脑缺血预处理对沙土鼠脑缺血再灌注后HSP22表达的影响及其神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     缺血性卒中以其高发病率、高致残率和高死亡率严重危害着人类健康。缺血性脑损伤的病理生理机制极为复杂,其涉及的许多相关基因和蛋白的改变及其复杂的联系尚未研究清楚。脑缺血预处理(BIP)是指对大脑预先进行一次或多次短暂的非致死性缺血刺激后,机体获得对致死性脑缺血的耐受性。BIP的本质是通过激发内源性神经保护机制,促进新的蛋白质合成,从而阻止或减弱脑缺血引起的缺血性级联反应。HSP22是一个哺乳动物小热休克蛋白(sHSPs)家族新成员,在所有肌肉相关组织和脑组织表达,它具有分子伴侣样活性、调节细胞凋亡等作用。本研究采用沙土鼠前脑缺血再灌注模型以及应用BIP进行干预。一方面观察BIP对缺血脑组织超微结构、神经细胞凋亡、HSP22mRNA及蛋白表达以及凋亡相关因子Bcl-2、BaxmRNA及蛋白表达和活化caspases-3蛋白表达变化的影响;另一方面观察BIP对缺血脑组织MAP2、GFAPmRNA及蛋白表达变化的影响,以及通过免疫荧光共聚焦显微镜和免疫金双重标记电镜观察HSP22与MAP2是否在神经元共定位和HSP22与GFAP是否在星形胶质细胞共定位。进一步探讨BIP对沙土鼠脑缺血再灌注后HSP22表达的影响及其神经保护作用。
     方法
     1、实验动物模型的制备及分组取健康雄性沙土鼠120只,随机分成正常对照组、假手术组、缺血再灌注(I/R)组和预缺血(IPC)组,I/R组和IPC组又随机分为1d、3d和7d亚组。对照组和假手术组各18只;I/R组和IPC组1d、7d亚组各12只,3d亚组各18只。通过夹闭双侧颈总动脉10分钟的方法建立沙土鼠前脑缺血再灌注模型。IPC组沙土鼠在夹闭双侧颈总动脉10分钟前2天给予间断一天的2次2分钟缺血。
     2、透射电镜观察BIP对神经组织超微结构的改变。
     3、TUNEL染色方法检测BIP对脑组织神经细胞凋亡的影响。
     4、免疫荧光共聚焦方法观察BIP后HSP22分别与神经元细胞骨架蛋白MAP2和星形胶质细胞骨架蛋白GFAP共定位的情况。
     5、电镜免疫金双重标记方法观察BIP后HSP22分别与神经元细胞骨架蛋白MAP2和星形胶质细胞骨架蛋白GFAP共定位的情况。
     6、RT-PCR方法检测BIP对脑组织中HSP22、Bcl-2、Bax、MAP2、GFAP基因的mRNA表达的影响。
     7、Western blot方法检测BIP对脑组织中HSP22、Bcl-2、Bax、caspase-3、MAP2、GFAP蛋白表达的影响。
     结果
     1、沙土鼠前脑皮层神经细胞超微结构的变化
     正常对照组和假手术组前脑皮层神经细胞超微结构正常。I/R组3d亚组可观察到细胞核膜模糊,胞质内线粒体多有嵴减少,外膜局部破坏,粗面内质网轻度扩张。IPC组3d亚组也可观察到上述损伤的神经细胞,但超微结构的损伤明显减轻。
     2、沙土鼠前脑皮层TUNEL染色结果
     正常对照组和假手术组沙土鼠前脑皮层几乎未见TUNEL染色阳性细胞。I/R组1d亚组凋亡细胞数较少,3d、7d亚组凋亡细胞数明显增多,且随时间延长,凋亡细胞数逐渐增多。IPC组在1d、3d、7d亚组凋亡细胞数分别较脑缺血再灌注组明显减少(P<0.05)。
     3、沙土鼠前脑皮层免疫荧光共聚焦结果
     HSP22的红色免疫荧光及MAP2的绿色免疫荧光在神经元细胞浆和树突内发生了明显的重叠。HSP22的红色免疫荧光及GFAP的绿色免疫荧光在星形胶质细胞的胞体和突起发生了明显的重叠。
     4、沙土鼠前脑皮层电镜免疫金双重标记观察结果
     HSP22免疫金颗粒(10nm)与MAP2免疫金颗粒(15nm)在神经元细胞浆和树突内发生了明显的重叠。HSP22免疫金颗粒(10nm)与GFAP免疫金颗粒(15nm)在星形胶质细胞的细胞浆和突起内发生了明显的重叠。
     5、HSP22基因的mRNA和蛋白表达结果
     预缺血组第3d脑组织HSP22mRNA表达与缺血再灌注组比较显著增加(p<0.05)。预缺血组第1d、3d、7d脑组织HSP22蛋白表达与缺血再灌注组比较显著增加(p<0.05)。
     6、Bcl-2、Bax基因的mRNA和蛋白表达结果
     预缺血组第3d脑组织Bcl-2mRNA表达与缺血再灌注组比较显著增加(p<0.05),预缺血组第1d、3d、7d脑组织Bcl-2蛋白表达与缺血再灌注组比较显著增加(p<0.05);缺血再灌注组第3d脑组织BaxmRNA表达与预缺血组比较显著增加(p<0.05),缺血再灌注组第1d、3d、7d脑组织Bax蛋白表达与预缺血组比较显著增加(p<0.05);预缺血组第3d脑组织BaxmRNA表达与正常对照组比较差异无显著性(p>0.05),预缺血组第1d、3d、7d脑组织Bax蛋白表达与正常对照组比较差异无显著性(p>0.05)。
     7、活化caspase-3蛋白表达结果
     预缺血组第1d、3d、7d脑组织活化caspase-3蛋白表达与缺血再灌注组比较显著降低(p<0.05)。
     8、MAP2基因的mRNA和蛋白表达结果
     预缺血组第3d脑组织MAP2mRNA表达与缺血再灌注组比较显著增加(p<0.05),预缺血组第1d、3d、7d脑组织MAP2蛋白表达与缺血再灌注组比较显著增加(p<0.05)。
     9、GFAP基因的mRNA和蛋白表达结果
     预缺血组第3d脑组织GFAPmRNA表达与缺血再灌注组比较显著降低(p<0.05);预缺血组第1d、3d、7d脑组织GFAP蛋白表达与缺血再灌注组比较显著降低(p<0.05)。
     结论
     1、BIP能够明显地减轻沙土鼠缺血再灌注后前脑皮层神经细胞超微结构的损伤,减少缺血再灌注后前脑皮层神经细胞凋亡,增加脑缺血再灌注后前脑组织抗凋亡因子Bcl-2mRNA和蛋白的表达,降低活化caspase-3蛋白的表达,而促凋亡因子BaxmRNA和蛋白的表达则没有显著变化。
     2、BIP能够明显地增加沙土鼠脑缺血再灌注后前脑组织HSP22mRNA和蛋白的表达。
     3、BIP能够明显地增加沙土鼠脑缺血再灌注后前脑组织神经元骨架蛋白MAP2mRNA和蛋白的表达;HSP22和MAP2共定位于沙土鼠前脑皮层神经元细胞浆和树突。
     4、BIP能够明显地降低沙土鼠脑缺血再灌注后前脑组织星形胶质细胞骨架蛋白GFAPmRNA和蛋白的表达;HSP22和GFAP共定位于沙土鼠前脑皮层星形胶质细胞的细胞浆和突起。
Objective
     Ischemic stroke severely harm the health of human being because of its higher morbidity,crippling rate,and mortality.The pathophysiologic mechanisms of cerebral ischemia damage are very complicated.It is still unclear that the mechanisms involve changes of many interrelated genes and proteins and their complicated association. Brain ischemic preconditioning(BIP) refers to that the brain is produced marked tolerance to lately lethal ischemia after one or multiple times sublethal ischemia.The essence of BIP is to promote synthesis of new proteins by arousing the mechanism of endogenous neuroprotection and prevent or attenuate ischemic cascade response which is produced by cerebral ischemia.HSP22 is a new member of mammal small heat shock proteins(sHSPs) family.HSP22 is expressed predominatly in muscle and brain tissues.It possesses molecular chaperone activity,modulators of apoptosis,and so on.In our experiments,we set up a gerbil model of bilateral carotid artery occlusion(BCAO) and intervene it by BIP in two days before BCAO.In one hand,we observe the nerve tissue ultrastructural change,the change of brain tissue nerve cell apoptosis,and the change of HSP22,Bcl-2,Bax gene mRNA and protein expression and active caspases-3 protein expression in gerbil model of bilateral carotid artery occlusion after BIR In the other hand,we observe the change of MAP2,GFAP gene mRNA and protein expression,the co-localization between HSP22 and MAP2 of cellular skeleton in neurons,and the co-localization between HSP22 and GFAP of cellular skeleton in astrocytes in gerbil model of bilateral carotid artery occlusion after BIP by confocal Immunofluorographs and immunogold double-labeling of electron microscopy.We further research the effect of expression of HSP22 and neuroprotection of brain ischemic preconditioning after cerebral ischemia/reperfusion in gerbils
     Methods
     1.Experimental animal model preparation and grouping.120 healthy male gerbils were divided into control group,sham operation group,ischemia/reperfution (I/R) group,and ischemic preconditioning(IPC) group randomly.In I/R group and IPC group there were three subgroup-1d subgroup,3d subgroup and 7d subgroup-according to the time after I/R.In control group and sham operation group there were 18 gerbils;In I/R group and IPC group there were 12 gerbils in 1d subgroup and 7d subgroup,and 18 gerbils in 3d subgroup.Gerbil models of bilateral carotid artery occlusion(BCAO) were established by occluding both carotid arteries for 10 min.Double 2-minute periods of preconditioning ischemia,which were induced with a 1-day interval,were induced in two days before gerbils models of BCAO in IPC group.
     2.Observe the effect of BIP on the nerve tissue ultrastructural change by transmission electron microscopy.
     3.Detect the effect of BIP on the brain tissue nerve cellular apoptosis by TUNEL staining.
     4.Observe the co-localization between HSP22 and MAP2 of cytoskeleton in neurons,and the co-localization between HSP22 and GFAP of cytoskeleton in astrocytes after BIP by confocal Immunofluorographs.
     5.Observe the co-localization between HSP22 and MAP2 of cytoskeleton in neurons,and the co-localization between HSP22 and GFAP of cytoskeleton in astrocytes after BIP by immunogold double-labeling of electron microscopy.
     6.Detect the effect of BIP on the brain tissue HSP22,Bcl-2,Bax,MAP2,GFAP gene mRNA expression by RT-PCR method.
     7.Detect the effect of BIP on the brain tissue HSP22,Bcl-2,Bax,caspase-3, MAP2,GFAP protein expression by Western blot method.
     Results
     1.The nerve tissue ultrastructural change of gerbil forebrain cortex
     In control group and sham operation group,the nerve cell was complete in gerbil forebrain cortex.In 3d subgroup of I/R group,cell nucleus vague of membrane,fewer crest and external membrane rupture of mitochondria and mild extension of rough endoplasmic reticulum were observed under transmission electron microscopy.In ischemic preconditioning group,the above-mentioned ultrastructural impairment of nerve cell was much lower than that of I/R group.
     2.TUNEL stain of gerbil forebrain cortex
     In control group and sham operation group,TUNEL-positive cells almost were not seen in gerbil forebrain cortex.In 1d subgroup of I/R group,there was several TUNEL-positive cells.In 3d and 7d subgroup of I/R group,there were many apoptotic cells.With the prolong of time,the number of apoptotic cells was increased. In 1d,3d and 7d subgroup of IPC group,TUNEL-positive cells were much less than that of I/R group in gerbil forebrain cortex(p<0.05).
     3.Confocal Immunofluorographs
     In perikaryon and dendrite of all cortical neurons,an extensive overlap of HSP22 immunoreactivity(red) and MAP2 immunoreactivity(green) were were observed under confocal Immunofluorographs microscopy.In all cortical astrocytes,an extensive overlap of HSP22 immunoreactivity(red) and GFAP immunoreactivity (green) were observed under confocal immunofluorographs microscopy.
     4.Immunogold labeling
     In perikaryon and dendrite of all cortical neurons,an extensive overlap of the immunogold granules of HSP22(10nm) and the immunogold granules of MAP2(15nm) were observed under electron microscopy.In cytoplasm and prominency of all cortical astrocytes,an extensive overlap of the immunogold granules of HSP22(10nm) and the immunogold granules of GFAP(15nm) were observed under electron microscopy.
     5.The expression of HSP22 gene mRNA and protein
     In 3d subgroup of IPC group,HSP22mRNA expression was much higher than that of I/R group in gerbil forebrain cortex(p<0.05).In 1d,3d,7d subgroup of IPC group,HSP22 protein expression was much higher than that of I/R group in gerbil forebrain cortex(p<0.05).
     6.The expression of Bcl-2、Bax gene mRNA and protein
     In 3d subgroup of IPC group,Bcl-2mRNA expression was much higher than that of I/R group in gerbil forebrain cortex(p<0.05).In 1d,3d,7d subgroup of IPC group, the expression of Bcl-2 protein was much higher than that of I/R group in gerbil forebrain cortex(p<0.05).In 3d subgroup of I/R group,Bax mRNA expression was much higher than that of IPC group in gerbil forebrain cortex(p<0.05).In 1d,3d,7d subgroup of I/R group,the expression of Bax protein was much higher than that of IPC group in gerbil forebrain cortex(p<0.05).There was no distinct difference in gerbil forebrain cortex Bax mRNA expression between IPC group and contral group in 3d subgroup(p>0.05).There was no distinct difference in gerbil forebrain cortex Bax protein expression between IPC group and contral group in 1d,3d,7d subgroup (p<0.05).
     7.The expression of active caspase-3 protein
     In 1d,3d,7d subgroup of IPC group,the expression of active caspase-3 protein was much lower than that of I/R group in gerbil forebrain cortex(p<0.05).
     8.The expression of MAP2 gene mRNA and protein
     In 3d subgroup of IPC group,MAP2mRNA expression was much higher than that of I/R group in gerbil forebrain cortex(p<0.05).In 1d,3d,7d subgroup of IPC group,MAP2 protein expression was much higher than that of I/R group in gerbil forebrain cortex(p<0.05).
     9.The expression of GFAP gene mRNA and protein
     In 3d subgroup of IPC group,GFAPmRNA expression was much lower than that of I/R group in gerbil forebrain cortex(p<0.05).In 1d,3d,7d subgroup of IPC group, GFAP protein expression was much lower than that of I/R group in gerbil forebrain cortex(p<0.05).
     Conclusions
     1.BIP can significantly ease the damage of nerve cells ultrastructural organization and decrease the nerve cell apoptosis of gerbil forebrain cortex after I/R. it can obviously increase the mRNA of anti-apoptosis factor Bcl-2 and protein expression and decrease active caspase-3 protein expression.However,there was no distinct difference in gerbil forebrain cortex the mRNA of pro-apoptosis factor Bax and protein expression.
     2.BIP can significantly increase the mRNA of HSP22 and protein expression of gerbil forebrain cortex after I/R.
     3.BIP can significantly increase the mRNA of nerve cytoskeleton protein MAP2 and protein expression of gerbil forebrain cortex after I/R;HSP22 and MAP2 are co-located in perikaryon and dendrite of gerbil forebrain cortical neurons
     4.BIP can significantly decrease the mRNA of astrocyte cytoskeleton protein GFAP and protein expression;HSP22 and GFAP are co-located in cytoplasm and prominency of gerbil forebrain cortical astrocytes.
引文
1. Kitagawa K, Matsumoto M, Tagaya M, et al. Ischemic tolerance phenomenon found in the brain [J]. Brain Res, 1990, 528: 21-24.
    2. ChaoranWu, Hideyoshi Fujihara, Jian Zhao, etal. Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Storke, 2003,34: 1803-1808.
    3. Shimizu S, Nagayama T, Jin KI, et al. Bcl-2 antisense treatment prevents induction of tolerance to focal ischemia in the rat brain[J]. JCereb Blood Flow Metab, 2001, 21: 233-243.
    4. Mattson M, Culsmee C, Yu Z, et al. Roles of nuclear factor kB in neuronal survival and plasticity [J]. JNeuronchem, 2000, 74: 443-456.
    5. Qi S, Zhan RZ, Wu C, et al. Sublethal cerebral ischemia inhibits caspase-3 activation induced by subsequent prolonged ischemia in the C57Black/Crj6 strain mouse. Neurosci Lett, 2001, 315 (30): 133-136.
    6. Currie RW, Ellison JA, White RF, et al. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res, 2000, 863 (1-2) : 169-181.
    7. Chen J, Craham Sh, Zhu RL, et al. Stress proteins and tolerance to focal cerebral ischemia [J]. J Cereb Bloob Flow Metab, 1996,16: 566-577.
    8. Morimoto RI. Cells in stress-, transcriptional activation of heat shock genes. Science, 1993, 259: 1409-1410.
    9. TanakaS, Kitagawa K, Ohtsuki, et al. Synergistic induction of HSP40 and HSP70 in the mouse hippocampal neurons after cerebral ischemia and ischemic tolerance in gerbil hippocampus. J Neurosci Res, 2002 Jan 1,67 (1): 37-47.
    10. Benndorf R., Sun X., Gilmont R. R.et al. HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27(3DHSP27). J. Biol. Chem. 2001,276:26753-26761.
    11. Yu Y. X., Heller A., Liehr T., et al. Expression analysis andchromosome location of a novel gene (H11) associated with the growth of human melanoma cells. Int. J. Oncol, 2001,18: 905-911.
    12. Verschuure P, Tatard C, Boelens W. C, et al. Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur. J. Cell Biol. 2003, 82: 523-530.
    13. Irobi J, Van Impe K, Seeman P, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat. Genet. 2004, 36: 597-601.
    14. Gober D, Smith C. C, Ueda K, et al. Forced expression of the H11 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J. Biol. Chem. 2003, 278:37600-37609.
    15. Depre C, Tomlinson J. E, Kudej R.K, et al. Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc. Natl. Acad. Sci. U.S.A. 2001, 98: 9336 -9341.
    16. Smith CC, Yu YX, Kulka M, et al. A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem 2000,275: 25690-25699.
    17. Gober MD, Wales SQ, Aurelian L. Herpes simplex virus type 2 encodes a heat shock proteins homologue with apoptosis regulatory function. Frontiers Bioscienses 2005,10: 2788-2803.
    18. Reimer KA, Ideker RE, Jennings RB. Effect of coronary occlusion site on ischemic bed size and collateral blood flow in dog [J]. Cardiovasc Res, 1981, 15(11): 668-673.
    19. Murry CE, JenningsRB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium [J]. Circulation, 1986, 74(5): 1124-1136.
    20. Depre C, Wang L, Sui X, et al. H11 Kinase prevents myocardial infarction by pre-emptive preconditioning of the heart. Circ Res, 2006, 98: 280-288.
    21. Simon R, Henshall D, Stoehr S, et al. Endogenous mechanisms of neuroprotection. Epilepsia, 2007, 48 Suppl 8: 72-73.
    22. Kirino T, Tsujita Y, Tamura A. Induced tolerance to ischemia in gerbil hippocampal neurons. J Cereb Blood Flow Metab 1991, 11:299-307.
    23. Liu Y, Kato H, Nakata N,et al. Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res. 1992, 586: 121-124.
    24. Nishi S, Taki W, Uemura Y, et al. Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res. 1993, 615: 281-288.
    25. Wu C, Zhan RZ, Qi S, et al. A forebrain ischemic preconditioning model established in C57Black/Crj6 mice. J Neurosci Methods. 2001,107:101-106.
    26. Chen T, Kato H, Liu XH, et al. Ischemic tolerance can be induced repeatedly in the gerbil hippocampal neurons. Neurosci Lett. 1994,177:159-161.
    27. Fontaine JM, Sun X, Benndorf R, et al. Interactions of HSP22 (HSPB8) with HSP20, aB-crystallin, and HSPB3. Biochem Biophys Res Commun. 2005 Nov 25, 337(3): 1006-11.
    28. Kelly KJ, Baird NR, Greene AL. Induction of stress response proteins and experimental renal ischemia/reperfusion. Kidney Int. 2001 May, 59(5): 1798-1802
    29. Cory S, Adams JM. The Bcl-2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002,2: 647-656.
    30. Kuwana T, Mackey MR, Perkins G, et al. Bad, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. 2002,11: 331-342.
    31. McDonnell TJ, Beham A, Sarkiss M, et al. Importance of the Bcl-2 family in cell death regulation. Experientia. 1996, 52: 1008-1017.
    32. Yang Z, Zha J, Jockel J, et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995, 80: 285-291.
    33 Wellington CL, Hayden MR. Caspases and neurodegenertion: on the cutting edge of new therapeutic approaches. Clin Genet, 2000, 57:1-10.
    34. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci, 2001,26:61-66.
    35. Hickey E, Brandon SE, Potter R, et al. Sequence and organization of genes encoding the human 27 kDa heat shock protein. Nucleic Acids Res. 1986,14:4127-4145.
    36. Charpentier AH, Bednarek AK, Daniel RL, et al. Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res. 2000, 60: 5977-5983.
    37. Kappe G, Verschuure P, Philipsen RL, et al. Characterization of two novel human small heat shock proteins: protein kinase-related HspB8 and testis-specific HspB9. Biochim Biophys Acta. 2001,1520:1-6.
    38. Rogalla T, Ehmsperger M, Preville X, et al. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem. 1999, 274:18947-18956.
    39. Wyttenbach A, Sauvageot O, Carmichael J, et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet. 2002, 11:1137-1151.
    40. Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol. 2000, 2: 645-652.
    41. Pandey P, Farber R, Nakazawa A, et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene. 2000,19: 1975-1981.
    42 Garrido C, Bruey JM, Fromentin A, et al. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 1999 Nov;13(14): 2061-2070.
    43 Paul C, Manero F, Gonin S, et al. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol. 2002 Feb, 22(3): 816-834.
    44. Irobi J, Van Impe K, Seeman P, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet. 2004, 36: 597-601.
    45. Sun X, Fontaine JM, Rest JS, et al. Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem. 2004, 279: 2394-2402.
    46. Murashov AK, Ul H, I, Hill C, et al. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury. Brain Res Mol Brain Res. 2001,93: 199-208.
    47. Depre C, Hase M, Gaussin V, et al. H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res, 2002, 91: 1007-1014.
    48. Lin RC, Matesic DF. Immunohistochemical demonstration of neuron-specific enolase and microtubule-associated protein 2 in reactive astrocytes after injury in the adult forebrain. Neuroscience. 1994, May, 60(1): 11-16.
    49. Macrae TH. Microtubule organization by cross-linking and bundling propeins. Biochim Biophys Acta 1992, 1160(2): 145-155.
    50. Wei Jiang, Wei Gang Gu, Thomas Brannstrom. et al. Cortical Neurogenesis in Adult Rats After Transient Middle Cerebral Artery Occlusion. Stroke, 2000(32): 1201-1208.
    51. Yi Li, Ning Jiang, Cecylia Powers, et al. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rat. Stroke, 1998,29(9): 1972-1981.
    52. Chowdary TW, Raman B, Ramakrishna T, et al. Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity, Biochem. J. 2004 Jun 15, 381(Pt2): 379-387.
    53. Marini I, Moschini R, Del Corso A, et al. Alpha-crystallin: an ATP-independent complete molecularchaperone toward sorbitol dehydrogenase. Cell Mol Life Sci. 2005 Mar, 62(5): 599-605.
    54. Hase M, Depre C, Vatner SF, et al. H11 has dosedependent and dual hypertrophic and proapoptotic functions in cardiac myocytes. Biochem J. 2005,388: 475-483.
    55. Huber G, Matus A. Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain. J. Neurosci, 1984,4: 151-160.
    56. Schoenfeld T.A., Obar R.A., Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int. Rev. Cytol, 1994,151: 67-137.
    57. Doering L.C. Probing modifications of the neuronal cytoskeleton. Mol. Neurobiol, 1993, 7: 265-291.
    58. Matsunaga W, Miyata S, Hashimoto Y, et al. Microtubule-associated protein-2 in the hypothalamo-neurohypophysial system: low-molecular-weight microtubule-associated protein-2 in pituitary astrocytes. Neuroscience, 1999, 88:1289-1297.
    59. Bernhardt R., Matus A. Initial phase of dendrite growth: evidence for the involvement of high molecular weight microtubule-associated proteins (HMWP) before the appearance of tubulin. J.Cell Biol, 1982,92: 589-593.
    60. Shafit-Zagardo B, Kalcheva N, Dickson D, et al. Distribution and subcellular localization of high-molecular-weight microtubule-associated protein-2 expressing exon 8 in brain and spinal cord. J. Neurochem 1997,68: 862-873.
    61. Meichsner M, Doll T, Reddy D, et al. The low molecular weight form of microtubule-associated protein 2 is transported into both axons and dendrites. Neuroscience 1993, 54: 873-880.
    62. Walter E, Kaufmann, Shawn M, et al. Dendritic Cytoskeletal Protein Expression in Mental Retardation: An Immunohistochemical Study of the Neocortex in Rett Syndrome. Cerebral Cortex, 2000,10(10): 992-1004.
    63 Hnatakeyama T, Matsumoto M, Brengman JM. et al. Immunohistochemical investigation of ischemic and postischemic damage after bilateral carotid occlusion in gerbils[J]. Stroke, 1988, 19(12): 1526-1534.
    64. Pettigrew LC, Hohz ML, Craddock SP, et al. Microtubular proteolysis in focal cerebral ischernia[J]. JCereb Blood Flow Metab, 1996, 16(6): 1189-1202
    65 Tomimoto H, Yanagihara T. Immunoelectron microscopic study of tubulin and microtubule-associated preoteins after transient cerebral ischemia in gerbils. Acta Neuropathol 1992, 84: 394-399.
    66. Johnson GVW, Literaky JM, Whrtaker JN. Proteolysis of micmtuble-assoeiated protein 2 and tublin by cathepsin D. J Neurochem, 1991, 57:1557-1583.
    67. Mounier N, Arrigo AP. Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones. 2002, 7: 167-176.
    68. Benndorf R, Hayess K, Ryazantsev S, et al. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem. 1994, 269: 20780-20784.
    69. Perng MD, Cairns L, van den I, et al. Intermediate filament interactions can be altered by HSP27 and alpha B-crystallin. J Cell Sci. 1999,112: 2099-2112.
    70. Evgrafov OV, Mersiyanova IV, Irobi J, et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet. 2004, 36: 602-606.
    71 Morrow G, Inaguma Y, Kato K, et al. The Small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization.. J Biol Chem 2000 Oct 6,275(40): 31204-31210.
    72 Chowdary TK, Raman B, Ramakrishna T, et al. Interaction of mammalian Hsp22 with lipid membranes. Biochem J. 2007 Jan 15,401(2): 437-445.
    73. Fields RD, Stevens-Graham B. New insights into neuron-glia communication[J]. Science, 2002,298(5593): 556-562.
    74. Hansson E, Rannnback L. Glial neuronal signaling in the central nervous system[J]. FASEB J, 2003, 17(3): 341-348.
    75. Chen Y, Swanson RA. Astrocytes and brain injury[J]. J Cereb Blood Flow Metab, 2003, 23(2): 137-149.
    76. Maurel D, Sage D, Mekaouche, et al. Glucocorticoids up-regulate the expression of glial fibrillary acidic protein in the suprachiasmatic nucleus[J].Glia,2000,29:212-221.
    77.Eliasson C,Sahlgren C,Berthold CH,et al.Intermediate filament protein partnership in astrocytes[J].J Biol Chem,1999,274(34):23996-24006.
    78.Gomes FC,Paulin D,Moura Neto V.Glial fibrillary acidic protein(GFAP):modulation by growth factors and its implication in astrocyte differentiation[J].Braz J Med Biol Res,1999,32:619-631.
    79.Pekny M,Nilsson M.Astrocyte activation and reactive gliosis[J].Glia,2005,50(4):427-434.
    80.Takuma K,Baba A,Matsuda T.Astrocyte apoptosis:implications for neuroprotection[J].Prog Neurobiol,2004,72(2):111-127.
    81.Dietrich WD,Danton G,Hopkins AC,et al.Thromboembolic events predispose the brain to wide-spread cerebral infarction after delayed transient global ischemia in rats[J].Stroke,1999,30(4):855-861.
    82.Hozumi I,Chiu F C,Norton W T.Biochemical and immunocytochemical changes in glial fibrillary acidic protein after stab wounds[J].Brain Res,1998,524:64.
    83.Leibrock J,Lottspreich F,Hohn A,et al.Molecular cloning and expression of brain-derived neurotrohic factor[J].Nature,1999,34:149-153.
    84.Thomas F.Changes in the solubility of glial fibrillary acidic protein after iscbemic brain damage in the mouse[J].J Neurocbem,1994,63(5):1796-1801.
    85.Kim Y,Truettner J,Zhao W,et,al.The influence of delayed postchemic following transient focal ischemia:alterations ofgene expression[J].J Neural Sci,1998,159(1):1-10
    86.李立薪,叶诸槟,泰建辉.体外鼠脑星形胶质细胞损伤后c-los蛋白、GFAP及其mRNA的动态表达[J].上海医科大学学报,1997,24(1):17-19.
    87.张敬军,李夭富,夏作理.cGMP对脑缺血再灌流后海马区星形胶质细胞活化的作用机制研究[J].神经解剖学杂志,2002,18(2):182-183.
    88.Landis DMD.The early reactions of non-neuronal cells to brain injury.Annu Rev Neurosci,1994,17:133-151.
    89.Fattore L,Puddu MC,Picciau S,et al.Astroglial in vivo response to cocaine in mouse dentate gyrus:a quantitative and qualitative analysis by confocal microscopy.Neuroscience,2002,110(1):1-6.
    1 Ritossa P. Problems of prophylactic vaccinations of infants. Riv Ist Sieroter Ital, 1962, 37: 79-108
    2 Morimoto R I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev, 1998, 12: 3788-3796.
    3 Caspers GJ, Leunissen JA, de Jong WW. The expanding small heat-shock protein family, and structure predictions of the conserved \alpha-crystallin domain." J Mol Evol, 1995, 40: 234-248.
    4 MacRae T H. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cellular and Molecular Life Sciences, 2000, 57: 899-913.
    5 de Jong WW, Caspers GJ, Leunissen JA. Genealogy of the a-crystallin small heat-shock protein superfamily. Int J Biol Macromol, 1998, 22:151-162.
    6 Narberhaus F. a-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev, 2002,66:64-93.
    7 Sun T X, Liang J J. Intermolecular exchange and stabilization of recombinant human aA- and aB-crystallin. J Biol Chem 1998,273: 286-290.
    8 Bova M P, McHaourab H S, Han Y, et al. Subunit exchange of small heat shock proteins. Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem, 2000,275:1035-1042.
    9 Franck E, Madsen O, van Rheede T, et al. Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol, 2004, 59(6): 792-805.
    10 Djabali K, de Nechaud B, Landon F, et al. aB-crystallin interacts with intermediate filaments in response to stress. J Cell Sci. 1997,110: 2759-2769.
    11 Gusev N B, Bogatcheva N T, Marston S B. Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Mosc), 2002, 67:511-519.
    12 Charette S J, Lavoie J N, Lambert H, et al. (2000) Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol, 2000,20: 7602-7612.
    13 Aslbeck M, Franzmann T, Weinfurtner D, et al. Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol, 2005,12: 842-846.
    14 Stromer T, Ehrnsperger M, Gaestel M, et al. Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem, 2003, 278:18015-18021.
    15 Arrigo A-P. Hsp27: novel regulator of intracellular redox state. IUBMB Life, 2001, 52: 303-307.
    16 Fan G-C, Chu G, Kranias EG. Hsp20 and its cardioprotection. Trends Cardiovasc Med, 2005, 15:138-141.
    17 Kappe G, Franck E, Verschuure P, et al. The human genome encodes 10 a-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones, 2003, 8: 53-61.
    18 Carra S, Sivilotti M, Chave Zobel AT, et al. HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet, 2005,14(12): 1659-1669.
    19 Slavotinek AM. Biesecker LG. Unfolding the role of chaperones and chaperonins in human disease. Trends Genet, 2001, 17(9), 528-535.
    20 Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci, 2005, 6(1): 11-12.
    21 van den I, Jssel P, Norman DG, et al. Molecular chaperones: Small heat shock proteins in the limelight. Curr Biol, 1999, 9(3): R103-105.
    22 Chowdary T, Raman B, Ramakrishna T, et al. Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J, 2004,381: 379-387.
    23 Smith C C, Yu Y X, Kulka M and Aurelian L. A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem, 2000,275,25690-25699
    24 Charpentier A H, Bednarek A K, Daniel R L, et al. Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res, 2000, 60: 5977-5983
    25 Benndorf R, Sun X, Gilmont R R, et al. HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 (3DHSP27). J Biol Chem, 2001, 276:26753-26761
    26 Smith C, Nelson J, Aurelian L, et al. Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol, 2000,74:10417-10429.
    27 Kappe G, Verschuure P, Philipsen RL, et al. Characterization of two novel human small heat shock proteins: protein kinase-related HspB8 and testis-specific HspB9. Biochim Biophys Acta,2001,1520(1): 1-6.
    28 Gober MD, Smith CC, Ueda K, et al. Forced expression of the HI 1 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J Biol Chem, 2003, 278: 37600-37609.
    29 Irobi J, Van Impe K, Seeman P, et al. Hot-spot residues in small heat-shock protein 22 cause distal motor neuropathy. Nat Genet, 2004,36: 597-601.
    30 Chowdary TK, Raman B, Ramakrishna T, et al. Interaction of mammalian Hsp22 with lipid membranes. Biochem J, 2007,401: 437-445.
    31 Verschuure P, Tatard C, Boelens WC, et al. Expression of small heat shock protein HspB2, HspB8, Hsp20 and cvHSP in different tissues of the perinatal developing pig. Eur J Cell Biol, 2003, 82(10): 523-530.
    32 Kim MV, Seit-Nebi AS, Gusev NB. The problem of protein kinase activity of small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun, 2004, 325: 649-652.
    33 Kim MV, Kasakov AS, Seit-Nebi AS, et al. Structure and properties of K141E mutant of small heat shock protein HSP22 (HspB8, H11) that is expressed in human neuromuscular disorders. Arch Biochem Biophys, 2006,454: 32-41.
    34 Kim MV, Seit-Nebi AS, Marston SB, et al. Some properties of human small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun, 2004,315: 796-801.
    35 Sun X, Fontaine JM, Rest JS, et al. Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem, 2004,279: 2394-2402.
    36 Depre C, Hase M, Gaussin V, et al. H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res, 2002,91: 1007-1014.
    37 Hase M, Depre C, Vatner SF, et al. H11 has dose-dependent and dual hypertrophic and proapoptotic functions in cardiac myocytes. Biochem J, 2005, 388: 475-483.
    38 Gober M.D, Depre C, Aurelian L. Correspondence regarding M.V. Kim et al. "Some properties of human small heat shock protein Hsp22 (H11 or HspB8)", Biochem. Biophys Res Commun, 2004, 321: 267-268.
    39 Langelier Y, Champoux L, Hamel M, et al. The R1 subunit of herpes simplex virus ribonucleotide reductase is a good substrate for host protein kinase but is not itself a protein kinase. J Biol Chem, 1998,273: 1435-1443.
    40 Haslbeck M, Buchner J. Chaperone function of sHsps. Prog Mol Subcell Biol, 2002, 28: 37-59.
    41 Chavez Zobel A T, Loranger A, Marceau N. Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G alphaB-crystallin mutant, Hum Mol Genet, 2003,12:1609-1620.
    42 Morrow G, Samson M, Michaud S, et al. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J, 2004, 18: 598-599.
    43 Morrow G, Battistini S, Zhang P, et al. Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein hsp22 in Drosophila. J Biol Chem, 2004, 279: 43382-43385.
    44 Tao D, Lu J, Sun H, et al. Trichostatin A extends the lifespan of Drosophila melanogaster by elevating hsp22 expression. Acta Biochim Biophys Sin, 2004, 36: 618-622.
    45 Sun X, Welsh MJ, Benndorf R. Conformational changes resulting from pseudophosphorylation of mammalian small heat shock proteins-a two-hybrid study. Cell Stress Chaperones,2006, 11:70-71.
    46 Lebedeva IV, Su ZZ, Chang Y, et al. The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene, 2002, 21: 708-718
    47 Rogalla T, Ehrnsperger M, Preville X, et al. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem, 1999,274:18947-18956.
    48 Wyttenbach A, Sauvageot 0, Carmichael J, et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet, 2002,11:1137-1151.
    49 Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol, 2000, 2: 645-652.
    50 Pandey P, Farber R, Nakazawa A, et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene, 2000,19:1975-1981.
    51 Yang C, Trent S, Ionescu-Tiba V, et al. Identification of cyclinD1 and estrogen-regulated genes contributing to breast carcinogenesis and progression. Cancer Res, 2006, 66: 11649-11658.
    52 Gober MD, Wales SQ, Aurelian L. Herpes simplex virus type 2 encodes a heat shock proteins homologue with apoptosis regulatory function. Frontiers Bioscienses, 2005,10: 2788-2803.
    53 Aurelian L, Smith CC, Winchurch R, et al. A novel gene expressed in human keratinocytes with long-term in vitro. J Invest Dermatol, 2001,116: 286-295.
    54 Yu C, Wang S, Dent P, et al. Sequence-dependent potentiation of paclitaxel-mediated apoptosis in human leukemia cells by inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathway. Mol Pharmacol, 2001, 60:143-154.
    55 Perkins D, Pereira EF, Aurelian L. The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the anti-apoptotic protein Bag-1. J Virol, 2003, 77(2): 1292-1305.
    56 Perkins D, Pereira EF, Gober M, et al. The herpes simplex virus type 2 Rl protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/ MAPK survival pathway. J Virol, 2002,76:1435-1449.
    57 Depre C, Tomlinson JE, Kudej RK, et al. Gene program for cardiac cell survival induced by transient ischemia in conscious pig. Proc Natl Acad Sci U S A,2001,98: 9336-9341.
    58 Braunwald E, Kloner RA. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation, 1982,66,1146-1149.
    59 Heyndrickx GR, Millard RW, McRitchie RJ, et al. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest, 1975, 56: 978-985.
    60 Depre C, Wang L, Sui X, et al. H11 Kinase prevents myocardial infarction by pre-emptive preconditioning of the heart. Circ Res, 2006, 98: 280-288.
    61 Cantley L. The phosphoinositide 3-kinase pathway. Science, 2002, 296: 1655-1657.
    62 Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of Bad couples survival signals to the cell-intrinsic death machinery. Cell, 1997, 91: 231-241.
    63 Datta SR, Brunet A, Greenberg ME. Cellular survival: A play in three Akts. Genes Dev,1999, 13:2905-2927.
    64 Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 1999, 399: 601-605.
    65 Hardie DG. AMP-activated protein kinase: The guardian of cardiac energy status. J. Clin. Invest, 2004,114:465-468.
    66 Hwang JT, Lee M, Jung SN, et al. AMP-activated protein kinase activity is required for vanadate-induced hypoxia-inducible factor 1{alpha} expression in DU145 cells. Carcinogenesis, 2004, 25: 2497-2507.
    67 Lee M, Hwang JT, Lee HJ, et al. AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J Biol Chem, 2003,278: 39653-39661.
    68 Semenza G. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2005, 3: 721-732.
    69 Wang L, Zajac A, Hedhli N, et al. Increased expression of H11 kinase stimulates glycogen synthesis in the heart. Mol Cell Biochem, 2004, 265: 71-78.
    70 Bucciantini M, Giannoni E, Chiti F, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 2002,416: 507-511.
    71 Sherman M Y and Goldberg AL. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron, 2001, 29: 15-32.
    72 Ross C A and Pickart C M. The ubiquitin-proteasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends Cell Biol, 2004,14: 703-711.
    73 Tang B S, Zhao G H, Luo W, et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum Genet, 2005,116: 222-224.
    74 Fontaine JM, Sun X, Benndorf R, et al. Interactions of HSP22 (HSPB8) with HSP20, aB-crystallin, and HSPB3. Biochem Biophys Res Commun, 2005,337(3): 1006-1011.
    75 Wilhelmus MM, Boelens WC, Otte-Holler I, et al. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-P protein aggregation and cerebrovascular amyloid-β toxicity. Acta Neuropathol (Berl), 2006,111(2): 139-149.
    76 Wilhelmus MM, Otte-H(?)ller I, Wesseling P, et al. Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer's disease brains. Neuropathol Appl Neurobiol, 2006, 32(2): 119-130.
    77 Harding A E and Thomas P K. The clinical features of hereditary motor and sensory neuropathy types Ⅰ and Ⅱ. Brain, 1980, 103:259-280.
    78 Irobi J, De Jonghe P, Timmerman V. Molecular genetics of distal hereditary motor neuropathies. Hum Mol Genet, 2004,13:195-202.
    79 Shy ME. Charcot-Marie-Tooth disease: an update. Curr Opin Neurol, 2004,17: 579-585.
    80 Tang BS, Luo W, Xia K, et al. A new locus for autosomal dominant Charcot-Marie-Tooth disease type 2 (CMT2L) maps to chromosome 12q24. Hum Genet, 2004,114: 527-533.
    81 Zang FF, Tang BS, Zhao GH, et al. Mutation analysis of small heat-shock protein 22 gene in Chinese patients with Charcot-Marie-Tooth disease. Zhonghuan Yi Xue Za Zhi, 2005, 22: 361-363.
    82 Citron M. Strategies for disease modification in Alzheimer's disease. Nat Rev Neurosci, 2004, 5: 677-685.
    83 Dabir DV, Trojanowski JQ, Richter-Landsberg C, et al. Expression of the small heat-shock protein aB-crystallin in tauopathies with glial pathology. Am J Path, 2004,164: 155-166.
    84 Eckert A, Keil U, Marques CA, et al. Mitochondrial dysfunction, apoptotic cell death, and Alzheimer's disease. Biochem Pharmacol, 2003,66:1627-1634.
    85 Yoo BC, Kim SH, Cairns N, et al. Deranged expression of molecular chaperones in brains of patients with Alzheimer's disease. Biochem Biophys Res Commun, 2001,280: 249-258.
    86 Renkawek K, Voorter CEM, Bosnian GJCGM, et al. Expression of aB-crystallin in Alzheimer's disease. Acta Neuropathol (Berl), 1994, 87:155-160.
    87 Iwaki T, Wisniewski T, Iwaki A, et al. Accumulation of aB-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Path, 1992,140: 345-356.
    88 Lowe J, McDermott H, Pike I, et al. aB crystallin expression in nonlenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease. J Pathol, 1992, 166: 61-68.
    89 Liang JJ-N. Interaction between b-amyloid and lens aB-crystallin. FEBS Lett, 2000, 484: 98-101.
    90 Stege GJJ, Renkawek K, Overkamp PSG, et al. The molecular chaperone aB-crystallin enhances amyloid b neurotoxicity. Biochem Biophys Res Commun, 1999, 262: 152-156.
    91 Ciocca D R, Oesterreich S, Chamness G C, et al. Biological and clinical implications of heat-shock protein 27000 (Hsp27) -a review. J Natl Cancer Inst, 1993, 85: 1558-1570.
    92 Strahler J R, Kuick R, Eckerskorn C. et al. Identification of 2 related markers for common acute lymphoblastic-leukemia as heat-shock proteins. J Clin Invest, 1990, 85: 200-207.
    93 Strahler J R, Kuick R, Hanash S M. Diminished phosphorylation of a heat-shock protein (Hsp-27) in infant acute lymphoblastic-leukemia. Biochem Biophys Res Commun, 1991, 175: 134-142.
    94 Aldrian S, Trautinger F, Fro" hlich I, et al. Overexpression of Hsp27 affects the metastatic phenotype of human melanoma cells in vitro. Cell Stress Chaperones, 2002, 7(2): 177-185.
    95 Sun X, Fontaine JM, Bartl I, et al. Induction of Hsp22 (HspB8) by estrogen and the metalloestrogen cadmium in estrogen receptor-positive breast cancer cells. Cell Stress Chaperones, 2007,12(4): 307-319.
    96 Hollander JM, Martin JL, Belke DD, et al. Overexpression of wild-type heat shock protein 27 and a nonphosphorylatable heat shock protein 27 mutant protects against ischemia / reperfusion injury in a transgenic mouse model. Circulation, 2004, 110: 3544-3552.
    97 Piao CS, Kim SW, Kim JB, et al. Co-induction of alphaB-crystallin and MAPKAPK-2 in astrocytes in the penumbra after transient focal cerebral ischemia. Exp Brain Res, 2005, 163(4): 421-429.
    98 Kelly KJ, Baird NR, Greene AL. Induction of stress response proteins and experimental renal ischemia/reperfusion. Kidney Int, 2001, 59(5): 1798-1802.
    99 Roelofs MF, Boelens WC, Joosten LA, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis.J Immunol,2006,176(11):7021-7027.
    100 Di Cristo G,Berardi N,Cancedda L,et al.Requirement of ERK activation for visual cortical plasticity.Science,2001,292:2337-2340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700