黄东海微小型浮游动物群落结构与分布及水母发生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鞭毛虫和纤毛虫在海洋微食物环和经典食物链间的能量流动中起着重要的枢纽作用,但其在水母暴发过程中的作用仍然不明。本研究基于2011年春季以及夏季黄东海973专项航次,通过荧光染色技术和定量蛋白银法(QPS)研究了水母频发区—黄海和东海海域12个断面、68个站位(26°30–37°00N,120°30–125°30E)的鞭毛虫和纤毛虫的群落结构和时空分布特点,并对其与水母的发生关系进行了初步探讨。
     研究显示,春、夏季的微型鞭毛虫丰度均以近岸水域为最高,向外海递减;高值区皆集中在长江口以及南黄海近岸区域,推测长江巨量径流所携带的大量丰富的有机物质能够直接或间接为鞭毛虫提供食物和营养物质,导致鞭毛虫的丰度较高。夏季随着长江冲淡水影响范围的扩大,其高值区扩展至长江口L断面离岸区域。垂直分布上,春季鞭毛虫的丰度高值区分布在表层及温跃层底部附近,夏季鞭毛虫丰度及生物量的高值区集中在表层。夏季总微型鞭毛虫的丰度(779±866cells/ml)和生物量(20.26±20.53g C/L)较春季(604±405cells/ml,19.98±17.68g C/L)略高,夏季异养微型鞭毛虫所占比例增大,显示水体的异养程度加大。
     在检获并鉴定的51种纤毛虫中,无壳类有19属35种,砂壳类12属16种。两季节均以无壳纤毛虫占绝对优势,约达总丰度的95%,贡献总生物量的90%。纤毛虫丰度的水平分布与鞭毛虫正相反,以近岸水域较低,高值区多位于中陆架和外陆架海区;水体表层及10m水层分布的纤毛虫达总丰度的80%。统计分析表明,纤毛虫的分布与盐度呈显著负相关,与温度呈显著正相关,其群落分布与水团的划分较为吻合,且春夏群落结构变动明显,推测黄东海不同季节水团影响而引起的温度、盐度以及叶绿素a分布格局的变化是影响黄东海纤毛虫分布的重要因素。夏季整体表层纤毛虫丰度和生物量(4812±5953cells/L、16.90±29.90gC/L)较春季(4258±4151cells/L、12.43±24.36g C/L)略高,但各断面变化不一致,水母未出现断面其纤毛虫丰度整体呈增加趋势,其增幅高达100%-200%,个别断面如断面I其纤毛虫丰度甚至增加一个数量级。而水母出现的断面纤毛虫丰度整体呈下降趋势,其中E、G、PN断面的纤毛虫数量明显降低,夏季较春季分别减少约61%、65%、23%,仅个别断面略有增加,如段面C、L,但其增幅明显较水母未出现断面小。由此推测纤毛虫数量变化可能与水母的发生有直接关系,水母发生的断面由于水母的捕食等压力导致纤毛虫丰度较春季明显降低,纤毛虫数量的减少导致对鞭毛虫的摄食压力降低,鞭毛虫数量增加。而未监测到水母的断面的纤毛虫生存压力较小,从而有机会快速繁殖达到较高的丰度值。由此可见,水母作为浮游生态系统的顶级捕食者,可通过营养级联效应对微小型浮游动物群落产生影响。
     本研究突破传统的Uterm hl氏沉淀-倒置显微镜镜检法,采用定量蛋白银法对纤毛虫群落结构以及多样性进行研究。与已有的浮游纤毛虫研究相比,本研究检获的纤毛虫丰度明显高于以往相同海域的调查,以长江口邻近海域的调查数据为例,本研究结果较前人报道的结果高5倍左右。本研究显示,春季、夏季nano级纤毛虫对于丰度的贡献比例可分别高达39%和57%,可见小个体纤毛虫对于微小型浮游动物的贡献不可忽视。但传统的倒置显微镜镜检法由于分辨率低,可能遗漏对nano级纤毛虫的检获,而定量蛋白银染色技术分辨率相对较高,对个体较小的纤毛虫不易漏检,并可对纤毛虫进行较为细致的分类鉴定工作,从而给出更为丰富的群落结构信息。
Nanoflagellates and ciliates, the key intermediates between the ‘microbial’ andthe ‘classical’ pathway, play an important role in nutrient and carbon cycling inpelagic systems. However, their role during jellyfish bloom remains unexplored. Weinvestigated the changes of the community structure and distribution of planktonicnanoflagellates and ciliates based on samples collected from the12transects in theYellow Sea and East China Sea in April and August of2011. The nanoflagellates andciliates were studied using DAPI epifluorescence microscopy and the quantitativeprotargol stain, respectively. The potential relationship between the nano-andmicrozooplankton and the jellyfish (Rhopilema esculentum Kishinouye) occurrence insummer was discussed.
     Our study showed that the abundance of nanoflagellates was high in the coastalarea and decreased towards the offshore area. The high abundance was likelyattributed to the distribution of high value of nutrients in this area, which wasinfluenced by Changjiang River diluted water, and was extended to the offshore areaalong the transect L with the extension of the influences of the Changjiang Riverdiluted water in summer. Vertically, nanoflagellates were mainly distributed in thesurface and near the bottom layers of water. Compared with those in spring (604±405cells/ml,19.98±17.68g C/L), the total abundance and biomass of nanoflagellatesslightly increased in summer (779±866cells/ml,20.26±20.53g C/L), with thecontribution of heterotrophic nanoflagellates increased from28%in spring to37%insummer.
     Among the51ciliate taxa identified,35taxa of aloricate ciliates belonging to19genera contributed to95%of total ciliate abundance, and tintinnids (12genera,16taxa) contributed to the rest. Different from that of nanoflagellates, the abundance ofciliates increased from the inshore to offshore area. Vertically, ciliates in the surfacelayer contributed up to80%of the total abundance and abruptly decreased below the30m depth. Statistical analyses showed that the species number was significantlypositively correlated with temperature and negatively with salinity and water depth.The distribution of ciliate community was consistent with the water mass, with anobvious change from spring to summer. We indicate that the change in the pattern oftemperature, salinity and Chl a affected by different water mass in spring and summerwas the major factors resulting in the distribution of ciliates in the Yellow Sea and East China Sea. Compared to those in spring (4258±4151cells/L and12.43±24.36gC/L), the overall ciliate abundance and biomass (4812±5953cells/L and16.90±29.90
     g C/L) slightly increased in summer. The ciliate abundance at transects where therewas no jellyfish observed increased by about100%-200%from spring to summer,while certain transects such as transect I got a sharp increase by10times in ciliateabundance. By contrast, at transects where jellyfish occurred there was a tendency ofciliate decrease in abundance, and consequently resulted in the increase ofnanoflagellates. Our study indicates that jellyfish as top predators may cause directand indirect changes to nano-and microzooplankton through cascading effects. Theobvious decrease of ciliates at the transects E、G and PN was likely attributed to thepredation pressure from increasing jellyfish.
     In addition, the quantitative protargol stain (QPS) method yielded a highertaxonomic resolution and higher abundance for ciliates than the traditional Uterm hlmethod. For example, the ciliate abundance detected from the Changjiang Riverestuary was almost5times higher than previously reported. We indicated that thetraditional Uterm hl method would underestimate the abundance of small ciliates,especially the nano-ciliates which contributed to about39%and57%of the totalciliate abundance in spring and summer, respectively. The QPS method could providemore details about species-abundance information via taxa identification andclassification with much higher taxonomic resolution.
引文
程家骅,李圣法,丁峰元,严利平.东黄海大型水母暴发现象及其可能成因浅析.现代渔业信息,2004.19(5):10-12.
    丁峰元,严利平,李圣法,程家骅.水母暴发的主要影响因素.海洋科学,2006.30(9):79-83.
    黄凌风,郭丰,黄邦钦,肖天.初夏黄海中部和北部海洋鞭毛虫的分布特征及其影响因素.海洋学报,2003.25(2):82-87
    江红,程和琴,徐海根, Sanchez, F. A., Le Quesne, W.大型水母爆发对东海生态系统中上层能量平衡的影响.海洋环境科学,2010.29(1):91-95.
    李惠玉,李建生,丁峰元,程家骅.东海区沙海蜇和浮游动物的分布特征.生态学杂志,2007.26(12):1974-1980.
    李伟,王玉衡,汪嘉宁,魏皓.2011年春夏季黄、东海水团与水文结构分布特征.海洋与湖沼,2012.43(3).
    米铁柱,姚庆祯,孟佳,张晓琳,刘淑民,于志刚.2011年春、夏季黄海、东海营养盐分布特征研究.海洋与湖沼,2012.43(3).
    潘科,黄凌风,郭丰,黄邦钦.夏季黄海、东海鞭毛虫的丰度与悬浮颗粒物的关系.海洋学报,2006.27(6):107-115.
    彭永章,张健,孙满昌.张网渔具霞水母兼捕减少装置的初步研究.海洋渔业,2007.29(1):1-7.
    宋微波, A.沃伦,胡晓钟.中国黄渤海的自由生纤毛虫.北京:科学出版社,2009.171-351
    孙晓霞,任琳琳,郑珊,文斐,赵永芳,孙松.2011年春夏季黄、东海浮游植物粒级结构.海洋与湖沼,2012,43(3).
    王彬,董婧,刘春洋,轶平,李培军.夏初辽东湾海蜇放流区大型水母和主要浮游动物.渔业科学进展,2010.31(5):83-90
    吴颖,李惠玉,李圣法,程家骅.大型水母的研究现状及展望.海洋渔业,2008.30(1):80-87.
    熊瑛,王云龙,汤建华,刘培廷,仲霞铭,吴磊,高银生.黄海南部大型水母暴发区中小型浮游动物生态特征.生态学杂志,2009.28(10):2063-2068.
    张芳.黄东海胶质浮游动物水母类研究.中国科学院研究生院(海洋研究所),2008.
    张芳,孙松,李超伦.海洋水母类生态学研究进展.自然科学进展2009.19(2):121-130.
    张翠霞.我国海区浮游纤毛虫的生态学研究.中国科学院研究生院(海洋研究所),2011.
    张翠霞,张武昌,赵楠,肖天秋冬季东海陆架区浮游纤毛虫的生态分布特点.海洋学报,2011.33(1):127-137.
    张武昌,肖天,王荣.海洋微型浮游动物的丰度和生物量.生态学报,2001.21(11):1893-1908.
    周名江,朱明远.我国近海有害赤潮发生的生态学、海洋学机制及预测防治.研究进展.地球科学进展,2006.21(7):673-679.
    朱建荣,肖成献,沈焕庭,朱首贤.黄海冷水团对长江冲淡水扩展的影响.1998.29(4):389-394.
    Azam, F., Fenchel, T., Field, J., Gray, J., Meyer-Reil, L., Thingstad, F. The ecologicalrole of water-column microbes in the sea. Marine Ecology Progress Series1983.10:257-263.
    Bax, N., Carlton, J., Mathews-Amos, A., Haedrich, R., Howarth, F., Purcell, J., Rieser,A., Gray, A. The control of biological invasions in the world's oceans.Conservation Biology2001.15:1234-1246.
    Bloem, J., B r-Gilissen, M. J. B., Cappenberg, T. E. Fixation, counting, andmanipulation of heterotrophic nanoflagellates. Applied and EnvironmentalMicrobiology1986.52:1266-1272.
    Borsheim, K. Y., Bratbak, G. Cell-volume to cell carbon conversion factors for abacterivorous monas sp enriched from seawater. Marine Ecology Progress Series1987.36:171-175.
    Bottjer, D., Morales, C. E. Nanoplanktonic assemblages in the upwelling area offconcepcion (~36°s), central chile: Abundance, biomass, and grazing potentialduring the annual cycle. Progress in Oceanography2007.75:415-434.
    Botsford, L. W., Castilla, J. C., Peterson, C. H. The management of fisheries and marineecosystems. Science1997.277:509-515.
    Brodeur, R. D., Sugisaki, H., Hunt Jr, G. L. Increases in jellyfish biomass in the beringsea: Implications for the ecosystem. Marine Ecology Progress Series2002.233:89-103.
    Caron, D. A. Technique for enumeration of heterotrophic and phototrophicnanoplankton, using epifluorescence microscopy, and comparison with otherprocedures. Applied and Environmental Microbiology1983.46:491-498.
    Chiang, K. P., Lin, C. Y., Lee, C. H., Shiah, F. K., Chang, J. The coupling of oligotrichciliate populations and hydrography in the east china sea: Spatial and temporalvariations. Deep Sea Research II: Topical Studies in Oceanography2003.50:1279-1293.
    Compte, J., Gascon, S., Quintana, X. D., Boix, D. Top-predator effects of jellyfishodessia maeotica in mediterranean salt marshes. Marine Ecology Progress Series2010.402:147-159.
    Condon, R. H., Steinberg, D. K., Del Giorgio, P. A., Bouvier, T. C., Bronk, D. A.,Graham, W. M., Ducklow, H. W. Jellyfish blooms result in a major microbialrespiratory sink of carbon in marine systems. Proceedings of the NationalAcademy of Sciences of the United States of America2011.108:10225-10230.
    Corliss, J. O. The Ciliated Protozoa: Characterization, Classification and Guide to theLiterature. Pergamon Press, Oxford1979.
    Davis, P., Mcn, J. S. Differentiation of phototrophic and heterotrophic nanoplanktonpopulations in marine waters by epifluorescence microscopy. Annales Institutocéanographique.1982.58:249-260.
    Diaz, R. J., Rosenberg, R. Spreading dead zones and consequences for marineecosystems. Science2008.321:926-929.
    Dong, Z. J., Liu, D. Y., Keesing, J. K. Jellyfish blooms in china: dominant species,causes and consequences. Marine Pollution Bulletin2010.60:954-963.
    Fang, G., Wang, K., Guo, F., Wei, Z., Fan, W., Zhang, D., Bi, J. Long term change andinterrelations of annual variations of the hydrographical and meteorologicalparameters of the Bohai Sea during recent30years. Oceanologia et LimnologiaSinica2002.33:515–525(in Chinese).
    Fenchel, T. Ecology of heterotrophic microflagellates. I. Some important forms andtheir functional morphology. Marine Ecology Progress Series. Oldendorf1982.8:211-223.
    Fenchel, T. The microbial loop-25years later. Journal of Experimental Marine Biologyand Ecology2008.366:99-103.
    Finenko, G., Anninsky, B., Romanova, Z., Abolmasova, G., Kideys, A. Chemicalcomposition, respiration and feeding rates of the new alien ctenophore, beroeovata, in the black sea. Hydrobiologia2001.451:177-186.
    Froneman, P., Pakhomov, E., Perissinotto, R., Mcquaid, C. Role of microplankton in thediet and daily ration of antarctic zooplankton species during austral summer.Marine ecology progress series. Oldendorf1996.143:15-23.
    Graham, W. M., Pages, F., Hamner, W. M. A physical context for gelatinouszooplankton aggregations: A review. Hydrobiologia2001.451:199-212.
    Granda, A. P., Anadón álvarez, R. The annual cycle of nanoflagellates in the centralcantabrian sea (bay of biscay). Journal of Marine Systems2008.72:298-308.
    Greve, W. The1989german bight invasion of muggiaea atlantica. ICES Journal ofMarine Science: Journal du Conseil1994.51:355-358.
    Hansson, L. J., Moeslund, O., Kiorboe, T., Riisgard, H. U. Clearance rates of jellyfishand their potential predation impact on zooplankton and fish larvae in a neriticecosystem (limfjorden, denmark). Marine Ecology Progress Series2005.304:117-131.
    Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., Zohary, T. Biovolumecalculation for pelagic and benthic microalgae. Journal of Phycology1999.35:403-424.
    Jerome, C. A., Montagnes, D. J. S., Taylor, F. J. R. The effect of the quantitativeprotargol stain and lugols and bouins fixatives on cell-size-a more accurateestimate of ciliate species biomass. Journal of Eukaryotic Microbiology1993.40:254-259.
    J rgensen, B. B., Richardson, K. Eutrophication in coastal marine ecosystems.American Geophysical Union,1996.
    Kamiyama, T., Tsujino, M. Seasonal variation in the species composition of tintinnidcilates in hiroshima bay, the seto inland sea of japan. Journal of PlanktonResearch1996.18:2313.
    Kamiyama, T. Planktonic ciliates as a food source for the scyphozoan aurelia aurita(s.L.): Feeding activity and assimilation of the polyp stage. Journal ofExperimental Marine Biology and Ecology. pp.2011.207-215.
    Karayanni, H., Christaki, U., Van Wambeke, F., Dalby, A. P. Evaluation of doubleformalin--lugol's fixation in assessing number and biomass of ciliates: Anexample of estimations at mesoscale in ne atlantic. Journal of MicrobiologicalMethods2004.56:349-358.
    Kato, S., Taniguchi, A. Tintinnid ciliates as indicator species of different water massesin the western north pacific polar front. Fisheries Oceanography1993.2:166-174.
    Kawahara, M., Uye, S., Ohtsu, K., Iizumi, H. Unusual population explosion of the giantjellyfish nemopilema nomurai (scyphozoa: Rhizostomeae) in east asian waters.Marine Ecology Progress Series2006.307:161-173.
    Kideys, A. E., Kovalev, A. V., Shulman, G., Gordina, A., Bingel, F. A review ofzooplankton investigations of the black sea over the last decade. Journal ofMarine Systems2000.24:355-371.
    Kofoid, C. A., Campbell, A. S. A conspectus of the marine and fresh-water ciliatabelonging to the suborder tintinnoinea: With descriptions of new speciesprincipally from the agassiz expedition to the eastern tropical pacific1904-1905.University of California press,1929.
    Kofoid, C. A., Campbell, A. S. Reports on the Scientific Results of the Expedition to theEastern Tropical Pacific in Charge of Alexander Agassiz, by the U.S. FishCommission Steamer “Albatross”, from October1904to March1905, Lieut.Commander L.N. Garrett, U.S.N., Commanding. XXXVII. The Ciliata: TheTintinnoinea. Bulletin of Museum of Comparative Zoology,1939.84:1—473
    Larson, R. J. Trophic ecology of planktonic gelatinous predators in saanich inlet,british-columbia-diets and prey selection. Journal of Plankton Research1987.9:811-820.
    Lin, C., Ning, X., Su, J., Lin, Y., Xu, B. Environmental changes and the responses of theecosystems of the yellow sea during1976–2000. Journal of Marine Systems2005.55:223-234.
    Manganelli, M., Malfatti, F., Samo, T. J., Mitchell, B. G., Wang, H., Azam, F. Major roleof microbes in carbon fluxes during austral winter in the southern drake passage.Plos One2009.4.
    Mariottini, G. L., Giacco, E., Pane, L. The mauve stinger pelagia noctiluca (forssk l,1775). Distribution, ecology, toxicity and epidemiology of stings. Marine DDugs2008.6:496-513.
    Mills, C. E. Jellyfish blooms: Are populations increasing globally in response tochanging ocean conditions? Hydrobiologia2001.451:55-68.
    Moller, L. F., Riisgard, H. U. Population dynamics, growth and predation impact of thecommon jellyfish aurelia aurita and two hydromedusae, sarsia tubulosa, andaequorea vitrina in limfjorden (denmark). Marine Ecology Progress Series2007.346:153-165.
    Montagnes, D., Lynn, D. A quantitative protargol stain (QPS) for ciliates: Methoddescription and test of its quantitative nature. Marine Microbial Food Webs1987.2:83-93.
    Mutlu, E. Distribution and abundance of ctenophores and their zooplankton food in theblack sea. Ii. Mnemiopsis leidyi. Marine Biology1999.135:603-613.
    Nagai, T. Recovery of fish stocks in the seto inland sea. Marine Pollution Bulletin2003.47:126-131.
    Oguz, T., Velikova, V. Abrupt transition of the northwestern black sea shelf ecosystemfrom a eutrophic to an alternative pristine state. Marine Ecology Progress Series2010.405:231-242.
    Ota, T., Taniguchi, A. Standing crop of planktonic ciliates in the east china sea and theirpotential grazing impact and contribution to nutrient regeneration. Deep SeaResearch II: Topical Studies in Oceanography2003.50:423-442.
    Painting, S., Moloney, C., Probyn, T., Tibbles, B. Microheterotrophic pathways in thesouthern benguela upwelling system. South African Journal of Marine Science1992.12:527-543.
    Parsons, T., Lalli, C. Jellyfish population explosions: Revisiting a hypothesis of possiblecauses. Lamer2002.40:111-121.
    Patterson, D. J., Larsen, J. The biology of free-living heterotrophic flagellates. OxfordUniversity Press, USA,1991.
    Patterson, D. J., Nygaard, K., Steinberg, G., Turley, C. M. Heterotrophic flagellates andother protists associated with oceanic detritus throughout the water column inthe mid north atlantic. Journal of the Marine Biological Association of theUnited Kingdom1993.73:67-95.
    Pierce, R. W., Turner, J. T. Global biogeography of marine tintinnids. Marine EcologyProgress Series1993.94:11-11.
    Pitt, K. A., Welsh, D. T., Condon, R. H. Influence of jellyfish blooms on carbon,nitrogen and phosphorus cycling and plankton production. Hydrobiologia2009.616:133-149.
    Pitta, P., Giannakourou, A. Planktonic ciliates in the oligotrophic eastern mediterranean:Vertical, spatial distribution and mixotrophy. Marine Ecology-Progress Series2000.194:269-282.
    Pomroy, A. Direct counting of bacteria preserved with lugol iodine solution. Appliedand Environmental Microbiology1984.47:1191-1192.
    Purcell, J. E., Uye, S., Lo, W. T. Anthropogenic causes of jellyfish blooms and theirdirect consequences for humans: A review. Marine Ecology Progress Series2007.350:153-174.
    Revelante, N., Gilmartin, M. Microzooplankton distribution in the northern adriatic seawith emphasis on the relative abundance of ciliated protozoans. OceanologicaActa1983.6:407-415.
    Richardson, A. J., Bakun, A., Hays, G. C., Gibbons, M. J. The jellyfish joyride: Causes,consequences and management responses to a more gelatinous future. Trends inEcology&Evolution2009.24:312-322.
    Riisgard, H. U. Filter feeding and plankton dynamics in a danish fjord: A review of theimportance of flow, mixing and density-driven circulation. Journal ofEnvironmental Management1998.53:195-207.
    Riisgard, H. U., Madsen, C. V. Clearance rates of ephyrae and small medusae of thecommon jellyfish aurelia aurita offered different types of prey. Journal of SeaResearch2011.65:51-57.
    Safi, K. A., Hall, J. A. Factors influencing autotrophic and heterotrophic nanoflagellateabundance in five water masses surrounding new zealand. New Zealand Journalof Marine and Freshwater Research1997.31:51-60.
    Sanders, R., Caron, D., Berninger, U. G. Relationships between bacteria andheterotrophic nanoplankton in marine and fresh waters: An inter-ecosystemcomparison. Marine Ecology Progress Series1992.86:1-14.
    Sanders, R. W. Tintinnids and other microzooplankton-seasonal distributions andrelationships to resources and hydrography in a maine estuary. Journal ofPlankton Research1987.9:65.
    Santoferrara, L., Alder, V. Abundance trends and ecology of planktonic ciliates of thesouth-western atlantic (35–63°s): A comparison between neritic and oceanicenvironments. Journal of Plankton Research2009.31:837-851.
    Secord, D. Biological control of marine invasive species: Cautionary tales andland-based lessons. Biological Invasions2003.5:117-131.
    Sherr, B. F., Sherr, E. B. Enumeration of heterotrophic microprotozoa byepifluorescence microscopy. Estuarine, Coastal and Shelf Science1983.16:1-7.
    Sherr, E. B., Caron, D. A., Sherr, B. F. Staining of heterotrophic protists forvisualization via epifluorescence microscopy. Handbook of methods in aquaticmicrobial ecology. Lewis Publishers, Boca Raton1993.213-227.
    Sherr, E. B., Sherr, B. F. Significance of predation by protists in aquatic microbial foodwebs. Antonie Van Leeuwenhoek International Journal of General andMolecular Microbiology2002.81:293-308.
    Shiganova, T. A., Bulgakova, Y. V. Effects of gelatinous plankton on black sea and seaof azov fish and their food resources. ICES Journal of Marine Science: Journaldu Conseil2000.57:641-648.
    Skibbe, O. An improved quantitative protargol stain for ciliates and other planktonicprotists. Archiv Fur Hydrobiologie1994.130:339-347.
    Smith, A. S., Alexander, J. E. Potential effects of the freshwater jellyfish craspedacustasowerbii on zooplankton community abundance. Journal of Plankton Research2008.30:1323-1327.
    Sommer, U., Stibor, H., Katechakis, A., Sommer, F., Hansen, T. Pelagic food webconfigurations at different levels of nutrient richness and their implications forthe ratio fish production: Primary production. Hydrobiologia2002.484:11-20.
    Sorokin, Y. I., Kogelschatz, J. E. Analysis of heterotrophic microplankton in anupwelling area. Hydrobiologia1979.66:195-208.
    State Oceanic Administration (SOA). China Marine Statistical Yearbook,1993,1996,1999,2000,2001,2002,2003,2004,2005,2006and2007. The State OceanicAdministration (in Chinese).2008.
    Stibor, H., Tokle, N. Feeding and asexual reproduction of the jellyfish sarsia gemmiferain response to resource enrichment. Oecologia2003.135:202-208.
    Sun, J., Liu, D. Geometric models for calculating cell biovolume and surface area forphytoplankton. Journal of Plankton Research2003.25:1331-1346.
    Sun, X. X., Wang, S. W., Sun, S. Introduction to the china jellyfish project-the keyprocesses, mechanism and ecological consequences of jellyfish bloom in chinacoastal waters. Chinese Journal of Oceanology and Limnology2011.29:491-492.
    Tang, D. L., Di, B. P., Wei, G., Ni, I. H., Oh, I. S., Wang, S. F. Spatial, seasonal andspecies variations of harmful algal blooms in the south yellow sea and east chinasea. Hydrobiologia2006.568:245-253.
    Tang, X., Wang, F., Chen, Y., Li, M. Warming trend in northern east china sea in recentfour decades. Chinese Journal of Oceanology and Limnology2009.27:185-191.
    Uterm hl, H. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitt.int. Ver. theor. angew. Limnol.1958.9:1-38.
    Uye, S., Ueta, Y. Recent increase of jellyfish populations and their nuisance to fisheriesin the inland sea of japan. Bulletin of the Japanese Society of FisheriesOceanography2004.68:9-19.
    Uye, S. Human forcing of the copepod-fish-jellyfish triangular trophic relationship.Hydrobiologia2011.666:71-83.
    Yang, E. J., Choi, J. K., Hyun, J. H. Distribution and structure of heterotrophic protistcommunities in the northeast equatorial pacific ocean. Marine Biology2004.146:1-15.
    Yang, E. J., Choi, J. K., Hyun, J. H. Seasonal variation in the community and sizestructure of nano-and microzooplankton in gyeonggi bay, yellow sea. Estuarine,Coastal and Shelf Science2008.77:320-330.
    Zhang, W., Wang, R. Summertime ciliate and copepod nauplii distributions andmicro-zooplankton herbivorous activity in the laizhou bay, bohai sea, china.Estuarine, Coastal and Shelf Science2000.51:103-114.
    Zhang, W. C., Xu, K. D., Wan, R. J., Zhang, G. T., Meng, T. X., Xiao, T., Wang, R., Sun,S., Choi, J. K. Spatial distribution of ciliates, copepod nauplii and eggs,engraulis japonicus post-larvae and microzooplankton herbivorous activity in theyellow sea, china. Aquatic Microbial Ecology2002.27:249-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700