通信侦察信号处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信侦察是现代战争中获取军事情报的重要手段,也是实施电子干扰与摧毁的前提。随着现代战争信息化程度越来越高,现代军事通信呈现出软件化、智能化、宽带化和网络化的发展趋势,并产生了如高速跳频、突发通信、复杂调制和复杂编码等的高新技术,这些技术在军事通信中的应用给通信侦察带来了难题,主要表现在:(1)截获信号往往存在时、频域严重混叠现象;(2)截获突发通信信号时侦察方截获数据样本较短;(3)侦察接收机常常面临非视距接收、旁瓣侦察及多径衰落信道等非理想条件,都将导致接收信号质量不高甚至失真。因此,通信侦察中的信号处理需要解决的问题不再是单一化,而是多样性和复杂性并存。基于这些问题的考虑,一个完整的适合通信侦察的信号处理流程应该具有信号分离,均衡信道效应,适应低信噪比、短数据的参数估计以及复杂信号类型识别等功能。本文的工作正是围绕以上问题开展研究,归纳起来本文的主要贡献为:
     1.针对信噪比估计,比较了各种信息论准则对信号子空间维数估计的性能影响,为实际应用提供了参考依据。利用随机矩阵理论,重点分析了短数据对样本协方差矩阵特征值的影响,通过利用AIC准则的极大似然函数仅与由噪声的特征值构成的函数有关的特点,提出利用改进的信号子空间维数的估计方法用于短数据的信号子空间维数的估计,从而得到稳健的信噪比估计方法。
     2.充分利用了双平行线阵的结构特点,采用了ESPRIT方法实现了对二维波达方向估计,既避免了孔径损失使参数估计的性能得到提高,又完成了对方位角与俯仰角的自动配对,还克服常见二维波达方向估计中存在的角度兼并问题。
     3.分析了基于牛顿迭代nc-FastICA方法分离载波调制非圆信号(如BPSK)的缺陷,是由于由信号峭度改变(从亚高斯趋向于超高斯)超过其稳定分离区域所导致的,并提出了一种通用的非线性函数用于分离算法,从而解决了载波调制非圆信号的稳定分离问题。
     4.针对基于二阶统计量的信道盲估计方法应用于DSSS信号时,由于传输延时的不确定性导致信道首尾小项效应以及阶数不固定的问题,提出了一种新的预处理方法,给出了确定最佳接收起始时刻的最优准则,并进行了详细的理论推导与证明,实现了不依赖于阶数估计就能达到解决信道首尾小项效应问题的目的。
     5.针对信号调制识别问题,研究了复杂调制类型信号的识别方法,以及复杂信号环境如低信噪比、多径衰落信道条件下的调制类型识别方法。对于复杂调制类型信号的识别,提出了具有自适应选择最优尺度的小波变换识别方法以及基于HHT变换时频图的识别方法,实现了高阶PSK与QAM信号及其子类的正确识别;对于低信噪比接收条件的识别问题,通过利用噪声不同时刻的不相关性,提出了基于错位相乘的频域识别方法;对于多径衰落信道下的识别问题,提出了阵列接收与双模式盲均衡相结合的处理思路。
Communication reconnaissance is one of the most important methods to obtain military information and is also the basis in implementing electronic interference and damage. With the increasing information level in modern wars, lots of new technologies such as high speed frequency-hopping, burst communication, complicated modulation and code are widely used in military communication field and make military communication present tendency of software, intelligence, broadband and network. However, the application of these new techs would bring big challenges to communication reconnaissance, such as: (1) the intercepted signal could be probably multi-signal with time-frequency overlapping seriously; (2) only small size data samples can be used due to the low interception probability communication technology; (3) the received signal’s qulity would be much more worse because of non-line-of-sigh reconnaissance, sidelobe reconnaissance and multipath effects.
     Therefore, signal processing in communication reconnaissance is not a simple task but a problem more diversity and complex. Base on the consideration, a new complete signal process should have the capability of multi-signal separation, channel equalization, parameters estimation adapted to low SNR and small size data, and modulation classification in complicated envirement. The main contributions of this dissertation are studying the solutions to such problems, they are summarized as following:
     1. The non-data aided signal to noise ratio (SNR) estimation problem is first studied. After comparing various information criteria performance in estimating SNR, the suitable criterion is given in practical application. The effects when small size data is used in calculating eigenvalues of sample covariance matrix are also analized with the help of random matrix theory. By using the properties that the likelihood function of AIC criteria depends only on function of noise space eigenvalues, a new robust SNR estimation method is proposed with the application of modified-AIC criterion.
     2. Based on the characteristics of two parallel uniform linear arrays (ULAs), a novel 2-D ESPRIT algorithm has been proposed. The proposed method employs the shift invariance property of the array geometry and it can estimate precisely for avoiding decreasing the array aperture. This proposed method not only has an advantage of automatically parameter alignment but also handle sources with common 1-D angles.
     3. The limitation of nc-FastICA method based on Newton iteration is analized, which can not separate the modulated non-circular signal, for instance, BPSK signal. The reason is that the kurtsis of modulated BPSK signal changed and exceeded the stable range of nc-FastICA method. Therefore a general non-linear function is proposed and applied to the separation algorithm, and the robust separation of modulated non-circular signal is completed.
     4. With the aim of solving problem that channel blind identification methods based on second-order characteristics perform badly when DSSS signals are used to be sources, a criterion is derived to determine appropriate starting point of receiving data as a preprocessing algorithm. The new method avoids channel order estimation and shows more robust in the situation when small leading and/or trailing terms are existed.
     5. Finally two time-frequency methods are proposed which are based on wavelet and Hilbert-huang transformings and complete the intra and inner modulation classification of higher order PSK-type and QAM-type signals. By using the uncorreration property of Gaussian noise at different moments, a new frequency domain classification algorithm is presented which can adapt to work under lower SNR scenario. An idea of joining array receiving mode and dual mode blind equalization is also given as to the modulation classification problem under multipath channel.
引文
[1]许华.短时突发信号的盲处理技术研究.[博士学位论文].郑州:解放军信息工程大学,2005
    [2]齐昕.阵列多参数估计与短数据测向算法研究.[硕士学位论文].成都:电子科技大学.2010
    [3] A.Ramesh, A.Choekalingam, L.B.Milstein. SNR estimation in Nakagami-m fading with diversity combining and its application to turbo decoding. IEEE Trans.Communication, 2002, 50(11):1719-1724
    [4] A.Ramesh, A.Chockalingam, L.B.Milstein. SNR Estimation in Generalized Fading Channels and Its Application to Turbo Decoding. IEEE International Conference on Communication, Finland, 2001,1094-1098
    [5]詹亚锋,曹志刚,马正新.无线数字通信的盲信噪比估计.清华大学学报.2003,43(7): 957-960
    [6] C. E. Gilchriest. Signal-to-noise monitoring. JPL Space Programs Summary, 1966, IV(37-27): 169–184
    [7] C.M.Thomas. Maximum Likelihood Estimation of Signal-to-Noise Ratio. [Ph.D. dissertation]. Los Angeles: Univ. of Southern California, 1967
    [8] T.R.Benedict, T.T.Soong. The joint estimation of signal and noise from the sum envelope. IEEE Trans. Inform. Theory. 1967, IT-13:447–454
    [9] B.Li, R.DifaZio, A.zeira. A Low Bias Algorithm to Estimate Negative SNRs in a AWGN Channel. IEEE Commun. Letters. 2002, 6(11):469-471
    [10] B.Li, R.DifaZio, A.zeira, P.J.Pietraski. New results on SNR estimation of MPSK modulated signals. Proc.IEEE PRIMC. Beijing, China, 2003,2373-2377
    [11] A. Wiesel, J.Goldberg, H.Messer. Non-Data-Aided Signal-to-Noise-Ratio Estimation. IEEE ICC2002. New york, USA, 2002,197-201
    [12] D.R. PAULUZZI, N.C.BEAULIEU. A comparison of SNR estimation techniques for the AWGN channel., IEEE Transactions on Communications. 2000, 48(10): 1681-1691
    [13] D.Shin, W. Sung, I. Kim. Simple SNR estimation methods for QPSK modulated short bursts.Proc. IEEE GLOBECOM. San Antonio, Texas, 2001,3644-3647
    [14] R. M. Gagliardi, C. M. Thomas. PCM data reliability monitoring through estimation of signal-to-noise ratio. IEEE Trans. Communication. 1968,COM-16:479-486
    [15] R. Matzner, F. Engleberger. An SNR estimation algorithm using fourth-order moments. In Proc. IEEE Int. Symp. Information Theory.Trondheim, Norway, 1994, 119
    [16] W. Gappmair, O. Koudelka. Moment-based SNR estimation of signals with non-constant envelope. In Proc. 3rd Advanced Satellite Mobile Systems Conf. 2006
    [17] P.Gao, C.Tepedelenlioglu. SNR estimation for nonconstant modulus constellations. IEEE Transactions on Signal Processing. 2005. 53(3): 865-870
    [18] R. L. VALCARCE, C.MOSQUERA. Sixth-Order Statistics-Based Non-Data-Aided SNR Estimation. IEEE Communications Letters.2007. 11(4): 351-353
    [19] M.A.Diaz, R. L. Valcarce, C.Mosquera. SNR Estimation for Multilevel Constellations Using Higher-Order Moments. Signal Processing, IEEE Transactions on, 2010. 58(3): 1515-1526
    [20]范海波,陈军,曹志刚.AWGN信道中非恒包络信号的SNR估计方法.电子学报.2002,30(9):1369-1371
    [21] M. Andersin, N. B.Mandayam, R. D. Yates. Subspace based estimation of the signal to interference ratio for TDMA system.IEEE VTC96.Atlanta,USA,1996,1155-1159
    [22]花梦,朱近康,龚明.基于周期平稳的盲信噪比估计算法.通信学报.2006,27(9):6-13
    [23]张贤达.时间序列分析.清华大学出版社.北京,1996
    [24] B.S.Koh, H.S.Lee. Detection of symbol rate of unknown digital communication signals.Electronics Letters,1993,29(3):278-279
    [25] P.Ciblat, P.Loubaton, E.Serpedin, et al. Asymptotic analysis of blind cyclic correlation-based symbol rate estimators. IEEE Trans Inform Theory. 2002,48(7):19222-1934
    [26]唱亮,汪芙平.非协作通信中的盲信噪比估计算法.通信学报,2008,29(3):76-81
    [27] R. Schmidt. Multiple Emitter location and Signal Parameter Estimation. Proceedings of RADC Spectrum Estimation Workshop. 1979,243-258
    [28] Paulraj, R. Roy,T. Kailath. A Subspace Rotation Approach to Signal Parameter Estimation. Proc. of IEEE.1986, 74(7):1044-1046
    [29] A.Y.J. Chan, J. Litva. MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array. IEE Proceedings Radar, Sonar and Navigation. 1995,142(3):105-114
    [30]C.P. Mathews, M.D. Zoltowski. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Trans. on Signal Processing. 1994,42(9) :2395-2407
    [31]M. Xia, C. Liu, R. Du, J. Li. An effective array for 2-D direction-of-arrival estimation. First International Conference on Innovative Computing, Information and Control. 2006, 2:370-373
    [32]M. Wax, T. Shan, T. Kailath. Spatio-Temporal Spectral Analysis by Eigenstructure Method. IEEE Trans. On ASSP. 1984:817-827
    [33]Q.Y. Yin, R.W. Newcomb, L.H. Zou. Estimating 2-D angles of arrival via two parallel linear arrays. ICASSP-89. 1989, 4:2803-2806
    [34]Q.Y. Yin, R.W. Newcomb, L.H. Zou. Relation between the DOA matrix method and the ESPRIT method. IEEE International Symposium on Circuits and Systems.1990, 2:1561-1564
    [35]殷勤业,邹理和,R.Newcomb.一种高分辨率二维信号参数估计方法-波达方向矩阵法.通信学报.1991,4(12): 1-7
    [36]M.D. Zoltowski, M. Haardt, C.P. Mathews. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Trans. On signal processing.1996, 44(2):316-322
    [37]Yuntao Wu, Guisheng Liao, H.C. So. A fast algorithm for 2-D direction-of-arrival estimation. Signal Processing. 2003, 83(8): 1827-1831
    [38]N. Tayem, H.M. Kwon. L-shape 2-dimensional arrival angle estimation with propagator method. IEEE Trans. on Antennas and Propagation. 2005,53(5) :1622-1630
    [39]N. Tayem, H.M. Kwon, Yong Hoon Lee.2-D DOA estimation with no failure. VTC-2005-Fall.2005, 4:2206-2210
    [40]H.S.Liao, L.Gan, P.Wei.A Novel 2-D ESPRIT Algorithm For 2-D DOA Estimation. Journal of Information and Computational Science.Accepted
    [41] J.Herault,C.Jutten. Blind separation of soueres,Part I: an adaptive algorithm based on neuron mimetie.SginalPessing,1991,24(l):l-10
    [42] P.Comon. Independent component analysis, a new concept? Signal Processing. 1994,36(3):287-314
    [43] R.W.Liu, X.R.Cao. General approach to blind signal separation. IEEE Tranc.On Signal Poreessing. 1996, 44(3):562-571
    [44] N.Delfosse, P.Loubaton. Adaptive separation of independent sources: a deflation approach. Proc. of ICASSP-94. 1994: 41-44
    [45] A.J. Bell, T.J. Sejnowski. An information maximisation approach to blind separation and blind deconvolution. Neural Computation.1995,7( 6): 1129-1159
    [46] J.F. Cardoso, B.H. Laheld.Equivariant adaptive source separation. IEEE Transactions on Signal Processing.1996, 44(12): 3017-3030
    [47] S.Amari, A.Cichoeki, H.H.Yang. A new leaming algorithm for blind source separation. In Advances in Neural Information Porcessing. MIT Press,Cambridge,MA.1996, 8: 657-663
    [48] A. Hyv?rinen, E. Oja. A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Computation. 1997,9(7):1483-1492
    [49] S. Amari, T.P. Chert, A. Cichocki. Stability analysis of adaptive blind source separation.Neural Networks.1997, 10 (8):1345-1352
    [50] S. Amari.The Natural Gradient Learning Algorithm for Neural Networks, Theoretical Aspects of Neural Computation--A Multidisciplinary Perspective.Hong Kong International Workshop (TANC'97), Kwok-Yee Michael Wong, Irwin King, Dit-Yan Yeung (Eds.), Springer, 1998, 1-15
    [51] E. Bingham, A.Hyv?rinen. A fast fixed-point algorithm for independent component analysis of complex valued signals. International Journal of Neural Systems. 2000, 10(1):1-8
    [52] J.Eriksson, V. Koivunen. Complex random vectors and ICA models: identifiability, uniqueness, and separability. IEEE Transactions on Information Theory. 2006,52(3): 1017-1029
    [53] H. Li, T. Adali. A class of complex ICA algorithms based on the kurtosis cost function. IEEE Trans. Neural Networks. 2008, 19(3): 408-420
    [54] M. Novey, T. Adali. Complex ICA by negentropy maximization.IEEE Trans. Neural Networks. 2008, 19(4):596-609
    [55] T. Adali, H. Li, M. Novey, J.-F. Cardoso.Complex ICA using nonlinear functions. IEEE Trans. Signal Processing.2008, 56(9): 4536-4544
    [56] M. Novey,T. Adali.On extending the complex Fast ICA algorithm to noncircular sources.IEEE Trans. Signal Processing. 2008, 56(5):2148-2154
    [57] J. R.Treichler, M.G. Larimore. New processing techniques based on constant modulus adaptive algorithm.IEEE Trans. On Acoustics, Speech and Signal Processing. 1985, 33: 420–431.
    [58] J. R.Treichler, M.G. Larimore.The tone capture properties of CMA-based interference suppressors.IEEE Trans. On Acoustics, Speech and Signal Processing.1985,33:946–958
    [59] J. R. Treichler, B. G. Agee.A new approach to multipath correction of constant modulus signals.In IEEE Trans. Acoust., Speech, Signal Processing. 1983,31 : 459–472
    [60] S. Talwar, M. Viberg, A. Paulraj.Blind estimation of multiple co-channel digital signals using an antenna array.Signal Processing Letters. 1994, 1:29–31
    [61] A.V. D. Veen, S. Talwar, A. Paulraj.Blind estimation of multiple digital channels transmitted over FIR channels. IEEE Signal Processing Letters. 1995,2: 99–102
    [62] K. Anand, G. Mathew, V. Reddy. Blind separation of multiple co-channel BPSK signals arriving at an antenna array.IEEE Signal Processing Letters. (1995), 2:176–178
    [63] B. Agee, S. Schell, and W. Gardner, Spectral self-coherence restoral: a new approach to blind adaptive signal extraction using antenna arrays, Proc. of IEEE, 78 (1990), pp. 753–767.
    [64] S. Schell, W. Gardner. Blind adaptive spatiotemporal filtering for wide-band cyclostationary signal.IEEE Trans. on Signal Processing.1993, 41: 1961–1964
    [65] C. Jutten, J. H′erault. Blind separation of sources, part I: an adaptative algorithm based on neuromimetic architecture.Signal Processing.1991, 24: 1–10.
    [66] M. Dogan, J. Mendel.Cumulant-based blind optimum beamforming.IEEE Trans. Aerosp. Elect. Systems. 1994, 30:722–741
    [67]许士敏,陈鹏举.频谱混叠通信信号分离方法.航天电子对抗,2004,5:53-55
    [68]付卫红,杨小牛,刘乃安,等.基于密度估计盲分离的通信信号盲侦察技术.华中科技大学学报,2006, 34(10): 24-27
    [69]付卫红,杨小牛,曾兴雯,刘乃安.适用于通信侦察的信号盲分离算法.南京理工大学学报. 2008, 32(2) :189-194
    [70]付卫红,杨小牛,刘乃安,曾兴雯.基于独立分量分析(ICA)的通信信号盲侦察技术.四川大学学报. 2007,44(6) :1245-1249
    [71] J.R.Treichler, B.G.Agee. A New Approach to Multipath Correction of Constant Modulus Signals. IEEE Transaction on Acoustic Speech and Signal Processing.1983, 31(2):459-471
    [72] J.R.Treichler, M.G.Larimore. New Processing Techniques Based on the Constant Modulus Adaptive Algorithm. IEEE Transaction on Acoustic Speech and Signal Processing.1985, 33(2):420-431
    [73] Y. Li, Z.Ding. Global convergence of fractionally spaced Godard(CMA) adaptive equalizer. IEEE Transaction on Signal Processing.1996, 44(4):818-826
    [74] A.F.Touzni,J.R.Treichler. Fractionally spaced equalization using CMA:roubustness to channel noise and lack of disparity. IEEE Transaction on Signal Processing.1997, 45(1):56-66
    [75] W.Gardner. A new method of channel identification. IEEE Transaction on Communication.1991, 39(6):813-817
    [76] W.Gardner. Exploitation of spectral redundancy in cyclostationary signals.IEEE signal Processing magazine.1991,8(4):14-36
    [77] L.Tong, G.Xu, T.Kailath. Necessary and sufficient conditions for channel identification based on second-order statistics. Proc.Int.Symp.Information Theory. 1993
    [78] L.Tong.G.Xu, T.Kailath. Blind Identification and Equalization based on Second-Order Statistic: A Time Domain Approach. IEEE Transaction on Information Theory. 1994 ,40(2):240-349
    [79] L.A.Baccala, S.Roy. A new blind time-domain channel identification method based on cycolstationarity. IEEE Signal Processing Lett. 1994,1:89-91
    [80] Z.Dding. A blind channel identification algorithm based on matrix outer-product. In Proc. Int.Conf.Communications. Dallas,TX,1995, 852-856
    [81] G.B.Giannakis.Linear cyclic correlation approach for blind identification of FIR channels. In Proc.28th Asilomar Conf.Signal, Systems, and Computers. Pacific Grove.CA, 1994, 420-423
    [82] M.I.Gurreli, C.L.Nikias. A new eigenvector-based algorithm for multichannel blind deconvolution of input colored signals.In Proc.IEEE Intl. Conf. Acoustics, Speech, Signal proc.. Minneapolis, MN.1993, 4:448-451
    [83] Y.Li, Z.Ding. A new nonparametric cepstral method for blind channel identification from cyclostationary statistics. Presented at 27th Asilomar Conf.Signals,Systems,and Computers. Asilomar,CA.1993
    [84] L.Tong,Q Zhao. Blind channel estimation by least squares smoothing. In Proc. Intl. Conf. Acoustics, Speech, Signal proc.. Seattle,WA, 5:2121-2124
    [85] L.Tong,Q Zhao. Joint order detection and channel estimation by least squares smoothing. Presented at 30th Conf.Information Sciences and Systems.Princeton,NJ.1998
    [86] G.Xu, H.Liu ,L.Tong, T.Kailath. A least-squares approach to blind channel identification. IEEE Trans,Signal Processing. 1995,43:2982-2993
    [87] M.Zoltowski, D.Tseng.Blind channel identification for narrowband digital communication based on parametric modeling of channel impulse response.In Proc. Allerton Conf.Communications,Control and Computing.Urbana,IL. 1997,503-512
    [88] L.B.White, S.Perreau, P.Duhamel.Reduced computation blind equalization for FIR channel input Markov models. In Proc.Int.Conf.Communications. Seattle,WA.1995,993-997
    [89] E. Moulines,P. Duhamel,J.Francois, S. Mayargue. Subspace Methods for Blind Identification of Multichannel FIR Filters. IEEE Transaction on Signal Processing.1995 43(2):516-525
    [90] W.Song, et al.,An FFT-Based Method for Blind Identification of FIR SIMO Channels. IEEE Signal Processing Letters.2007, 14(7): 437-440
    [91] K.I. Diamantaras, T. Papadimitriou. An Efficient Subspace Method for the Blind Identification of Multichannel FIR Systems. IEEE Transactions on Signal Processing. 2008,56(12): 5833-5839.
    [92] Y.B.Hua. Fast maximum likelihood for blind identification of multiple FIR channels. IEEE Trans.Signal Process.44:661-672
    [93] D.Slock, C.B.Papadias. Further results on blind identification and equalization of multiple FIR channels. In Proc.ICASSP.1995,1964-1967
    [94] D.Gesbert,P.Duhamel ,S.Mayrargue.Bllind least-squares approaches for joint data/channel estimation.In IEEE DSP Workshop.1996
    [95] F.Alberge, P.Duhamel, M.Nikolova. Adaptive solution for blind identification/equalization using deterministic maximum likelihood. IEEE Trans.Signal Process.2002,50:923-936
    [96] F.Alberge, M.Nikolova, P.Duhamel.Blind Identification/Equalization Using Deterministic Maximum Likelihood and a Partial Prior on the Input. IEEE Trans.Signal Process. 2006,54:724-737
    [97] A.P.Liavas P.A.Regalia, J-P.Delmas.Blind channel approximation:effective channel order determination. IEEE Transaction on signal processing.1999,47(12):3336-3344
    [98] K.Abed-Meraim,E.Moulines, P.Loubaton. Prediction error method for second-order blind identification. IEEE Trans.Signal Process. 1997, 45(3):694-705
    [99] M.Wax, T.Kailath. Detection of signals by information theoretic criteria.IEEE Trans. Audio, Speech, Signal Processing. 1985,ASSP-33:387-392
    [100] L.Tong, Q.Zhao. Joint order detection and blind channel estimation by least squares smoothing. IEEE Trans. Signal Process. 1999,47(9):2345-2355
    [101] J.Via, I.Santamaria and J.Perez:Effective Channel Order Estimation Based on Combined Identification/Equalization.IEEE Trans. Signal Process. 2006, 54(9):3518-3526
    [102] J.D.Gabet, A.W. Bojanczyk. Effective Channel Order Estimation Based on Nullspace Structure and Exponential Fit. IEEE Transactions on Signal Processing.2010,58(10): 5425-5430
    [103] Karaku, et al..Channel Matrix Recursion for Blind Effective Channel Order Estimation, IEEE Transactions on Signal Processing.2011,59(4): 1642-1653
    [104] M.K.Tsatsanis, G.B.Giannakis.Blind estimation of direct sequence spread spectrum signals in multipath., IEEE Transactions on Signal Processing. 1997,45(5): 1241-1252
    [105]陈卫东.数字通信信号调制识别算法研究.[博士学位论文].西安:西安电子科技大学.2001
    [106]陈卫东,杨绍全,董春曦,徐松涛.多径信道下MPSK信号的调制识别算法.通信学报.2002,23(6):14-21
    [107]冯祥,李建东.调制识别算法及性能分析.电波科学学报.2005,20(6):737-740
    [108] G. Hatziehristos, M.P.Fargues. A hierarehieal approach to the classification of digital modulation types in multipath environments. Proc. ACSSC2001.PacifieGrove,CA.2001,2:1494-1498
    [109] W.H.Chun, M. Saquib, Y. Zhifeng.Novel Automatic Modulation Classification Using Cumulant Features for Communications via Multipath Channels. IEEE Transactions on Wireless Communications.2008. 7(8): 3098-3105
    [110] V.D. Orlic, M.L. Dukic.Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Communications Letters. 2009,13(12): 917-919
    [111] B.P.Paris, G.C.Orsak, H.D.Chen, et al..Modulation classification in unknow dispersive environments.Proc.ICASSP.1997,5:3853-3856
    [112] S.Barbarossa, A.Swami, B.Sadler, et al..Classification of digital constellations under unknown multipath propagation condition. Proc.SPIE2000,4045:175-186
    [113] Swami, S.Barbarossa, B.Sadler. Blind sourc separation and signal classification. ACSSC2000, PacificGrove, CA, 2000, 2:1187-1191
    [114]王建新,宋辉.基于星座图的数字调制方式识别.通信学报.2004,25(6):167-173
    [115] A.Abdi, O.A.Dobre, R.Choudhry, et al.. Modulation classification in fading channels using antenna arrays. Proc.MILCOM2004, 2004,l:211-217
    [116] A. Ganesh, R. Visr, B. Abdesselam,et al..Classification of digital modulation schemes using neuron networks.Fifth International Symposium on Signal Processing and its Applications, Brisbane, Australia.1999, 649-652.
    [117]魏小薇,曹志刚.低信噪比下数字幅度调制的调制进制快速识别.清华大学学报. 2006, 46(1):35-38
    [118] K.M. Ho.Automatic Recoginition and Demodulation of Digitally Modulated Communications Signals using Wavelet-domain. [Ph.D.Dissertation].The State University of New Jersey.2010
    [119] D.L. Donoho. De-nosing by Soft-Thresholding. IEEE Trans Information Theroy.1995,41(3): 613-627
    [120]潘泉,张磊,孟晋丽,张洪才.小波滤波方法及应用.电子与信息学报.2007,29(1):236-240
    [121]田玉静,左红伟.小波消噪阈值算法优化.声学技术.2009,28(4):503-506
    [122]谭晓衡,刘娟,胡友强.一种新的低信噪比下的数字调制识别方法.系统工程与电子技术.2009,31(6):60-64
    [123]苏元伟,何明浩,余国文.低信噪比条件下FSK信号调制特征提取.电子信息对抗技术. 2008,23(4):8-11
    [124] L.Hong, K.C.Ho. Identification of digital modulation types using the wavelet transform. In Proceedings of the IEEE Military Communications Conference. 1999, 1: 427–431
    [125] K. C. Ho, W. Prokopiw, Y. T. Chan. Modulation identification of digital signals by the wavelet transform. Radar, Sonar and Navigation.IEE Proceedings. 2000, 147(4):169-176
    [126] Z. DaMin, W. Xu. MPSK Signal Modulation Recognition Based on Wavelet Transformation. International Conference on Networking and Digital Society., 2009,1:202-205
    [127] G.Chen, Z. Ren, Y. Li. Study of Signal Feature Recognition Method Based on Morlet Combined Wavelets. International Conference on Measuring Technology and Mechatronics Automation. 2009, 3:313-317
    [128] R. Pavl′?k. Binary PSK/CPFSK and MSK bandpass modulation identifier based on the complex Shannon wavelet transform. Journal of Electrical Engineering. 2005,56(3-4):71–77
    [129] P. Cheol-Sun, et al.. Automatic Modulation Recognition of Digital Signals using Wavelet Features and SVM. 10th International Conference on Advanced Communication Technology. 2008,1:387-390
    [130] H.Yuan,. Classification of MPSK signals using M-bands wavelet and high-order cumulants.2nd International Conference on Signal Processing Systems.2010,1:66-69
    [131] P. Prakasam, M. Madheswaran. Digital Modulation Identification Model Using Wavelet Transform and Statistical Parameters. Journal of Computer Systems, Networks, and Communication. 2008
    [132] A. Stephenne, F.Bellili, S.Affes. Moment-based SNR estimation over linearly-modulated wireless SIMO channels. IEEE Transactions on Wireless Communications.2010, 9(2): 714-722
    [133] R. R. Nadakuditi, A. Edlman. Sample Eigenvalue Based Detection of High-Dimensional Signals in White Noise Using Relatively Few Samples. IEEE Transactions on Signal Processing. 2008,56(7): 2625-2638
    [134] R.F. Brcich, A.M. Zoubir, P. Pelin. Detection of sources using bootstrap techniques. IEEE Trans. Signal Processing.2002, 50(2):206-215
    [135] S. Valaee, P. Kabal. An information theoretic approach to source enumeration in array signal processing. IEEE Trans. Signal Processing. 2004, 52(5):1171-1178
    [136] T.J.Wu, A.Sepulveda.The weighted average information criterion for order selection in time series and regression models.Stat. Prob. Lett..1998,39:1-10
    [137] P.Chen ,T.-J. Wu, J.Yang. A comparative study of model selection criteria for the number of signals. IET Radar Sonar Navig. 2008,2(3):180-188
    [138] T. W. Anderson.Asymptotic theory of principal component analysis.Ann. Math. Stat.1963.34:122–248
    [139] I.M. Johnstone.High dimensional statistical inference and random matrices.In Proc. Int. Congr. Mathematicians.2006
    [140] A.Edelman, N. R. Rao.Random matrix theory. In Acta Numerica. Cambridge, U.K.: Cambridge Univ. Press.2005, 14:233–297
    [141] V. A. Marˇcenko, L. A. Pastur.Distribution of eigenvalues in certain sets of random matrices.Mat. Sb. (N.S.). 1967,72(114): 507–536
    [142] B. A. Johnson, Y. I. Abramovich, X. Mestre. MUSIC, G-MUSIC, and Maximum-Likelihood Performance Breakdown. IEEE Trans. Signal Processing.2008, 56(8):3944-3958
    [143]王磊,郑宝玉,崔景伍.随机矩阵理论与无线通信. 2010,30(3):90-96
    [144]金百锁.大维随机矩阵谱分布的极限理论研究及其应用. [博士学位论文].合肥:中国科学技术大学.2006
    [145] M. I.Johnstone. On the distribution of the largest eigenvalue in principal component analysis. Ann. Stat..2001, 29(2):295-327
    [146] R.R. Nadakuditi.Applied Stochastic Eigen-Analysis. [Ph.D. Thesis].2002
    [147] V. S. Kedia, B. Chandna. A new algorithm for 2-D DOA estimation. Signal Process.. 1997, 60(3): 325-332
    [148] P.Comon, C, Jutten. Handbook of Blind Source Separation Independent Component Analysis and Applications. Academic Press .2009
    [149] A. Hyvarinen, J. Karhunen, E. Oja. Independent Component Analysis. John Wiley&Sons, Inc..New York, 2001
    [150] L. Q. Zhang, A. Cichocki, S. Amari.Natural gradient algorithm for blind separation of overdetermined mixture with additive noise. IEEE Signal Processing Letters. 1999,6:293–295
    [151]朱孝龙,张贤达.基于奇异值分解的超定盲信号分离.电子与信息学报. 2004,26(3): 337-343
    [152] A. Cichocki, S. Amari.Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley, 2002
    [153] K. Abed-Meraim, E. Moulines, P. Loubaton.Prediction error method for second-order blind identification. IEEE Trans. Signal Processing.1997, 45(3):694-705
    [154] D. Zhi. Matrix outer-product decomposition method for blind multiple channel identification. IEEE Trans. Signal Processing.1997, 45(12):3053-3061
    [155] T. Lang, S. Perreau. Multichannel blind identification: from subspace to maximum likelihood methods. Proceedings of the IEEE.1998, 86(10):1951-1968
    [156] H. Zeng and L. Tong.Connections between the least-squares and subspace approaches to blind channel estimation.IEEE Trans. Signal Processing.1996,44:1593–1596
    [157] Liavas, A.P., P.A. Regalia, and J.P. Delmas, Robustness of least-squares and subspace methods for blind channel identification/equalization with respect to effective channel undermodeling/overmodeling. IEEE Transactions on Signal Processing.1999, 47(6): 1636-1645
    [158] http://spib.rice.edu/spib/microwave.html
    [159]牟青.直接序列扩频信号的截获分析研究. [博士学位论文].成都:电子科技大学.2010
    [160] G. B. Giannakis, Y. Hua, P. Stoica et al. Signal Processing Advances in Wireless and Mobile Communications: Trends in Channel Estimation and Equalization。NJ:Englewood Cliffs, 2001
    [161] Shelbey, Samuel, CRC Standard Mathematical Tables.CRC Press, 1975
    [162] Y. Xiaodong, H. H. Fan. Near-far resistance of optimum and suboptimum CDMA detectors under multipath. IEEE Trans. Signal Processing.2005, 53(8):2898-2917
    [163] W. Xiaodong, H. V. Poor. Blind equalization and multiuser detection in dispersive CDMA channels. IEEE Trans. Communications.1998, 46(1):91-103
    [164] SCHWARTZ, M.Information transmission, modulation, and noise. McGraw-Hill, New York,1959
    [165] JLJSTUSSON, B.I.Median filtering: statistical properties, Two dimensional digital signal processing, Topics in applied physics. Springer-Verlag, New York, 1981
    [166] Huang N. E. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis.Proc.R.Soc.London.1998, A454:903-995
    [167]钟佑明,秦树人. HHT的理论依据探讨——Hilbert变换的局部乘积定理.振动与冲击. 2006, 25(2):12-15
    [168] L.Hong, K.C.Ho. Identification of digital modulation types using the wavelet transform. In Proceedings of the IEEE Military Communications Conference. 1999, 1: 427–431
    [169] K. C. Ho, W. Prokopiw, Y. T. Chan. Modulation identification of digital signals by the wavelet transform. IEE Proceedings Radar, Sonar and Navigation. 2000, 147(4):169-176
    [170] P. Prakasam, M. Madheswaran. Digital Modulation Identification Model Using Wavelet Transform and Statistical Parameters. Journal of Computer Systems, Networks, and Communication. 2008.
    [171] Oberst, J. and D. Schilling, The SNR of a Frequency Doubler. Communication Technology, IEEE Transactions on.1971,19(1): 97-99
    [172] C.R.Johnson,Jr. et al.Blind equalization using the constant modulus criterion:a review.Proc .IEEE Trans.Comms.. 1998,1927-1950
    [173] William H.Tranter等著,肖明波等译.通信系统仿真原理与无线应用.机械工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700