] Li SJ, Li Z, Wu G, et al. Alzheimer Disease: Evaluation of a functional MRI Index as a Marker. Radiology, 2002, 225: 253~259.
    [56]全国斜视弱视防治学组.弱视诊断标准及疗效评价标准[J].中国斜视与小儿眼科杂志, 1996, 4(3): 97~97.
    [57] Noorden GK. Amblyopia: a multidisciplinary approach. Investigative Ophthalmology & Visual Science, 1985, 26: 1704~1716.
    [58]王泽欧,张健.有关弱视诊断的思考:弱视定义的再商榷.中国中医眼科杂志, 2005, 12(3): 12~15.
    [59] Levi DM, Klein SA. Limitations on position coding imposed by undersampling and univariance. Vision Res, 1996, 36(14): 2111~2120.
    [60] Pnnefather PM, Chandna A, Kovacs I, et al. Contour detection threshold: repeatability and learning with contour cards. Spat Vis, 1999, 12 (3): 257~266.
    [61] Polat U, Bonneh Y. Collinear interactions and contour integration. Spat Vis, 2000, 13 (4): 393~401.
    [62] Saarinnen J, Levi DM. Integration of local features into a global shape. Vision Res, 2001, 41 (14): 1785~1790.
    [63] Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol, 1962, 160(1): 106~154.
    [64] Crewther DP, Crewther SG. Neural site of strabismic amblyopia in cats: spatial frequency deficit in primary cortical neurons. Exp Brain Res, 1990, 79 (3): 615~622.
    [65] Kiorpes L, Kiper DC, Cavanaugh JR, et al. Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci , 1998, 18(16): 6411~6424.
    [66] Goodyear BG, Nicole DA, Humphrey GK, et al. MRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol, 2000, 84 (4): 1907~1913.
    [67] Hess RF. Amblyopia: site unseen. Clin Exp Optom, 2001,84(6): 321~336.
    [68] Lee KM, Lee SH, Kim NY, et al. Binocularity and spatial frequency dependence of calcarine activation in two types of amblyopia. Neurosci Res, 2001, 40(1): 147~153.
    [69] Algaze A, Roberts C, Leguire L, et al. Functional magnetic resonance imaging as a tool for investigating amblyopia in the human visual cortex: a pilot study. J AAPOS, 2002,6(5): 300~308.
    [70] Choi MY, Lee KM, Hwang JM, et al. Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol, 2001, 85: 1052~1056.
    [71] Hyv?rinen A, Karhunen J, Oja E. Independent Component Analysis. John Wiley, New York, 2001.
    [72] Hyv?rinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks, 2000, 13: 411~430.
    [73] Papoulis A. Probability, random variables and stochastic processes, 2nded. McGraw-Hill, New York, 1984.
    [74] Comon P. Independent component analysis——a new concept? Signal Processing, 1994, 36: 287~314.
    [75] Roberts SJ, Everson R. Independent component analysis: principles and practice. Cambridge University Press, 2001.
    [76] McKeown MJ, Sejnowski TJ. Independent component analysis of fMRI data: examing the assumptions. Hum Brain Map, 1998, 6: 368-372.
    [77] Arfanaksi K, Cordes D, Haughton VM, et al. Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets. Mgan Reson Imaging, 2000, 18: 921~930.
    [78] Duann JR, Jung TP, Kuo WJ, et al. Single-trial variability in event-related BOLD signals. NeurolImage, 2002, 15: 823~835.
    [79] Svensén M, Kruggel F, Benali H. ICA of fMRI group study data. NeuroImgae, 2002, 16: 551~563.
    [80] Bell A, Sejnowski T. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6): 1129~1159.
    [81] Amari SI. Natural gradient works efficiently in learning. Neural Computation, 1998, 10: 251~276.
    [82] Girolami M. An alternative perspective on adaptive independent component analysis algorithms. Neural ComPutation, 1998, 10: 2103~2114.
    [83] Lee TW, Girolami M, Sejnowski T. Independent component analysis Using an extended infomax algorithm for mixed subgaussia and supergaussian sources. Neural Computation, 1999, 11(2): 417~441.
    [84] Shi ZW, Tang HW, Tang YY. A new fixed-point algorithm for independent component analysis. Neurocomputing, 2004, 56: 467~473.
    [85] Bishop CM. Neural Networks for pattern Recognition, Oxford University Press, Oxford, 1995.
    [86] Mackay DJC. Information theory, inference, and learning algorithms. Cambridge University Press, 2003.
    [87] Lee TW, Girolami M, Bell AJ, et al. A unifying information-theoretic framework for independent component analysis. Computers and Mathematics with Applications, 2000, 31(11): 1~21.
    [88] Mackay DJC. Maximum likehood and covariant algorithms for independent component analysis. Available online at : ftp://wol.ra.phy.cam.ac.uk/pub/mackay/iac.pa.gz, 1996.
    [89] Hong G, Engelien W, Han HF, et al. Mapping transient randomly occurring neuropsychological events using independent component analysis. NeuroImage, 2000, 14: 1432~1443.
    [90] Zibulevsky M, Pealmutter BA, Bofill P, et al. Blind source separation by sparse decomposition ina signal dictionary. Neural Computation, 2001, 13(4): 863~882.
    [91] Calhoun VD, Adali T, Pearlson GD, et al. A method for making group inferences form functional MRI data using independent component analysis. Human Brain Mapping, 2001, 14: 140~151.
    [92] Stone JV, Porrill J, Porter NR, et al. Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions. NeuroImage, 2002, 15: 407~421.
    [93] Hyv?rinen A. New approximation of differential entropy for independent component analysis and projection pursuit, Advances in Neural Information Processing System, MIT Press, Cambridge, MA, 1998, 10: 273~279.
    [94] Luenberger D. Optimization by Vector Space Methods. Wiley, 1969.
    [95] Hyv?rinen A. Fast and robust fixed-point algorithm for independent component analysis. IEEE Transactions on Neural Networks, 1999, 10(3): 626~634.
    [96] Hyv?rinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9(7): 1483~1492.
    [97] Esposito F, Formisano E, Seifritz E, et al. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Human Brain Mapping, 2002, 16: 146~157.
    [98] Ziemann U, Hallett M. Hemispheric asymmetry of ipsilateral motor cortex activation during unimanual motor tasks: further evidence for motor dominance. Clin Neurophysiol, 2001, 112: 107~113.
    [99] Cichocki A, Unbehauen R. Robust neural networks with on-line learning for blind separation and blind identification of sources. IEEE Transactions on Circuits and Systems, 1996, 43(11): 894~906.
    [100] Karhunen J, Loutsensalo J. Representation and separation of signals using nonlinear PCA learning. Neural Networks, 1994, 7(1): 113~127.
    [101] Oja E, Ogawa H, Wangviwattana J. Learning in nonlinear constrained hebbian networks. In Proc Int Conf on Artificial Neural Networks(ICANN’91), Espoo, Finland, 1991: 385~390.
    [102] Burel G. Blind separation of sources: a nonlinear neural algorithm. Neural Networks, 1992, 5(6): 937~947.
    [103] Deco G, Brauer W. Nonlinear higher-order statistical decorrelation by volume-conserving. Neural Networks, 1995, 8: 525~535.
    [104] Yang HH, Amari SI, Cichocki A. Information-theorectic approach to blind separation of sourcesin nonlinear mixture. Signal Processing, 1998, 64(3): 291~300.
    [105] Friston KJ, Frith CD, Liddle PF, et al. Functional connectivity: the principal component analysis of large(PET)data sets. J Cereb Blood Flow Metab, 1993, 13(1): 5~14.
    [106] Liu Y, Gao JH. Temporal dissociation of parallel processing in the human subcortical outputs. Nature, 1999, 400(6742): 364~367.
    [107] Ungerleider LG, Courtney SM, Haxby JV. A neural system for human visual working memory. Proc Natl Acad Sci USA, 1998, 95(3): 883~890.
    [108] Stephan KE, Magnotta VA, White T, et al. Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task. Psychol Med, 2001, 31: 1065~1078.
    [109] Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science, 2004, 304: 1926~1929.
    [110] Laufs H, Krakow K, Sterzer P, et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci, 2003, 100: 11053-11058.
    [111] Schlosser R, Gesierich T, Kaufmann B, et al. Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage, 2003, 19: 751~763.
    [112] Buchel C, Coull JT, Friston KJ. The predictive value of changes in effective connectivity for human learning. Science, 1999, 283(5407): 1538~1541.
    [113] Friston KJ, Frith CD, Frackowiak RS. Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp, 1993, 1: 69~80.
    [114] Lee L, Harrison LM, Mechelli A. The functional brain connectivity workshop: report and commentary. Comput Neural Syst, 2003, 14: R1~R15.
    [115] Jinhu X, Parsons LM, Jia H. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Human Brain Mapping, 1999, 8: 151~156.
    [116] Friston KJ, Buchel C. Attentional modulation of effective connectivity from V2 to V5/MT in humans. PNAS, 2000, 97(13): 7591~7596.
    [117] Jiang TZ, He Y, Zang YF, et al. Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp, 2004, 22: 63~71.
    [118] Stein T, Moritz C, Quigley, M, et al. Functional connectivity in the thalamus and hippocampus studied with fMRI. Am J Neuroradiol, 2000, 21: 1397~1401.
    [119] Rombouts SA, Stam CJ, Kuijer JP, et al. Identifying confounds to increase specificity during a "no task condition": Evidence for hippocampal connectivity using fMRI. NeuroImage, 2003, 20: 1236~1245.
    [120]贺永.静息状态之脑功能磁共振成像的方法学及临床应用研究, [博士学位论文].北京:中国科学院自动化研究所, 2005.
    [121] He Y, Zang YF, Jiang TZ, et a1. Detection of functional networks in the resting brain. 2nd IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'04), April 15-18, 2004, Arlington, USA.
    [122] Liu HH, Liu ZN, Liang M, et a1. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study . Neuroreport, 2006, 17(1): 19~22.
    [123] He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages of Alzheimer’s disease: A combined structural and resting-state functional MRI study. NeuroImage, 2007, 35(2): 488~500.
    [124] Tian LX, Jiang TZ, Liang M, et a1. Enhanced resting-state brain activities in ADHD patients: A fMRI study . Brain & Development, 2008, 30(5): 342~348.
    [125] Yuan YG, Zhang ZJ, Bai F, et al. Abnormal neural activity in the patients with remitted geriatric depression: A resting-state functional magnetic resonance imaging study. Journal of Affective Disorders, 2008, 111(2): 145~152.
    [126] Mazoyer B, Zago L, Mellet E, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull, 2001, 54: 287~298.
    [127] Shulman GL, Fiez JA, Corbetta M, et al. Common blood flow changes across visual tasks: decreases in cerebral cortex. J Cogn Neurosci, 1997, 9: 648~663.
    [128] Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci USA, 2001, 98(2): 676~682.
    [129] Feng Bai, Zhijun Zhang, Hui Yu, et al. Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: A combined structural and resting-state functional MRI study. Neuroscience Letters, 2008, 438(1): 111~115.
    [130]颜莉蓉.脑功能磁共振数据时空分析方法研究, [博士学位论文].长沙:国防科学技术大学, 2006.
    [131]周扬,王健.视觉皮层分区及其fMRI研究进展.现代生物医学进展, 2006, 6(13): 79~81.
    [132] Miki LT, Goldsmith ZG. Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging.Ophthalmologica, 2003, 217: 365~369.
    [133] Barnes GR, Hess RF, Dumoulin SO, et al. The cortical deficit in humans with strabismic amblyopia. J Physiol, 2001, 533(l): 281~297 .
    [134] Pianka P, Lerner Y, Leiba H, et al. Visual deficits associated with object images revealed by fMRI in human amblyopia. Invest Ophthalmol Vis Sci, 2003, 4807: 44~48.
    [135] Imamura K, Richter H, Lennerstrand G, et al. Reduced activity in the extra-striate visual cortex of individuals with strabismic amblyopia. Neurosci Lett, 1997, 225:173~176.
    [136] Muckli L, Kiess S, Tonhausen N, et al. Cerebral correlates of impaired grating perception in individual psychophysically assessed human amblyopes. Vision Res, 2006, 46:506~526.
    [137] Lerner Y, Pianka P, Axmon B, et al. Area-specific amblyopic effects in human occipito temporal object representations. Neuron, 2003, 40(7): 1023~1029.
    [138] Choi M, Lee KM, Hwang JM, et al. Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol, 2001, 85:1052~1056.
    [139] Ian P, Vernon O, Terry S, et al. Monocular activation of V1 and V2 in amblyopic adults measured with fMRI. J AAPOS, 2007, 11(4): 341~350.
    [140] Li XF, Serge O, Behzad M, et al. Cortical deficits in human amblyopia: Their regional distribution and their relationship to the contrast detection deficit. Invest Ophthalmol Vis Sci, 2007, 48(4): 1575~1591.
    [141] Greicius MD, Flores BH, Menon V, et al. Resting state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 2007, 62(5): 429~437.
    [142] Mantini D, Perrucci MG, Gratta CD, et al. Electrophysiological signatures of resting state networks in the human brain. PNAS, 2007, 104(32): 13170~13175.
    [143] Marx E, Deutschlander A, Stephan T, et al. Eyes open and eyes closed as rest conditions: impact on brain activation patterns. NeuroImage, 2004, 21: 1818~1824.
    [144] Lim SH, Dinner DS, Pillay PK, et al. Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroencephalogr. Clin. Neurophysiol, 1994, 91: 179~193.
    [145] Roelfsema PR, Konig P, Engel AK, et al. Reduced synchronization in the visual cortex of cats with strabismic amblyopia. Eur J Neurosci, 1994,6(11):1645-1655.
    [146] Horton JC, Hocking DR. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosci, 1997, 17(10): 3684~3709.
    [147] Lv B, He H, Li X, et al. Structural and functional deficits in human amblyopia. Neurosci Lett, 2008, 437(1): 5~9.
    [148] Goodyear BG, Nicolle DA, Menon RS. High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes. Strabismus, 2002, 10(2):129~136.
    [149] Kiviniemi V, Kantola JH, Jauhiainen J, et al. Comparison of methods for detecting nondeterministic BOLD fluctuation in fMRI. Magn Reson Imaging, 2004, 22: 197~203.
    [150] Li SJ, Biswal B, Li Z, et al. Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magn Reson Med, 2000, 43(1): 45~51.
    [151] Anand A, Li Y, Wang Y, et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol. Psychiatry, 2005, 57: 1079~1088.
    [152] Lowe MJ, Phillips MD, Lurito JT, et al. Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology, 2002, 224: 184~192.
    [153] Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci, 2007, 8: 700~711.
    [154] Duff EP, Johnston LA, Xiong J, et al. The power of spectral density analysis for mapping endogenous BOLD signal fluctuations. Hum Brain Mapp, 2008, 29: 778~790.
    [155] Zuo XN, Kelly C, Adelstein JS, et al. Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage, 2010, 49: 2163~2177.
    [156] Lui S, Huang X, Chen L, et al. High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China. PNAS, 2009, 106: 15412~15417.
    [157] Forss N, Merlet I, Vanni S, et al. Activation of human mesial cortex during somatosensory target detection task. Brain Res, 1996, 734: 229~235.
    [158] Marie T, Banich L. fMRI study of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. J Cogn Neurosci, 2000, 12: 988~1000.
    [159] Pessoa L, Kastner S, Leslie G, et al. Attentional control of the processing of neutral and emotional stimuli. Cogn Brain Res, 2002, 15: 31~45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700