GTPase蛋白RSA-14-44的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精子发生是一个错综复杂且高度有序的动态过程,其间生精干细胞经过有丝分裂、减数分裂、核浓缩、细胞变形、激活等众多复杂的变化,最终发育、分化成为成熟的精子。这些不同的细胞事件既相对独立、相互区别,同时又相互关联、相互衔接,整合成为一个系统、高效并且可控的有机整体。为确保种群的繁衍和物种的进化,生命体逐渐发展出一整套精密、复杂的机制来调节整个精子发生过程。其中一个很重要的方面就是依据不同发育阶段的需要,在时间和空间上对精子发生相关基因的表达进行严密的控制。因此,分离、克隆不同发育阶段的差异表达基因,深入研究它们在精子发生过程中所发挥的作用,对于揭示精子发生机理和促进人类生殖健康均具有重要意义。
     在本实验室的前期工作中,我们利用激光捕获显微切割技术(Laser CaptureMicrodissection,LCM),成功地捕获了大鼠的初级精母细胞和圆形精子细胞;通过抑制性消减杂交技术(Suppressive Substractive Hybridization,SSH)构建圆形精子细胞消减初级精母细胞的消减cDNA文库(RSA),并从中筛选出差异表达基因。本研究中所涉及的RSA-14-44/mRSA-14-44就是通过上述筛选所得到的一个新基因,其所对应的原始克隆编号为14-44,因此命名为RSA-14-44。该基因的GenBank登录号为AY149343;编码序列长度为582bp,编码一个由193个氨基酸组成并具有Rho-GTPase保守结构域的蛋白质。
     生物信息学分析结果显示,RSA-14-44的氨基酸序列与Rho GTPase家族中的RhoAlike亚家族成员高度同源。同时,我们通过体外实验证实纯化的GST-RSA-14-44蛋白具有GTPase活性。因此,确定RSA-14-44是RhoA like亚家族的一个新成员。
     针对RSA-14-44的多组织表达分析结果表明,该基因在大鼠睾丸组织中特异表达。对大鼠睾丸组织的免疫组织化学研究证实,RSA-14-44的表达与精子发生过程密切相关;主要存在于除精原细胞外的各期生精细胞中,特别是处于第一次减数分裂末期的初级精母细胞中。
     利用生物信息学数据库进行同源序列比对,在小鼠中找到一个RSA-14-44的同源序列基因4930544G11Rik(GeneID:67653)。二者所编码的蛋白质序列高度同源,相似度达95.3%,并且具有相同的睾丸组织表达特异性。因此,我们确认该基因是RSA-14-44的小鼠同源基因,并将其命名为mRSA-14-44。
     在前期工作中,我们利用酵母双杂交技术筛选睾丸组织中可能存在的与RSA-14-44相互作用的蛋白质,结果显示蛋白酶体的组成蛋白PSMB5与RSA-14-44之间存在相互作用。利用GST-pull down的方法,我们证实RSA-14-44与PSMB5之间存在相互作用。同时,我们还构建了mRSA-14-44的真核表达质粒,并通过免疫共沉淀实验验证了mRSA-14-44与PSMB5之间存在相互作用。
     为明确RSA-14-44/mRSA-14-44在精子发生过程中的生物学功能,我们首先通过免疫荧光观察RSA-14-44和PSMB5在大鼠精子发生过程中的表达变化。结果显示,二者在分离到的各期生精细胞中共定位,包括次级精母细胞、圆形精子细胞、长形精子细胞和成熟的精子;二者的定位与整个精子发生过程密切相关,随着发育阶段的不同产生相应的变化。其次,蛋白酶体活性实验的结果证实在过表达RSA-14-44/mRSA-14-44或共表达RSA-14-44/mRSA-14-44和PSMB5的情况下,细胞的蛋白酶体活性并未发生显著变化。此外,我们还利用高通量筛选平台对RSA-14-44/mRSA-14-44可能参与的细胞信号传递通路进行鉴定。分析结果显示,除CREB通路外,过表达RSA-14-44/mRSA-14-44对所选定的细胞信号通路并未产生显著的影响。
     为进一步明确RSA-14-44/ mRSA-14-44与PSMB5相互作用同RSA-14-44/mRSA-14-44蛋白质结构之间的关系,我们构建了分别针对RSA-14-44/ mRSA-14-44和PSMB5的突变体蛋白表达质粒,并通过免疫共沉淀和甘油密度梯度分离细胞组分来进行相应研究。免疫共沉淀实验结果显示RSA-14-44/ mRSA-14-44与PSMB5之间存在的相互作用并不依赖于RSA-14-44/mRSA-14-44的激活;同时也不依赖于RSA-14-44/mRSA-14-44中的效应蛋白结合区、高可变区结构;但位于CAAX motif的190位Cysteine对维持二者间的相互作用至关重要。结构预测显示RSA-14-44/mRSA-14-44中的C190位点可能存在棕榈酰化(palmitoylation)修饰。
     另一方面,利用甘油密度梯度离心分离不同的细胞组分,分析其中RSA-14-44/mRSA-14-44和PSMB5的分布。实验结果表明细胞中的PSMB5以前体形式合成,其N-terminal包含propeptide结构,需要经过自剪切加工移除propeptide,转变为成熟形式的PSMB5;二者存在于不同的细胞组分之中,成熟体形式PSMB5与蛋白酶体的另一个非催化亚单位PSMA7共存于沉降系数较大的细胞组分,前体形式的PSMB5主要与RSA-14-44/mRSA-14-44共存于沉降系数较小的细胞组分。
     在上述研究的基础上,我们还进一步探讨了RSA-14-44/ mRSA-14-44对细胞中PSMB5加工过程的影响。分析结果显示,在细胞中共表达RSA-14-44/mRSA-14-44和PSMB5能够相应提高其中前体形式和成熟体形式PSMB5的蛋白质水平,但并不影响前体蛋白的自剪切加工速率。
Spermatogenesis is a complex and continuative progress,during which spermatogenic stem cells differentiated into mature spermatozoa,sequentially undergoing developmental changes including mitosis,meiosis,nucleus condensation and cytoplasm deposition.This progress would be out of control,even fall into serious dysfunction without precisely special and temporal regulation served by sets of mechanisms.As a highly specific pattern of gene expression occurs in spermatogenesis,the identification and study of differentially expressed genes,especially novel genes absent from somatic cells are of great value to delineate the elegant mechanisms regulating spermatogenesis.
     In our previous work,some new genes were identified from rat primary spermatocytes cDNA library constructed by suppressive subtractive hybridization(SSH) between cDNAs of laser capture micro-dissection(LCM) trapped rat primary spermatocytes and round spermatids.RSA-14-44 was one of these new genes.Here we show some primary results from exploring the functions of RSA-14-44 in spermatogenesis.
     First we got some general information on RSA-14-44 from GenBank with a corresponding GeneID number,AY149343.With an open reading frame of 582bp,RSA-14-44 encodes a 193-amino-acid consisted protein,at the N-terminal of which was included a conserved Rho GTPase domain.As RSA-14-44 shared high similarity in amino sequence with other members of RhoA like superfamily in this domain,it was designated to be a new member of this family,which was confirmed by the data from a GTPase activity assay using the purified recombinant GST-RSA-14-44 and GST proteins.
     The expression of RSA-14-44 was exclusive in rat testis and showed a spermatogenesis closely related pattern,which was confirmed by immunohischemial analysis on rat testis sections with specific antibody.Except for spermatogonia,other spermatogeic cell lineages were all the places where RSA-14-44 was expressed.Interestingly,the signal of RSA-14-44 was accumulated in much higher density in pachytene spermatocytes.Meanwhile,a gene, 4930544G11Rik,was identified from mouse by screening the putative homolog of RSA-14-44 in other species,which displayed the same tissue-specificity as RSA-14-44.Due to a high similarity between the sequences of RSA-14-44 and of the protein coded by 4930544G11Rik, 4930544G11Rik was referred as the homolog of RSA-14-44 in mouse with a new name, mRSA-14-44.
     In order to elucidate the roles of RSA-14-44 in spermatogenesis,we had screened the possible interactive proteins from testis previously by using yeast two hybridization(Y2H). Several candidates including PSMB5,which is a catalytic subunit of proteasome,were identified.Here the interaction between RSA-14-44 and PSMB5 was confirmed by a GST-pull down assay.Furthermore,we observed this interaction again when we co-immunoprecipitated PSMB5 and mRSA-14-44 from the cells.Fortunately,RSA-14-44 and PSMB5 showed exactly the same pattern of localization in the various spermatogenetic cells existing in different stages of spermatogenesis,which were isolated from seminiferous tubules in rat testis.And just as showed in the results of immunohischemical analyses of rat testis above,these two proteins were both accumulated mainly in the spermatocytes,round spermatids,elongated spermatids and sperms,and their localizations changed according to the progress of spermatogenesis.
     However,no significant effect of RSA-14-44/mRSA-14-44 on the activity of proteasome was found after the over-expression of RSA-14-44/mRSA-14-44 or co-expression of RSA-14-44/mRSA-14-44 and PSMB5 in cells.For resolving the conflict between the interaction and the result of proteasome activity assays,we had to clarify the detailed information on the interaction between RSA-14-44/mRSA-14-44 and PSMB5 by constructing mutants of RSA-14-44/mRSA-14-44 and PSMB5 respectively.
     It was showed latter that the interaction between RSA-14-44/mRSA-14-44 and PSMB5 was independent of the activation of RSA-14-44/mRSA-14-44 and might not be involved in the structures corresponding to the effectors-binding domain and hypervariable region in RSA-14-44/mRSA-14-44.But the 190th cysteine,a putative site for palmitoylation modification,in the C-terminal of RSA-14-44/mRSA-14-44 was required for this interaction.
     On the other hand,PSMB5 was actually synthesized first as a pro-type in the cells,with a propeptide in its N-terminal.After removing the propeptide by autoclevage,this pro-type protein soon turned into a mature type one,which was assembled into proteasome finally.It was notable that RSA-14-44/mRSA-14-44 was associated with neither the mature type PSMB5 nor the proteasome,but with the pro-type PSMB5,which was showed by a gradient sedimentation analysis.By the way,we found that both protein levels of the pro-type and of the mature type PSMB5 were increased when RSA-14-44/mRSA-14-44 was overexpressed in cells and also confirmed that the propeptide was essential for the incorporation of PSMB5 into proteasomes.
     Since most members of Rho family act as switches for signal transduction through cycling between GTP-binding and GDP-binding configurations,we investigated the possible effect of RSA-14-44/mRSA-14-44 on the signal transduction by screening a cell signal transduction platform.However,except for in CREB,no significant effect of RSA-14-44/ mRSA-14-44 on the transduction was observed in the selected cellular signaling pathways when RSA-14-44/mRSA-14-44 was overexpressed in the corresponding cell models.
引文
1.Dym,M.,Spermatogonial stem cells of the testis.Proc Natl Acad Sci U S A,1994.91(24):p.11287-9.
    2.Shyr,C.R.,et al.,Spermatogenesis and testis development are normal in mice lacking testicular orphan nuclear receptor 2.Mol Cell Biol,2002.22(13):p.4661-6.
    3.Hecht,N.B.and J.D.Penshow,In situ localization of mRNAs coding for mouse testicular structural genes.Exp Cell Res,1987.173(1):p.274-81.
    4.刘辉贤.大鼠精子发生阶段特异表达基因的分离和表达,in 中国协和医科大学博士研究生学位论文.1999.
    5.Bellve,A.,Purification,culture,and fractionation of spermatogenic cells,in Methods in Enzymology.1993:San Diego,Calif.p.84-113.
    6.Emmert-Buck,M.R.,et al.,Laser capture microdissection.Science,1996.274(5289):p.998-1001.
    7.Leblond,C.P.and Y.Clermont,Definition of the stages of the cycle of the seminiferous epithelium in the rat.Ann N Y Acad Sci,1952.55(4):p.548-73.
    8.梁刚,应用激光捕获显微切割技术进行人和大鼠不同阶段生精细胞差异表达基因的研究,in 中国协和医科大学博士研究生学位论文,2000.
    9.Burridge,K.and K.Wennerberg,Rho and Rac take center stage.Cell,2004.116(2):p.167-79.
    10.Walker,K.and M.F.Olson,Targeting Ras and Rho GTPases as opportunities for cancer therapeutics.Curr Opin Genet Dev,2005.15(1):p.62-8.
    11.Raftopoulou,M.and A.Hall,Cell migration:Rho GTPases lead the way.Dev Biol,2004.265(1):p.23-32.
    12.Leung,T.,et al.,Germ cell beta-chimaerin,a new GTPase-activating protein for p21rac,is specifically expressed during the acrosomal assembly stage in rat testis.J Biol Chem,1993.268(6):p.3813-6.
    13.Fujita,A.,et al.,Ropporin,a sperm-specific binding protein of rhophilin,that is localized in the fibrous sheath of sperm flagella.J Cell Sci,2000.113(Pt 1):p.103-12.
    14.Nakamura,K.,et al.,Rhophilin,a small GTPase Rho-binding protein,is abundantly expressed in the mouse testis and localized in the principal piece of the sperm tail.FEBS Lett,1999.445(1):p.9-13.
    15.Lui,W.Y.,W.M.Lee,and C.Y.Cheng,Sertoli-germ cell adherens junction dynamics in the testis are regulated by RhoB GTPase via the ROCK/LIMK signaling pathway.Biol Reprod,2003.68(6):p.2189-206.
    16.Maddox,A.S.and K.Oegema,Closing the GAP:a role for a RhoA GAP in cytokinesis.Mol Cell,2003.11(4):p.846-8.
    17.Kimura,K.,et al.,Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation.J Biol Chem,2000.275(23):p.17233-6.
    18.Cuellar-Mata,P.,et al.,The GTP-binding protein RhoA localizes to the cortical granules of Strongylocentrotus purpuratas sea urchin egg and is secreted during fertilization.Eur J Cell Biol,2000.79(2):p.81-91.
    19.Strausberg,R.L.,et al.,Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.Proc Natl Acad Sci U S A,2002.99(26):p.16899-903.
    20.Kawai,J.,et al.,Functional annotation of a full-length mouse cDNA collection.Nature,2001. 409(6821):p.685-90.
    21.Michaelson,D.,et al.,Differential localization of Rho GTPases in live cells:regulation by hypervariable regions and RhoGDI binding.J Cell Biol,2001.152(1):p.111-26.
    22.袁莉刚,大鼠RSA-14-44基因功能的初步研究,in 甘肃农业大学学位论文.2004.
    23.田永强.精子发生相关基因功能的研究,in 中国协和医科大学博士后研究工作总结报告,2004.
    24.Lin,W.,et al.,Expression and function of the HSD-3.8 gene encoding a testis-specific protein.Mol Hum Reprod,2001.7(9):p.811-8.
    25.Kierszenbaum,A.L.,Mammalian spermatogenesis in vivo and in vitro:a partnership of spermatogenic and somatic cell lineages.Endocr Rev,1994.15(1):p.116-34.
    26.Van Aelst,L.and C.D'Souza-Schorey,Rho GTPases and signaling networks.Genes Dev,1997.11(18):p.2295-322.
    27.Jones,R.,Sperm survival versus degradation in the Mammalian epididymis:a hypothesis.Biol Reprod,2004.71(5):p.1405-11.
    28.Nandi,D.,et al.,Intermediates in the formation of mouse 20S proteasomes:implications for the assembly of precursor beta subunits.Embo J,1997.16(17):p.5363-75.
    29.Arendt,C.S.and M.Hochstrasser,Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly.Embo J,1999.18(13):p.3575-85.
    30.Zwickl,P.,J.Kleinz,and W.Baumeister,Critical elements in proteasome assembly.Nat Struct Bioi,1994.1(11):p.765-70.
    31.Hall,B.E.,D.Bar-Sagi,and N.Nassar,The structural basis for the transition from Ras-GTP to Ras-GDP.Proc Natl Acad Sci U S A,2002.99(19):p.12138-42.
    32.Shimizu,T.,et al.,An open conformation of switch I revealed by the crystal structure of a Mg2+-free form of RHOA complexed with GDP.Implications for the GDP/GTP exchange mechanism.J Biol Chem,2000.275(24):p.18311-7.
    33.Ihara,K.,et al.,Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue.J Biol Chem,1998.273(16):p.9656-66.
    34.Adamson,P.,H.F.Paterson,and A.Hall,Intracellular localization of the P21rho proteins.J Cell Biol,1992.119(3):p.617-27.
    35.Medley,Q.G.,et al.,The trio guanine nucleotide exchange factor is a RhoA target.Binding of RhoA to the trio immunoglobulin-like domain.J Biol Chem,2000.275(46):p.36116-23.
    36.Dvorsky,R.and M.R.Ahmadian,Always look on the bright site of Rho:structural implications for a conserved intermolecular interface.EMBO Rep,2004.5(12):p.1130-6.
    37.Dvorsky,R.,et al.,Structural insights into the interaction of ROCKI with the switch regions of RhoA.J Biol Chem,2004.279(8):p.7098-104.
    38.Oleksy,A.,et al.,The molecular basis of RhoA specificity in the guanine nucleotide exchange factor PDZ-RhoGEF.J Biol Chem,2006.281(43):p.32891-7.
    39.Coilisson,E.A.,et al.,Isoprenylation is necessary for the full invasive potential of RhoA overexpression in human melanoma cells.J Invest Dermatol,2002.119(5):p.1172-6.
    40.Chenette,E.J.,N.Y.Mitin,and C.J.Der,Multiple sequence elements facilitate Chp Rho GTPase subcellular location,membrane association,and transforming activity.Mol Biol Cell,2006.17(7):p.3108-21.
    41.Zhou,F.,et al.,CSS-Palm:palmitoylation site prediction with a clustering and scoring strategy(CSS). Bioinformatics,2006.22(7):p.894-6.
    42.Chen,P.and M.Hochstrasser,Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly.Cell,1996.86(6):p.961-72.
    43.Groll,M.,et al.,Structure of 20S proteasome from yeast at 2.4 A resolution.Nature,1997.386(6624):p.463-71.
    44.de Kretser,D.M.,et al.,The role of activin,follistatin and inhibin in testicular physiology.Mol Cell Endocrinol,2004.225(1-2):p.57-64.
    45.Loveland,K.L.,et al.,Drivers of germ cell maturation.Ann N Y Acad Sci,2005.1061:p.173-82.
    46.Setchell,B.P.,The flow and composition of lymph from the testes of pigs with some observations on the effect of raised venous pressure.Comp Biochem Physiol A,1982.73(2):p.201-5.
    47.O'Donnell,L.,et al.,Estrogen and spermatogenesis.Endocr Rev,2001.22(3):p.289-318.
    48.Ciechanover,A.,The ubiquitin-proteasome pathway:on protein death and cell life.Embo J,1998.17(24):p.7151-60.
    49.Amann,R.P.,Reproductive capacity of dairy bulls.Ⅳ.Spermatogenesis and testicular germ cell degeneration.Am J Anat,1962.110:p.69-78.
    50.Luetjens,C.M.,G.F.Weinbauer,and J.Wistuba,Primate spermatogenesis:new insights into comparative testicular organisation,spermatogenic efficiency and endocrine control Biol Rev Camb Philos Soc,2005.80(3):p.475-88.
    51.Tsujimura,A.,et al.,Molecular cloning of a routine homologue of membrane cofactor protein(CD46):preferential expression in testicular germ cells.Biochem J,1998.330(Pt 1):p.163-8.
    52.Pereira,L.A.,et al.,Characterization and expression of a stage specific antigen by monoclonal antibody TRA 54 in testicular germ cells.Int J Androl,1998.21(1):p.34-40.
    53.Watanabe,D.,et al.,Molecular cloning of a novel Ca(2+)-binding protein(calmegin) specifically expressed during male meiotic germ cell development.J Biol Chem,1994.269(10):p.7744-9.
    54.Uchida,K.,et al.,Cloning and characterization of a complementary deoxyribonucleic acid encoding haploid-specific alanine-rich acidic protein located on chromosome-X.Biol Reprod,2000.63(4):p.993-9.
    55.Hall,A.,G proteins and small GTPases:distant relatives keep in touch.Science,1998.280(5372):p.2074-5.
    56.Hall,A.,Rho GTPases and the actin cytoskeleton.Science,1998.279(5350):p.509-14.
    57.Hail,A.,Signal transduction through small GTPases--a tale of two GAPs.Cell,1992.69(3):p.389-91.
    58.Ridley,A.J.and A.Hall,The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.Cell,1992.70(3):p.389-99.
    59.Hecht,N.B.,Regulation of'haploid expressed genes' in male germ cells.J Reprod Fertil,1990.88(2):p.679-93.
    60.Oliva,R.and G.H.Dixon,Vertebrate protamine genes and the histone-to-protamine replacement reaction.Prog Nucleic Acid Res Mol Biol,1991.40:p.25-94.
    61.Virbasius,J.V.and R.C.Scarpulla,Structure and expression of rodent genes encoding the testis-specific cytochrome c.Differences in gene structure and evolution between somatic and testicular variants.J Biol Chem,1988.263(14):p.6791-6.
    62.Hake,L.E.and N.B.Hecht,Utilization of an alternative transcription initiation site of somatic cytochrome c in the mouse produces a testis-specific cytochrome c mRNA.J Biol Chern,1993.268(7):p.4788-97.
    63.Lui,W.Y.,W.M.Lee,and C.Y.Cheng,Rho GTPases and spermatogenesis.Biochim Biophys Acta,2003.1593(2-3):p.121-9.
    64.Nishimura,Y.and S.Yonemura,Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis.J Cell Sci,2006.119(Pt 1):p.104-14.
    65.Toure,A.,et al.,MgcRacGAP,a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product,is expressed in male germ cells.J Bioi Chem,1998.273(11):p.6019-23.
    66.Hoffman,G.R.,N.Nassar,and R.A.Cerione,Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI.Cell,2000.100(3):p.345-56.
    67.Golemis,E.A.,and Adams,P.D.,Protein-protein interactions.A molecular cloning manual 2nd Edition.2005,New York,938 p.:Cold Spring Harbor Laboratory Press.
    68.Fields,S.and O.Song,A novel genetic system to detect protein-protein interactions.Nature,1989.340(6230):p.245-6.
    69.Bendixen,C.,S.Gangloff,and R.Rothstein,A yeast mating-selection scheme for detection of protein-protein interactions.Nucleic Acids Res,1994.22(9):p.1778-9.
    70.Dechend,R.,et al.,The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators.Oncogene,1999.18(22):p.3316-23.
    71.Putilina,T.,P.Wong,and S.Gentleman,The DHHC domain:a new highly conserved cysteine-rich motif.Mol Cell Biochem,1999.195(1-2):p.219-26.
    72.Fukata,Y.,T.Iwanaga,and M.Fukata,Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells.Methods,2006.40(2):p.177-82.
    73.Chen,M.H.,et al.,Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates.Genes Dev,2004.18(6):p.641-59.
    74.Dietrich,L.E.and C.Ungermann,On the mechanism of protein palmitoylation.EMBO Rep,2004.5(11):p.1053-7.
    75.Clarke,S.,Protein isoprenylation and methylation at carboxyl-terminal cysteine residues.Annu Rev Biochem,1992.61:p.355-86.
    76.Chenette,E.J.,A.Abo,and C.J.Der,Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase.J Biol Chem,2005.280(14):p.13784-92.
    77.Breitbart,H.,S.Rubinstein,and Y.Lax,Regulatory mechanisms in acrosomal exocytosis.Rev Reprod,1997.2(3):p.165-74.
    78.Iida,H.,et al.,Association of the developing acrosome with multiple small Golgi units,the Golgi satellites,in spermatids of the musk shrew,Suncus murinus.J Reprod Fertil,2000.119(1):p.49-58.
    79.Moreno,R.D.,et al.,Vesicular traffic and golgi apparatus dynamics during mammalian spermatogenesis:implications for acrosome architecture.Biol Reprod,2000.63(1):p.89-98.
    80.Orlowski,M.,The multicatalytic proteinase complex,a major extralysosomal proteolytic system.Biochemistry,1990.29(45):p.10289-97.
    81.Rechsteiner,M.,L.Hoffman,and W.Dubiel,The multicatalytic and 26 S proteases.J Biol Chem,1993.268(9):p.6065-8.
    82.Rivett,A.J.,Proteasomes:multicatalytic proteinase complexes.Biochem J,1993.291(Pt 1):p.1-10.
    83.Tanaka,K.,et al.,Direct evidence for nuclear and cytoplasmic colocalization of proteasomes (multiprotease complexes) in liver.J Cell Physiol,1989.139(1):p.34-41.
    84.Liu,Z.,R.Oughtred,and S.S.Wing,Characterization of E3Histone,a novel testis ubiquitin protein ligase which ubiquitinates histories.Mol Cell Biol,2005.25(7):p.2819-31.
    85.Ma,J.,E.Katz,and J.M.Belote,Expression of proteasome subunit isoforms during spermatogenesis in Drosophila melanogaster.Insect Mol Biol,2002.11(6):p.627-39.
    86.Sutovsky,P.,et al.,A putative,ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis.J Cell Sci,2001.114(Pt 9):p.1665-75.
    87.Coux,O.,K.Tanaka,and A.L.Goldberg,Structure and functions of the 20S and 26S proteasomes.Annu Rev Biochem,1996.65:p.801-47.
    88.Clermont,Y.,Kinetics of spermatogenesis in mammals:seminiferous epithelium cycle and spermatogonial renewal.Physiol Rev,1972.52(1):p.198-236.
    89.Hess,R.A.,Quantitative and qualitative characteristics of the stages and transitions in the cycle of the rat seminiferous epithelium:light microscopic observations of perfusion-fixed and plastic-embedded testes.Biol Reprod,1990.43(3):p.525-42.
    90.Eddy,E.M.and D.A.O'Brien,Gene expression during mammalian meiosis.Curr Top Dev Biol,1998.37:p.141-200.
    91.Kleene,K.C.,A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells.Mech Dev,2001.106(1-2):p.3-23.
    92.Boissonneault,G.and Y.F.Lau,A testis-specific gene encoding a nuclear high-mobility-group box protein located in elongating spermatids.Mol Cell Biol,1993.13(7):p.4323-30.
    93.Kohler,A.,et al.,The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release.Mol Cell,2001.7(6):p.1143-52.
    94.Fu,H.,et al.,Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9signalosome.Embo J,2001.20(24):p.7096-107.
    95.Hill,C.P.,E.I.Masters,and F.G.Whitby,The 11S regulators of 20S proteasome activity.Curr Top Microbiol Immunol,2002.268:p.73-89.
    96.Ustrell,V.,et al.,PA200,a nuclear proteasome activator involved in DNA repair.Embo J,2002.21(13):p.3516-25.
    97.Liu,Y.,et al.,Cytoprotective effects of proteasome beta5 subunit overexpression in lens epithelial cells.Mol Vis,2007.13:p.31-8.
    98.Chondrogianni,N.,et al.,Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates.J Biol Chem,2005.280(12):p.11840-50.
    99.Schwarz,K.,et al.,Overexpression of the proteasome subunits LMP2,LMP7,and MECL-1,but not PA28 alpha/beta,enhances the presentation of an immunodominant lymphocytic choriomeningitis virus T cell epitope.J Immunol,2000.165(2):p.768-78.
    100.Schmidt,W.K.,et al.,Endoplasmic reticulum membrane localization of Rcelp and Ste24p,yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage.Proc Natl Acad Sci U S A,1998.95(19):p.11175-80.
    101.Dai,Q.,et al.,Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum.J Biol Chem,1998.273(24):p.15030-4.
    102.Morales,P.,E.S.Diaz,and M.Kong,Proteasome activity and its relationship with protein phosphorylation during capacitation and acrosome reaction in human spermatozoa.Soc Reprod Fertil Suppl,2007.65:p.269-73.
    103.Matsumura,K.and K.Aketa,Proteasome(multicatalytic proteinase) of sea urchin sperm and its possible participation in the acrosome reaction.Mol Reprod Dev,1991.29(2):p.189-99.
    104.Yokota,N.and H.Sawada,Sperm proteasomes are responsible for the acrosome reaction and sperm penetration of the vitelline envelope during fertilization of the sea urchin Pseudocentrotus depressus.Dev Biol,2007.308(1):p.222-31.
    105.Kingsbury,D.J.,T.A.Griffin,and R.A.Colbert,Novel propeptide funetion in 20 S proteasome assembly influences beta subunit composition.J Biol Chem,2000.275(31):p.24156-62.
    106.Shivanandappa,T.,J.W.Margolis,and B.J.Wagner,Conserved N-terminal sequences in homologous subunits of the multicatalytic proteinase complex(proteasome).Curr Eye Res,1991.10(9):p.871-6.
    107.Lilley,K.S.,M.D.Davison,and A.J.Rivett,N-terminal sequence similarities between components of the multicatalytic proteinase complex.FEBS Lett,1990.262(2):p.327-9.
    108.Heinemeyer,W.,et al.,The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing.J Biol Chem,1997.272(40):p.25200-9.
    109.Schmidtke,G.,M.Schmidt,and P.M.Kloetzel,Maturation of mammalian 20 S proteasome:purification and characterization of 13 S and 16 S proteasome precursor complexes.J Mol Biol,1997.268(1):p.95-106.
    110.Li,X.,et al.,beta-Subunit appendages promote 20S proteasome assembly by overcoming an Umpl-dependent checkpoint.Embo J,2007.26(9):p.2339-49.
    111.Tosaka,Y.,et ai.,Identification and characterization of testis specific ornithine decarboxylase antizyme (OAZ-t) gene:expression in haploid germ cells and polyamine-induced frameshifting.Genes Cells,2000.5(4):p.265-76.
    112.B.Gomperts,P.T.,I.Kramer,Signal Transduction.2002,San Diego:Academic Press.
    113.Daniel,P.B.and J.F.Habener,Pituitary adenylate cyclase-activating polypeptide gene expression regulated by a testis-specific promoter in germ cells during spermatogenesis.Endocrinology,2000.141(3):p.1218-27.
    114.Eddy,E.M.and M.D.Griswold,Overview:testicular chromosome structure and gene expression.Ann N Y Acad Sci,2007.1120:p.xi-xv.
    115.Eddy,E.M.,Male germ cell gene expression.Recent Prog Horm Res,2002.57:p.103-28.
    116.Schlecht,U.,et al.,Expression profiling of mammalian male meiosis and gametogenesis identifies novel candidate genes for roles in the regulation of fertility.Mol Biol Cell,2004.15(3):p.1031-43.
    117.Grimes,S.R.,Testis-specific transcriptional control.Gene,2004.343(1):p.11-22.
    118.Monaco,L.,et al.,Specialized rules of gene transcription in male germ cells:the CREM paradigm.Int J Androl,2004.27(6):p.322-7.
    119.Leberer,E.,D.Y.Thomas,and M.Whiteway,Pheromone signalling and polarized morphogenesis in yeast.Curr Opin Genet Dev,1997.7(1):p.59-66.
    120.Hill,C.S.,J.Wynne,and R.Treisman,The Rho family GTPases RhoA,Rac1,and CDC42Hs regulate transcriptional activation by SRF.Cell,1995.81(7):p.1159-70.
    121.Yoshizaki,H.,et al.,Cell type-specific regulation of RhoA activity during cytokinesis.J Biol Chem,2004.279(43):p.44756-62.
    [1] Clermont, Y., R.Oko , and L.Hermo.1993 Cell biology of mammalian spermatogenesis. Oxford University Press, New York. N.Y.
    [2] Marc Symons. Rho GTPase. Molucular Biology Intelligence Unit. 2004 Klunwer Academic/Plenum Publishers.
    [3] Agnel M. ,Roder L, Vola C et al.A Drosophila rotund transcript expressed during spermatogenesis and imaginal disc morphogenesis encodes a protein which is similar to human Rac GTPase-activating (racGAP) proteins. Mol Cell Biol 1992; 12:5111-5122
    [4] Agnel M, Kerridge S, Vola C et al. Two transcripts from the rotund region of Drosophila show similar positional specificities in imaginal disc tissues. Genes Dev 1989; 3:85-95
    [5] Toure A, Dorseuil O, Morin L et al. MgcRacGAP , a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rorundRacGAP gene product, is expressed in male germ cells. J Bio Chem 1998; 273:6019-6023
    [6] Jantsh-Plunger V, Gonczy P, Romano A et al. CYK-4: A Rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Bio 2000;149:1391-1404.
    [7]Hirose K, Kawashima T, Iwamoto I et al. MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody. J Bio Chem 2001, 276:5821-5828
    [8] Takaishi, K., Sasaki, T, Kameyama, T. et al. 1995.Oncogene 11, 39-48.
    [9] Fabian O., Kazuhiro K.,Shingo Y, et al 2005 Ect2 and MgcRacGAP regulate the activation and function ofCdc42 in mitosis. J. Cell Bio, 17, 221-232
    [10] Wei-meng Z., Guowei F. MgcRacGAP controls the assembly of the contractile ring and the initiation of cytokinesis 2005 PNAS 37:13158-13163
    
    [11] Reiko B., Yasuhiro I., Kiyoko F., et al. 2004. J Bio Chem 16,. 16394-16402,
    [12] Minoshima, Y., T. Kawashima, K. Hirose et al. 2003. Phosphorylation by Aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell. 4:549-560
    [13] Nathalie N.Aminata T, Jianfeng L., et al. 2003 Biochem. J. 372, 105-112
    [14] Aminata T, Laurence M., Charles P., et al. 2001 Tat 1, a Novel Sulfate Transporter Specifically Expressed in Human Male Germ Cells and Potentially Linked to RhoGTPase Signaling. J Bio Chem 23,. 20309-20315,
    [15] Koichi H., Toshiyuki K., Itsuo I., et al. 2001. MgcRacGAP Is Involved in Cytokinesis through Associating withMitotic Spindle and Midbody J Bio Chem 8,. 5821-5828
    [16] Aminata T., Olivier D., Laurence M., et al. 1998. MgcRacGAP, A New Human GTPase-activating Protein for Rac and Cdc42 Similar to Drosophila rorundRacGAP Gene Product, Is Expressed in Male Germ Cells J Bio Chem 11:6019-6023
    [17] C. YAN C. DOLORES D. M. .2002 Cell Junction Dynamics in the Testis: Sertoli-Germ Cell Interactions and Male Contraceptive Development. Physiol Rev 82: 825-874
    [18] Toshiyuki K., Koichi H., Takaya S.,et al. 2000 MgcRacGAP IN MATOPOIETIC CELL GROWTH BLOOD, 96,:2116-2124
    [19] Pierre C. 2003. GTPase Regulation: Getting aRnd Rock and Rho Inhibition Current Biology. 13: 702-704
    1.Coux,O.,K.Tanaka,and A.L.Goldberg,Structure and functions of the 20S and 26S proteasomes.Annu Rev Biochem,1996.65:p.801-47.
    2.Hilt,W.and D.H.Wolf,Proteasomes:destruction as a programme.Trends Biochem Sci,1996.21(3):p.96-102.
    3.Varshavsky,A.,The ubiquitin system.Trends Biochem Sci,1997.22(10):p.383-7.
    4.Goldberg,A.L.,et al.,Functions of the proteasome in antigen presentation.Cold Spring Harb Syrup Quant Biol,1995.60:p.479-90.
    5.Heemels,M.T.and H.Ploegh,Generation,translocation,and presentation of MHC class I-restrictedpeptides.Annu Rev Biochem,1995.64:p.463-91.
    6.Amir,R.,A.Ciechanover,and S.Cohen,[The ubiquitin-proteasome system:the relationship between protein degradation andhuman diseases].Harefuah,2001.140(12):p.1172-6,1229.
    7.Nandi,D.,et al.,The ubiquitin-proteasome system.J Biosci,2006.31(1):p.137-55.
    8.Baurneister,W.,et al.,The proteasome:paradigm of a self-compartmentalizing protease.Cell,1998.92(3):p.367-80.
    9.Ciechanover,A.,et al.,Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes.J Biol Chem,1980.255(16):p.7525-8.
    10.Hershko,A.,A.Ciechanover,and I.A.Rose,Resolution of the ATP-dependentproteolytic system from reticulocytes:a component that interacts with ATP.Proc Natl Acad Sci U S A,1979.76(7):p.3107-10.
    11.Goldberg,A.L.,et al.,Protein degradation by the proteasome and dissection of its in vivo importance with synthetic inhibitors.Mol Biol Rep,1997.24(1-2):p.69-75.
    12.Etlinger,J.D.and A.L.Goldberg,A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes.Proc Natl Acad Sci U S A,1977.74(1):p.54-8.
    13.Hough,R.,G.Pratt,and M.Rechsteiner,Purification of two high molecular weight proteases from rabbit reticulocyte lysate.J Biol Chem,1987.262(17):p.8303-13.
    14.Pickart,C.M.and R.E.Cohen,Proteasomes and their kin:proteases in the machine age.Nat Rev Mol Cell Biol,2004.5(3):p.177-87.
    15.Finley,D.,A.Ciechanover,and A.Varshavsky,Thermolability ofubiquitin-activating enzyme from the mammalian cell cycle mutant ts85.Cell,1984.37(1):p.43-55.
    16.Bachmair,A.,D.Finley,and A.Varshavsky,In vivo half-life of a protein is a function of its amino-terminal residue.Science,1986.234(4773):p.179-86.
    17.Bachmair,A.and A.Varshavsky,The degradation signal in a short-lived protein.Cell,1989.56(6):p.1019-32.
    18.Jentsch,S.,J.P.McGrath,and A.Varshavsky,The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme.Nature,1987.329(6135):p.131-4.
    19.Finley,D.,E.Ozkaynak,and A.Varshavsky,The yeast polyubiquitin gene is essential for resistance to high temperatures,starvation,and other stresses.Cell,1987.48(6):p.1035-46.
    20.Goebl,M.G.,et al.,The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme.Science,1988.241(4871):p.1331-5.
    21.Finley,D.,B.Bartel,and A.Varshavsky,The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis.Nature,1989.338(6214):p.394-401.
    22.Bartel,B.,I.Wunning,and A.Varshavsky,The recognition component of the N-end rule pathway.Embo J,1990.9(10):p.3179-89.
    23.Chau,V.,et al.,A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein.Science,1989.243(4898):p.1576-83.
    24.Glotzer,M.,A.W.Murray,and M.W.Kirschner,Cyclin is degraded by the ubiquitin pathway.Nature,1991.349(6305):p.132-8.
    25.Varshavsky,A.,Regulated protein degradation.Trends Biochem Sci,2005.30(6):p.283-6.
    26.Brown,M.S.,et al.,Regulated intramembrane proteolysis:a control mechanism conserved from bacteria to humans.Cell,2000.100(4):p.391-8.
    27.Ciechanover,A.,The ubiquitin-proteasome pathway:on protein death and cell life.Embo J,1998.17(24):p.7151-60.
    28.Pickart,C.M.,Mechanisms underlying ubiquitination.Annu Rev Biochem,2001.70:p.503-33.
    29.Pickart,C.M.,Back to the future with ubiquitin.Cell,2004.116(2):p.181-90.
    30.Weissman,A.M.,Themes and variations on ubiquitylation.Nat Rev Mol Cell Biol,2001.2(3):p.169-78.
    31.Kim,J.H.,et al.,Deubiquitinating enzymes as cellular regulators.J Biochem,2003.134(1):p.9-18.
    32.Berndt,C.,et al.,Ubiquitin system:JAMMing in the name of the lid.Curr Biol,2002.12(23):p.R815-7.
    33.Verma,R.,et al.,Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome.Science,2002.298(5593):p.611-5.
    34.Yao,T.and R.E.Cohen,A cryptic protease couples deubiquitination and degradation by the proteasome.Nature,2002.419(6905):p.403-7.
    35.Chin,D.T.,L.Kuehl,and M.Rechsteiner,Conjugation of ubiquitin to denatured hemoglobin is proportional to the rate of hemoglobin degradation in HeLa cells.Proc Natl Acad Sci U S A,1982.79(19):p.5857-61.
    36.Hershko,A.,et al.,ATP-dependent degradation of ubiquitin-protein conjugates.Proc Natl Acad Sci USA,1984.81(6):p.1619-23.
    37.Hough,R.and M.Rechsteiner,Ubiquitin-lysozyme conjugates.Purification and susceptibility to proteolysis.J Biol Chem,1986.261(5):p.2391-9.
    38.Gregory,R.C.,T.Taniguchi,and A.D.D'Andrea,Regulation of the Fanconi anemia pathway by monoubiquitination.Semin Cancer Biol,2003.13(1):p.77-82.
    39.Hicke,L.and R.Dunn,Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins.Annu Rev Cell Dev Biol,2003.19:p.141-72.
    40.Deng,L.,et al.,Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain.Cell,2000.103(2):p.351-61.
    41.Kovalenko,A.,et al.,The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination.Nature,2003.424(6950):p.801-5.
    42.Trompouki,E.,et al.,CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members.Nature,2003.424(6950):p.793-6.
    43.Wang,L.,et al.,Inorganic polyphosphate stimulates mammalian TOR,a kinase involved in the proliferation of mammary cancer cells.Proc Natl Acad Sci U S A,2003.100(20):p.11249-54.
    44.Spence,J.,et al.,Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain.Cell,2000.102(1):p.67-76.
    45.Hofmann,R.M.and C.M.Pickart,Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair.Cell,1999.96(5):p.645-53.
    46.Spence,J.,et al.,A ubiquitin mutant with specific defects in DNA repair and multiubiquitination.Mol Cell Biol,1995.15(3):p.1265-73.
    47.Tanaka,K.,et al.,Proteasomes and antigen processing.Adv Immunol,1997.64:p.1-38.
    48.Groll,M.,et al.,Structure of 20S proteasome from yeast at 2.4 A resolution.Nature,1997.386(6624):p.463-71.
    49.Unno,M.,et al.,The structure of the mammalian 20S proteasome at 2.75 A resolution.Structure,2002.10(5):p.609-18.
    50.Lowe,J.,et al.,Crystal structure of the 20S proteasome from the archaeon T.acidophilum at 3.4 A resolution.Science,1995.268(5210):p.533-9.
    51.Bochtler,M.,et al.,Crystal structure of heat shock locus V(HslV) from Escherichia coli.Proc Natl Acad Sci U S A,1997.94(12):p.6070-4.
    52.Wang,J.,J.A.Hartling,and J.M.Flanagan,The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis.Cell,1997.91(4):p.447-56.
    53.Cardozo,C.,et al.,A 3,4-dichloroisocoumarin-resistant component of the multicatalytic proteinase complex.Biochemistry,1992.31(32):p.7373-80.
    54.Dick,T.P.,et al.,Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants.J Biol Chem,1998.273(40):p.25637-46.
    55.Nussbaum,A.K.,et al.,Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1.Proc Natl Acad Sci U S A,1998.95(21):p.12504-9.
    56.Kisselev,A.F.,et al.,The caspase-like sites of proteasomes,their substrate specificity,new inhibitors and substrates,and allosteric interactions with the trypsin-like sites.J Biol Chem,2003.278(38):p.35869-77.
    57.Orlowski,M.,C.Cardozo,and C.Michaud,Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex.Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids.Biochemistry,1993.32(6):p.1563-72.
    58.Tanaka,K.and M.Kasahara,The MHC class Ⅰ ligand-generating system:roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28.Immunol Rev,1998.163:p.161-76.
    59.Groettrup,M.,et al.,Peptide antigen production by the proteasome:complexity provides efficiency.Immunol Today,1996.17(9):p.429-35.
    60.Nandi,D.,et al.,Intermediates in the formation of mouse 20S proteasomes:implications for the assembly of precursor beta subunits.Embo J,1997.16(17):p.5363-75.
    61.White,L.C.,et al.,Regulation of LMP2 and TAP1 genes by IRF-1 explains the paucity of CD8+ T cells in IRF-1-/- mice.Immunity,1996.5(4):p.365-76.
    62.Chatterjee-Kishore,M.,et al.,Different requirements for signal transducer and activator of transcription lalpha and interferon regulatory factor 1 in the regulation of low molecular mass polypeptide 2 and transporter associated with antigen processing 1 gene expression.J Biol Chem,1998.273(26):p.16177-83.
    63.Namiki,S.,et al.,IRF-1 mediates upregulation of LMP7 by IFN-gamma and concerted expression of immunosubunits of the proteasome.FEBS Lett,2005.579(13):p.2781-7.
    64.Dahlmann,B.,et al.,Different proteasome subtypes in a single tissue exhibit different enzymatic properties.J Mol Biol,2000.3D3(5):p.643-53.
    65.Van Kaer,L.,et al.,Altered peptidase and viral-specific T cell response in LMP2 mutant mice.Immunity,1994.1(7):p.533-41.
    66.Fehling,H.J.,et al.,MHC class Ⅰ expression in mice lacking the proteasome subunit LMP-7.Science,1994.265(5176):p.1234-7.
    67.Glickman,M.H.,et al.,The regulatory particle of the Saccharomyces cerevisiae proteasome.Mol Cell Biol,1998.15(6):p.3149-62.
    68.Hoffman,L.and M.Rechsteiner,Activation of the multicatalytic protease.The 11 S regulator and 20 S ATPase complexes contain distinct 30-kilodalton subunits.J Biol Chem,1994.269(24):p.16890-5.
    69.DeMartino,G.N.,et al.,PA700,an ATP-dependent activator of the 20 S proteasome,is an ATPase containing multiple members of a nucleotide-binding protein family.J Biol Chem,1994.269(33):p.20878-84.
    70.Tanaka,K.and C.Tsurumi,The 26S proteasome:subunits and functions.Mol Biol Rep,1997.24(1-2):p.3-11.
    71.Deveraux,Q.,et al.,A 26 Sprotease subunit that binds ubiquitin conjugates.J Biol Chem,1994.269(10):p.7059-61.
    72.Hershko,A.and A.Ciechanover,The ubiquitin system.Annu Rev Biochem,1998.67:p.425-79.
    73.Realini,C.,et al.,Molecular cloning and expression of a gamma-interferon-inducible activator of the multicatalytic protease.J Biol Chem,1994.269(32):p.20727-32.
    74.Ma,C.P.,et al.,PA28,an activator of the 20 S proteasome,is inactivated by proteolytic modification at its carboxyl terminus.J Biol Chem,1993.265(30):p.22514-9.
    75.Akiyama,K.,et al.,cDNA cloning of a new putative ATPase subunit p45 of the human 26S proteasome,a homolog of yeast transcriptional factor Suglp.FEBS Lett,1995.363(1-2):p.151-6.
    76.Nikaido,T.,et al.,Cloning and nucleotide sequence of cDNA for Ki antigen,a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus.Ciin Exp Immunol,1990.79(2):p.209-14.
    77.Leggett,D.S.,et al.,Multiple associated proteins regulate proteasome structure and function.Mol Cell,2002.10(3):p.495-507.
    78.Schauber,C.,et al.,Rad23 links DNA repair to the ubiquitin/proteasome pathway.Nature,1998.391(6668):p.715-8.
    79.Xie,Y.and A.Varshavsky,Physical association of ubiquitin ligases and the 26S proteasome.Proc Natl Acad Sci U S A,2000.97(6):p.2497-502.
    80.Tongaonkar,P.,et al.,Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome.Mol Cell Biol,2000.2D(13):p.4691-8.
    81.Lain,Y.A.,et al.,Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome.Nature,1997.385(6618):p.737-40.
    82.Papa,F.R.,A.Y.Amerik,and M.Hochstrasser,Interaction of the Doa4 deubiquitinating enzyme with theyeast 26S proteasome.Mol Biol Cell,1999.10(3):p.741-56.
    83.Jager,S.,et al.,Cicl,an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4.Embo J,2001.20(16):p.4423-31.
    84.Kaiser,P.,et al.,Cyclin-dependent kinase and Cks/Sucl interact with the proteasome in yeast to control proteolysis of M-phase targets.Genes Dev,1999.13(9):p.1190-202.
    85.Yashiroda,H.,et al.,Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes.Nat Struct Mol Biol,2008.15(3):p.228-36.
    86.Li,X.,et al.,beta-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint.Embo J,2007.26(9):p.2339-49.
    87.Kusmierczyk,A.R.,et al.,A multimeric assembly factor controls the formation of alternative 20S proteasomes.Nat Struct Mol Biol,2008.15(3):p.237-44.
    88.Le Tallec,B.,et al.,20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals.Mol Cell,2007.27(4):p.660-74.
    89.Ramos,P.C.,et al.,Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes.J Biol Chem,2004.279(14):p.14323-30.
    90.Marques,A.J.,et al.,The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation.J Biol Chem,2007.282(48):p.34869-76.
    91.Frentzel,S.,et al.,20 S proteasomes are assembled via distinct precursor complexes.Processing of LMP2 and LMP7 proproteins takes place in 13-16 S preproteasome complexes.J Mol Biol,1994.236(4):p.975-81.
    92.De,M.,et al.,Beta 2 subunit propeptides influence cooperative proteasome assembly.J Biol Chem,2003.278(8):p.6153-9.
    93.Enenkel,C.,A.Lehmarm,and P.M.Kloetzel,Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast.Embo J,1998.17(21):p.6144-54.
    94.Wilkinson,C.R.,et al.,Localization of the 26S proteasome during mitosis and meiosis in fission yeast.Embo J,1998.17(22):p.6465-76.
    95.Rivett,A.J.,A.Palmer,and E.Knecht,Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells.J Histochem Cytochem,1992.40(8):p.1165-72.
    96.Palmer,A.,et al.,Subpopulations of proteasomes in rat liver nuclei,microsomes and cytosol.Biochem J,1996.316(Pt 2):p.401-7.
    97.Brooks,P.,et al.,Subcellular localization of proteasomes and their regulatory complexes in mammalian cells.Biochem J,2000.346 Pt 1:p.155-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700