峨眉山大火成岩省无矿基性超基性岩体与含矿岩体对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基性超基性岩体是峨眉山大火成岩省的重要组成部分。本次研究主要对峨眉山大火成岩省中的漏邑、上邑、五坡胆、下邑和茨达五个无矿基性超基性岩体进行了锆石U-Pb年龄、地球化学和Sr-Nd同位素研究。这5个岩体形成于晚二叠世-早三叠世。除茨达基性岩体外,其他4个岩体均无中酸性岩体相伴生。岩体岩性均一,体积较小,均侵位于寒武纪之后的古生代地层中。漏邑、上邑、五坡胆和茨达岩体具有较低的轻重稀土分异((La/Yb)N=3.40-7.68),而下邑岩体表现出较高程度的轻重稀土分异((La/Yb)N=11.61-12.94)。所有的岩石都无明显的δEu异常,漏邑、上邑、五坡胆和下邑基性超基性岩体具有较低的εNd(t)值(3.0到1.9)和(87Sr/86Sr)i值(0.7057–0.7074)。茨达复式岩体的εNd(t)和(87Sr/86Sr)i变化不大。酸性端元岩石的εNd(t)为0.18,初始87Sr/86Sr比值为0.704345;基性端元岩石的εNd(t)为0.32-2.23(其中有一个样品的εNd(t)为-0.22),初始87Sr/86Sr为0.704777-0.706432;中性岩石的εNd(t)和(87Sr/86Sr)i分别为-0.05到0.17、0.704580-0.705436。所有样品的Sr-Nd同位素组分与峨眉山玄武岩类似。上邑、五坡胆和漏邑岩体具有较高的单斜辉石平衡温度(约1300℃~1400℃),如此高的温度可能与地幔柱作用有关。虽然下邑岩体的单斜辉石平衡温度较低(约1200℃),但其具有与OIB极其相似的微量元素配分模式,同样表明其具有地幔柱相关的成因特征。上邑、漏邑和五坡胆样品具有Nb、Ta、Ti负异常,富集大离子亲石元素Rb、Ba、K,表明源区具有俯冲相关物质或岩石圈地幔物质加入。漏邑、上邑和五坡胆岩体起源于地幔柱源区,并有俯冲流体交代的岩石圈地幔物质加入;而下邑岩体形成于地幔柱源区,且有岩石圈地幔物质的加入。茨达基性端元岩石起源于地幔柱源区,并有岩石圈地幔物质的加入;而酸性端元岩石起源于年轻玄武质下地壳的部分熔融,中性岩石则由超基性岩浆演化到玄武质时和酸性端元岩浆发生岩浆混合而成。本文对5个无矿基性超基性岩体与峨眉山大火成中的含矿基性超基性岩体的地质特征、母岩浆性质、部分熔融程度、地壳混染程度、岩浆演化程度等进行了对比,从而得出他们之间的差异,为类似矿床的成矿潜力评价提供指标,并对5个无矿基性超基性岩体进行了成矿潜力评价。
Mafic-ultramafic layered intrusions constitute important components in the westernpart of the Emeishan large igneous province (ELIP) in SW China. Here we presentzircon U-Pb geochronology, geochemistry and Sr-Nd isotopic data from fiverepresentative barren mafic-ultramafic intrusions in Wupodan, Shangyi, Louyi,Xiayiand Cida. The LA-ICP-MS U-Pb zircon dating shows that Cida mafic-ultramaficrocks and the syentitic rocks were almost coevally formed (243.8±0.8Ma and240.2±0.8Ma). These age data possibly represent the end phase of the Emeishan LIPmagmatism. The other four intrusions were emplaced during the Late Permian,coeval with the formation of Emeishan flood basalts and associated mineralizedintrusions. All intrusions exhibit mineralogical homogeneity and small volume. Withthe exception of Cida mafic-ultramafic intrusion, the other four intrusions are notassociated with intermediate-felsic plutons and were emplaced into the Middle-latePaleozoic strata. Chondrite-normalized REE patterns of Louyi, Shangyi, Wupodanand Cida intrusions exhibit moderately fractionated patterns with (La/Yb)Nof3.40–7.68, whereas the Xiayi intrusion shows pronounced LREE enrichment with(La/Yb)Nof11.61–12.94. Samples from the five intrusions lack any significant Euanomalies. Louyi, Shangyi, Wupodan and Xiayi intrusions have low εNd(t) values of3.0to1.9and variable initial87Sr/86Sr ratios of0.7057–0.7074. Cida complexdisplays variable εNd(t) and (87Sr/86Sr)i, e.g., the mafic-ultramafic unit has low initial87Sr/86Sr ratios (0.7048to0.7064), positive εNd(t)(0.32to2.23, with one exception of0.22), the felsic unit shows lower initial87Sr/86Sr ratios (0.7043) and positive εNd(t)(0.18), and the intermediate unit possess εNd(t) of0.05–0.17and (87Sr/86Sr)iof0.704580–0.705436. All of these Sr-Nd isotopic compositions overlap with the fielddefined by Permian Emeishan basalts. Clinopyroxenes from the SY, WPD and LYintrusions show relative high equilibrium temperatures ranging from~1300℃to~1400℃, which can be regarded as a signature of plume-related origin. Although theXY clinopyroxenes exhibit a relatively low equilibrium temperature (~1200℃), theclose affinity with OIB suggest a plume-related origin. Thus, these intrusions appear to be part of the ELIP. These features, combined with moderate to pronounceddepletion of HFSE (e.g. Nb, Ta and Ti) and enrichment of LILE (e.g. Rb, Ba, K),correlate the Louyi, Shangyi and Wupodan intrusions to the interaction betweenmantle plume and subcontinental lithospheric mantle that had been previouslymodified by subducted-related materials. In contrast, the Xiayi intrusion was derivedfrom the plume source contaminated by subcontinental lithospheric mantle. The Cidamafic-ultramafic unit was derived from plume-head, with the involvement ofconsiderable amounts of enriched subcontinental lithospheric mantle (SCLM); thefelsic unit orignated from the partial melting of juvenile basic materials beneath theYangtze Block; whereas the intermediate unit was resulted from magma mixingbetween the felsic magma and basaltic magma evolved from the parentalmafic-ultramafic magma. We also attempt a comparison between the unmineralizedand mineralized intrusions in terms of their geologic features, parental magma, thedegree of fractionation crystallization, degrees of partial melting of source rocks andthe extent of crustal contamination. Some geochemical criteria that may be useful indiscriminating between mineralized and unmineralized mafic-ultramafic intrusions aresummarized, and insights into the ore potential of the five barren intrusions are given.
引文
Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of late Cenozoic,post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology andGeothermal Research,2000,102:67–95.
    Ali J R, Thompson G M, Song X Y, et al. Emeishan basalts (SW China) and the‘end-Guadalupian’ crisis: magnetobiostratigraphic constraints. Journal of the GeologicalSociety of London,2002,159(1):21–29.
    Allègre C H, Turcotte D L. Geodynamic mixing in the mesosphere boundary layer and the originof oceanic islands. Geophysical Research Letters,1985,97:10997-11009.
    Andersen T, Griffin W L, Pearson N J. Crustal evolution in the SW part of the Baltic Shield: theHf isotope evidence. Journal of Petrology,2002,43(9):1725–1747.
    Anderson A T. CO2and the eruptibility of picrite and komatiite. Lithos,1995,34:19–26.
    Anderson D L, Natland J H. A brief history of the plume hypothesis and its competitors: conceptsand controversy. In: Foulger G R, Natland J H, Presnall D C, et al. eds. Plates, Plumes, andParadigms. Geological Society of America Special Paper,2005,388:119-145.
    Anderson D L. The sublithospheric mantle as the source of continental flood basalts: the caseagainst the continental lithosphere and plume head reservoir. Earth and Planetary ScienceLetters,1994,123:269-280.
    Anderson I C, Frost C D, Frost B R. Petrogenesis of the Red mountain pluton Laramie anorthositecomplex: implications for the origin of A-type granite. Precambrian Research,2003,124:243–267.
    Ariskin A A, Barmina G S. An empirical model for the calculation of spinel-melt equilibria inmafic igneous systems at atmospheric pressure:2. Fe–Ti oxides. Contributions to Mineralogyand Petrology,1999,134:251–263.
    Arndt N T, Lesher C M, Czamanske G K. Mantle-derived magmas and magmatic Ni-Cu-PGEdeposits. Economic Geology,100thAniversary volume,2005,5–23.
    Arndt N. Hot heads and cold tails. Nature,2000,407:458-460.
    Arndt N T, Czamanske G, Walker R J, et al.. Geochemistry and origin of the intrusive hosts of theNoril'sk-Talnakh Cu–Ni–PGE sulfide deposits. Economic Geology,2003,98:495–515.
    Ashwal L D. Petrogenesis of massif-type anorthosite: crystallization history and liquid line ofdescent of the Adirondack and Morin Complexes:[PhD thesis]. Princeton University,1978,136pp.
    Barnes S J, Maier W D. The fractionation of Ni, Cu and the noble metals in silicate and sulphideliquids. In: Keays R R, Lesher C M, Lightfoot P C, et al. eds. Dynamic processes inmagmatic ore deposits and their application in mineral exploration. Geological Association ofCanada,1999,13:69–106.
    Barnes S J, Picard C P. The behaviour of platinum-group elements during partial melting, crystalfractionation and sulphide segregation: an example from the Cape Smith fold belt, northernQuebec. Geochimica et Cosmochimica Acta,1993,57:79–87.
    Bezmen N S, Asif M, Brugmann G E,et al.. Experimental determinations of sulfide-silicatepartitioning of PGE and Au. Geochimica et Cosmochimica Acta,1994,58:1251–1260.
    Bonin B. Do coeval mafic and felsic magmas in post-collisional to withinplate regimes necessarilyimply two contrasting, mantle and crustal, sources? A review. Lithos,2004,78:1–24.
    Borg L E, Clynne M A. The petrogenesis of felsic calc-alkaline magmas from the southernmostCascades, California: Origin by partial melting of basaltic lower crust. Journal of Petrology,1998,39(6):1197-1222.
    Brugmann G E, Naldrett A J, Asif M, et al. Siderophile and chalcophile metals as tracers of theevolution of the Siberian trap in the Noril'sk region, Russia. Geochimica et CosmochimicaActa,1993,57:2001–2018.
    Bryan S E, Ernst R E. Revised definition of Large Igneous Provinces (LIPs). Earth-ScienceReviews,2008,86:175–202.
    Bryan S E, Riley T R, Jerram D A, et al. Silicic volcanisam: An undervalued component of largeigneous provinces and volcanic rifted margins. In: Menzies M A, Klemperer S L, Ebinger C J,eds. Volcanic Rifted Margins. Colorado: Geological Society of America Special Paper,2002,362:97–118.
    Burke K, Ashwal L D, Webb S. New way to map old sutures using deformed alkaline rocks andcarbonatites. Geology,2003,31:391–394.
    Campbell I H. Griffiths R W. Implications of mantle plume structure for the evolution of floodbasalts. Earth and Planetary Science Letters,1990,99:79-93.
    Campbell I H. Large igneous provinces and the mantle plume hypothesis. Elements,2005,1:265-269.
    Carlson R W. Physical and chemical evidence on the cause and source characteristics of floodbasalt volcanism. Australian Journal of Earth Sciences,1991,38:525-544.
    Casquet C, Pankhurst R J, Galindo C, et al. A deformed alkaline igneous rock–carbonatitecomplex from the Western Sierras Pampeanas, Argentina: Evidence for late Neoproterozoicopening of the Clymene Ocean?. Precambrian Research,2008,165:205–220.
    Chai G, Naldrett A J. The Jinchuan ultramafic intrusion: cumulate of a high-Mg basaltic magma.Journal of Petrology,1992,33:277–303.
    Charlier B, Duchesne J C, Vander Auwera J. Magma chamber processes in the Tellnes ilmenitedeposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe-Ti ores inmassif-type anorthosites. Chemical Geology,2006,234:264-290.
    Chenet A L, Quidelleur X, Fluteau F, et al.40K–40Ar dating of the Main Deccan large igneousprovince: Further evidence of KTB age and short duration. Earth and Planetary Letters,2007,263:1–15.
    Chou I M. Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor.American Mineralogist,1978,63:690–703.
    Chung S L, Jahn B M, Wu G Y, et al. The Emeishan flood basalt in SW China: a mantle plumeinitiation model and its connection with continental break-up and mass extinction at thePermian–Triassic boundary. In: Flower M F J, Chung S L, Lo C H, Lee T Y, eds. Mantledynamics and plate interaction in east Asia. Washington, D.C.: AGU Geodynamic Series,1998,27:47–58.
    Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basaltsat the Permian-Triassic boundary. Geology,1995,23:889-892
    Clague D A. The oceanic basalt–trachyte association: an explanation of the Daly Gap. Journal ofGeology,1978,86:739–743.
    Clark A H, Kontak D J. Fe-Ti-P Oxide Melts Generated through Magma Mixing in the AntautaSubvolcanic Center, Peru: Implications for the Origin of Nelsonite and IronOxide-Dominated Hydrothermal Deposits. Economic Geology,2004,99:377-395.
    Clemens J D, Holloway J R, White A J R. Origin of an A-type granite: experimental constraints.American Mineralogist,1986,71:317–324.
    Coffin M F, Eldholm O. Large igneous provinces: crustal structure, dimensions, and externalconsequences. Reviews of Geophysics,1994,32:1–36.
    Condie K C. Mantle Plumes and their Record in Earth History. Cambridge: Cambridge UniversityPress,2001,306.
    Coulié E, Quidelleur X, Gillot P Y, et al. Comparative K-Ar and Ar/Ar dating of Ethiopian andYemenite Oligocene volcanism: implications for timing and duration of the Ethiopian traps.Earth and Planetary Science Letters,2003,206:477–492.
    Couture R A, Smith M S, Dymek R F. X-ray fluorescence analysis of silicate rocks using fusedglass discs and a side-window Rh source tube: Accuracy, precision and reproducibility.Chemical Geology,1993,110:315–328.
    Cox K G. The role of mantle plumes in the development of continental drainage patterns. Nature,1989,342:873–877.
    de Waal S A. Carbon dioxide and water from metamorphic reactions as agents for sulphide andspinel precipitation in mafrc magmas. Transactions of Geological Society South Africa,1977,80:193-196
    Dobretsov N L, Borisenko A S, Izokh A E, et al. A thermochemical model of EurasianPermo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE andrare-metal ore deposits. Russian Geology and Geophysics,2010,51:903-924.
    Duchesne J C. Fe-Ti deposits in Rogaland anorthosites (South Norway): geochemicalcharacteristics and problems of interpretation. Mineralium Deposita,1999,34,182-198.
    Duncan R A, Hooper P R, Rehace J, et al. The timing and duration of the Karoo igneous event,southern Gondwana. Journal of Geophysical Research,1997,102(B8):18127–18138.
    Duncan R A, Richards M A. Hotspots, mantle plumes, flood basalts, and true polar wander.Reviews of Geophysics,1991,29:31-50.
    Emslie R F. Major rock units of the Morin complex, southwestern Quebec. Geological Survey ofCanada, Paper,1975,74-48,37.
    Ernst R E, Buchan K L, Campbell I H. Frontiers in large igneous province research. Lithos,2005,79:271–297.
    Ernst R E, Buchan K L. Recognizing mantle plumes in the geological record. Annual Review ofEarth and Planetary Sciences,2003,31:469-523.
    Eugster H P, Wones D R. Stability relations of the ferroginous biotite, annite. Journal of Petrology,1962,3:82–125.
    Fleet ME, Crocket JH, Stone WE. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd)and gold between sulfide liquid and basalt melt. Geochimica et Cosmochimica Acta,1996,60(13):2397-2412.
    Force C E. Geology of titanium mineral deposits. Geological Society of America, Special Papers.1991,259:1-112.
    Foulger G R, Natland J H, Presnall D C, et al. eds.. Plates, Plumes, and Paradigms. GeologicalSociety of America Special Paper,2005,388:881.
    Francis RD. Sulfide globules in mid-ocean ridge basalts (MORB) and the effect of oxygenabundance in Fe–S–O liquids on the ability of those liquids to partition metals from MORBand komatiitic magmas. Chemical Geology,1990,85,199–213.
    Frost C D, Bell J M, Frost B R, et al. Crustal growth by magmatic underplating: Isotopic evidencefrom the northern Sherman batholith. Geology,2001,29(6):515–518.
    Furman T, Graham D. Erosion of lithospheric mantle beneath the East African Rift system:Geochemical evidence from the Kivu volcanic province. Lithos,1999,48:237–262.
    Ganino C, Arndt N T, Zhou M F, et al. Interaction of magma with sedimentary wall rock andmagnetite ore genesis in the Panzhihua mafic intrusion, SW China. Mineralium Deposita,2008,43:677–694.
    Garland F, Hawkesworth C J, Mantovanim S M. Description and petrogenesis of the Paranarhyolites, southern Brazil. Journal of Petrology,1995,36:1193–1227.
    Gauert C D K, de Waal S A, Wallmach T. Geology of the ultrabasic to basic Uitkomst Complex,eastern Transvaal, South Africa: an overview. Journal of African Earth Science,1995,21:553–570.
    Gauert C. Sulphide and oxide mineralization in the Uitkomst Complex, South Africa: origin in amagma conduit. Journal of African Earth Sciences,2001,32:149-161.
    Geist D, Howard K A, Larson P. The generation of oceanic rhyolites by crystal fractionation: thebasalt-rhyolite association at Volcan Alcedo, Galapagos Archipelago. Journal of Petrology,1995,36:965–982.
    Gorbachev N S, Kashirceva G A. Fluid-magmatic differentiation of basaltic magma andequilibrium with magmatic sulfides. In: Experiments in the study of important problems ingeology. Nauka, Moscow,1986,98–1198
    Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: in-situanalysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,2002,61:237–269.
    Griffiths R W, Campbell I H. Interaction of mantle plume heads with the Earth’s surface and onsetof small scale convection. Journal of Geophysical Research,1991a,96:295-310.
    Griffiths R W, Campbell I H. On the dynamics of long-lived plume conduits ion the convectingmantle. Earth and Planetary Science Letters,1991b,103:214-227.
    Gunnarsson B, Marsh B D, Taylor H P. Generationof Icelandic rhyolites: silicic lavas from theTorfajokull central volcano. Journal of Volcanology and Geothermal Research,1998,83:1–45.
    Guo F, Fan W M, Wang Y J, et al. When did the Emeishan plume activity start? Geochronologicalevidence from ultramafic-mafic dikes in Southwestern China. International Geology Review,2004,46:226–234.
    Haughton D R, Roeder P L, Skinner B J. Solubility of sulfur in mafic magmas. Economic Geology,1974,69:451–467.
    He B, Xu Y G, Chung S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal domingprior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters,2003,213:391-405
    He B, Xu Y G, Huang X L, et al. Age and duration of the Emeishan flood volcanism, SW China:Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanicXuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters,2007,255:306–323
    Hirano N, Yamamoto J, Kagi H, et al. Young, olivine xenocryst-bearing alkali-basalt from theoceanward slope of the Japan Trench. Contributions to Mineralogy and Petrology,2004,148:47–54.
    Hochstaedter A G, Gill J B, Kusakabe M, et al. Volcanism in the Sumisu Rift I: element, volatileand stable geochemistry. Earth and Planetary Science Letters,1990,100:179–194.
    Hoernle K, Hauff F, Bogaard P V D.70m.y. history (139~69Ma) for the Caribbean large igneousprovince. Geology,2004,32(8):697–700.
    Hofmann A W. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters,1997,57:421-436.
    Hou T, Zhang Z C, Ye X R, et al. Noble gas isotopic systematics of Fe–Ti–V oxide ore-relatedmafic–ultramafic layered intrusions in the Panxi area, China: The role of recycled oceaniccrust in their petrogenesis. Geochimica et Cosmochimica Acta,2011,75:6727–6741.
    Hou T, Zhang Z C, Encarnacion J, et al. Petrogenesis and metallogenesis of the Taihe gabbroicintrusion associated with Fe–Ti-oxide ores in the Panxi district, Emeishan Large IgneousProvince, southwest China. Ore Geology Reviews,2012,49:109-127.
    Huang K, Opdyke N D. Magnetostratigraphic investigations of an Emeishan basalt section inwestern Guizhou Province, China. Earth and Planetary Science Letters,1998,163:1–14.
    Huang K N, Yang R Y, Wang X C. A preliminary study on trace element geochemistry ofEmeishan basalts from SW China. Acta Geologica Sinica,1988.4:49-60.
    Hurai V, Simon K, Wiechert U, et al. Immiscible separation of metalliferous Fe/Ti-oxide meltsfrom fractionating alkali basalt: P-T-fO2conditions and two-liquid elemental partitioning.Contributions to Mineralogy and Petrology,1998,133:12-29.
    Irving A J, Frey F A. Trace element abundances in megacrysts and their host basalts: constraintson partition coefficients and megacryst genesis. Geochimica et Cosmochimica Acta,1984,48:1201-1221.
    Irvine T N, Keith D W, Todd S G. The J-M platinum-palladium Reef of the Stillwater Complex,Montana, II: origin by double-diffusive convective magma mixing and implications for theBushveld Complex. Economic Geology,1983,78:1287-1334.
    Irvine T N, Baragar W R A. A guide to the chemical classification of lhe common volcanic rocks.Canadian Journal of Earth Sciences,1971,8:523-548.
    Irvine T N. Crystallisation sequence of the Muskox Intrusion and other layered intrusions: IIOrigin of the chromotite layers and similar deposits of other magmatic ores. Geochimica etCosmochimica Acta,1975,39:991–1020.
    Isley A E, Abbott D H. Plume-related mafic volcanism and the deposition of banded ironformation. Journal of Geophysical Research,1999,104(B7):15461-15477.
    Ivanov A V, Rasskazov S V, Feoktistov G D, et al.40Ar/39Ar dating of Usol’skii sill in thesouth-eastern Siberian Traps Large Igneous Province: evidence for long-lived magmatism.Terra Nova,2005,17(3):203–208.
    Jahn B M, Condie K C. Evolution of the Kaapvaal craton as viewed from geochemical and Sm-Ndisotopic analyses of intracratonic pelites. Geochimica et Cosmochimica Acta,1995,59(11):2239–2258.
    Jerram D A, Widdowson M. The anatomy of Continental Flood Basalt Provinces: geologicalconstraints on the processes and products of flood volcanism. Lithos,2005,79:385–405.
    Jones A P. Meteorite impacts as triggers to large igneous provinces. Elements,2005,1:277-281.
    Jourdan F, Féraud G, Bertrand H, et al. Karoo large igneous province: Brevity, origin, and relationto mass extinction questioned by new40Ar/39Ar age data. Geology,2005,33(9):745–748.
    Juster T C, Grove T L, Perfit M R. Experimental constraints on the generation of FeTi basalts,andesites, and rhyodacites at the Galapagos Spreading Centre,85°W and95°W. Journal ofGeophysical Research,1989,94:9251–9274.
    Kamenetsky V S, Elburg M, Arculus R, et al. Magmatic origin of low-Ca olivine insubduction-related magmas: Co-existence of contrasting magmas. Chemical Geology,2006,233:346–57.
    Keays R R, Lightfoot P C. Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits:evidence from chalcophile element signatures of Siberian and Deccan Trap basalts.Mineralium Deposita,2010,45:241–257.
    Keays R R. The role of komatiitic and picritic magmatism and S-saturation in the formation of oredeposits. Lithos,1995,34:1–18.
    Keskin M. Magma generation by slab steepening and breakoff beneath a subduction-accretioncomplex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey.Geophysical Research Letters,2003,30(24):8046, doi:10.1029/2003GL018019.
    King S D, Anderson D L. An alternative mechanism of flood basalt formation. Earth and PlanetaryScience Letters,1995,136:269-279.
    Kinzler R J. Melting of mantle peridotite at pressures approaching the spinel to garnet transition:Application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research,1997,102:853–874.
    Knight K B, Renne P R, Halkett A, et al.40Ar/39Ar dating of the Rajahmundry traps, EasternIndia and their relationship to the Deccan Traps. Earth and Planetary Science Letters,2003,208:85–99.
    Kolker A. Mineralogy and Geochemistry of Fe-Ti Oxide and Apatite (Nelsonite) Deposits andEvaluation of the Liquid Immiscibility Hypothesis. Economic Geology,1982,77:1146–1158.
    Langmuir C H, Vocke Jr R D, Hansona G N, et al. A general mixing equation with applications toicelandic basalts. Earth and Planetary Science Letters,1978,37:380-392.
    Lepage L D. ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry andgeobarometry. Computers&Geosciences,2003,29:673–678.
    LePvrier C, Maluski H, Tich V V, et al. The early Triassic Indosinian orogeny in Vietnam(Truong Son Belt and Kontum Massif); implications for the geodynamic evolution ofIndochina. Tectonophysics,2004,393:87–118.
    Lesher C M, Keays R R. Komatiite-associated Ni–Cu–(PGE) deposits. In: Cabri L J, Eds. TheGeology, Geochemistry, Mineralogy, Mineral Beneficiation of the Platinum-Group Elements.Canadian Institute of Mining, Metallurgy and Petroleum,2002,54:579–618.
    Li C, Naldrett A J. Geology and petrology of the Voisey's Bay intrusion: reaction of olivine withsulphide and silicate liquids. Lithos,1999,47:1–31.
    Li C, Ripley E M. Empirical equations to predict the sulfur content of mafic magma at sulfidesaturation and applications to magmatic sulfide deposits. Mineralium Deposita,2005,40:218–230.
    Li C S, Maier W D, Waal S A D. Magmatic Ni-Cu versus PGE deposits: Contrasting geneticcontrols and exploration implications. South African Journal of Geology,2001a,104:309–318.
    Li C S, Maier W D, Waal S A D. The role of magma mixing in the genesis of PGE mineralisationin the Bushveld complex: thermodynamic calculation and new interpretations. EconomicGeology,2001b,96:653–662.
    Li X H, Su L, Chung S L, et al. Formation of the Jinchuan ultramafic intrusion and the world’sthird largest Ni-Cu sulfide deposit: Associated with the~825Ma south China mantle plume?Geochemistry Geophysics Geosystems,2005, doi:10.1029/2005GC001006.
    Li Y Q, Li Z L, Chen H L, et al. Mineral characteristics and metallogenesis of the Wajilitaglayered mafic–ultramafic intrusion and associated Fe-Ti-V oxide deposit in the Tarim largeigneous province, northwest China. Journal of Asian Earth Sciences,2012,49:161–174.
    Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: did it start with a mantle plume beneathSouth China?. Earth and Planetary Science Letters,1999,173:171–181.
    Lightfoot P C, Keays R R. Siderophile and chalcophile metal variations in flood basalts from theSiberian Trap, Noril'sk Region: implications for the origin of the Ni-Cu-PGE sulfide ores.Economic Geology,2005,100:439–462.
    Lister G F. The composition and origin of selected irontitanium deposits. Economic Geology,1966,61:275-310.
    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous mineralsby LA-ICP-M S without applying an internal standard. Chemical Geology,2008,257:34–43.
    Ludwig K R. User’s manual for Isoplot3.00. A Geochronological Toolkit for Microsoft Excel.Berkeley: Berkeley Geochronology Center,2003, Special Publication No.4a.
    Lugmair G W, Harti K. Lunar initial143Nd/144Nd: Differential evolution of the lunar crust andmantle. Earth and Planetary Science Letters,1978,39:349–357.
    Luo W J, Zhang Z C, Hou T, et al. Geochronology–geochemistry of the Cida bimodal intrusivecomplex, central Emeishan large igneous province, southwest China: petrogenesis andplume–lithosphere interaction. International Geology Review,2013,55(1):88-114.
    Luo Z, Xu Y, He B, et al. Geochronologic and petrochemical evidence for the genetic linkbetween the Maomaogou nepheline syenites and the Emeishan large igneous province.Chinese Science Bulletin,2007,52:949–958.
    Ma C Q, Ehlers C, Xu C H, et al. The roots of the Dabieshan ultrahigh-pressure metamorphicterrain: constraints from geochemistry and Nd–Sr isotope systematics. Precambrian Research,2000,102:279–301.
    Ma L, Yang S L. The application and development of vanadium in the fields of catalysts andmaterials. Advanced Materials Research,2012,396-398:267-273.
    Macdougall J D. Continental Flood Basalts. Norwel: Kluwer Academic,1988,341.
    Mao J W, Pirajno F, Zhang Z H, et al. A review of the Cu–Ni sulphide deposits in the ChineseTianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principalcharacteristics and ore-forming processes. Journal of Asian Earth Sciences,2008,32:184–203.
    Mavrogenes J A, O’Neill H S C. The relative effects of pressure, temperature and oxygenfugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta,1999,63(728):1173–1180.
    McHone J G. Non-plume magmatism and rifting during the opening of the central Atlantic Ocean.Tectonophysics,2000,316,287-296.
    McKenzie D, O’Nions R K. Partial melt distributions from inversion of rare earth elements.Journal of Petrology,1991,32:1021-1091.
    McKenzie D P, Bickle M J. The volume and composition of melt generated by extension of thelithosphere. Journal of Petrology,1988,29:625-679.
    Middlemost E A K. Naming materials in magma/igneous rock system. Earth-Science Reviews,1994,37:215–224.
    Montelli R, Nolet G, Dahlen F A, et al. Finite-frequency tomography reveals a variety of plumes inthe mantle. Science,2004,303:338-343.
    Morgan W J. Convection plumes in the lower mantle. Nature,1971,230:42-43.
    Morgan W J. Deep mantle convection and Plate motions. The American Association of PetroleumGeologists Bulletin,1972,56(2):203-213.
    Mysen B O. Trace-element ptartitioning between garnet peridotite minerals and water-rich vapor:experimental data from5to30kbar. American Mineralogist,1979,64:274-287.
    Naldrett A J, Fedorenko V A, Lightfoot P C. et al. Ni-Cu-PGE deposits of the Noril'sk region,Siberia: their formation in conduits for flood basalt volcanism. Transactions of InstituteMining and Metallurgy,1995,104B:1–86.
    Naldrett A J. Key factors in the genesis of Noril’sk, Sudbury, Jinchuan, Voisey’s Bay and otherworld-class Ni-Cu-PGE deposits: implications for exploration. Australian Journal EarthSciences,1997,44:283-315.
    Naldrett A J. Magmatic sulfide deposit: geology, geochemistry and exploration. In Springer,Berlin Heidelberg New York,2004, pp.137–277,481-522,727.
    Naldrett A J. World-class Ni-Cu-PGE deposits: key factors in their genesis. Mineralium Deposita,1999,34:227-240.
    Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257: A homogeneous natural referencematerial for the ion microprobe U-Pb analysis of zircon. Geostandards and GeoanalyticalResearch,2008,32:247–265.
    Olsen K H, Morgan P. Introduction: Progress in understating continental rifts. In: Olsen K H, eds.Continental Rifts: Evolution, Structure, Tectonics. Developments in Geotectonics,1995,25:3-26.
    Oppliger G L, Murphy J B, Brimhall G H. Is the ancestral Yellowstone hotspot responsible for theTertiary “Carlin” mineralization in the Great Basin of Nevada?. Geology,1997,25(7):627-630.
    Pang K N, Li C S, Zhou M F, et al.. Abundant Fe–Ti oxide inclusions in olivine from thePanzhihua and Hongge layered intrusions, SW China: evidence for early saturation of Fe–Tioxides in ferrobasaltic magma. Contributions to Mineralogy and Petrology,2008b,156:307–321.
    Pang K N, Zhou M F, Lindsley D, et al.. Origin of Fe–Ti oxide ores in mafic intrusions: evidencefrom the Panzhihua Intrusion, SW China. Journal of Petrology,2008a,49:295–313.
    Pang K N, Li C, Zhou M F, et al. Mineral compositional constraints on petrogenesis and oxide oregenesis of the late Permian Panzhihua layered gabbroic intrusion, SW China. Lithos,2009,110:199–214.
    Pang K N, Zhou M F, Qi L, et al. Flood basalt-related Fe-Ti oxide deposits in the Emeishan largeigneous province, SW China. Lithos,2010,119:123–136.
    Peach CL, Mathez EA, Keays RR. Sulfide melt-silicate melt distribution coefficients fornoble-metals and other chalcophile elements as deduced from MORB: implications forpartial melting. Geochimica et Cosmochimica Acta,1990,54(12):3379–3389.
    Peccerillo A, Barberio M R, Yirgu G, et al. Relationships between mafic and peralkaline silicicmagmatism in continental rift setting: a petrological, geochemical and isotopic study of theGedemsa volcano, Central Ethiopian Rift. Journal of Petrology,2003,44(11):2003–2032.
    Petro W L, Vogel T A, Wilband J T. Major-element chemistry of plutonic rock suites fromcompressional and extensional plate boundaries. Chemical Geology,1979,26:217–235.
    Pf nder J A, Münker C, Stracke A, et al. Nb/Ta and Zr/Hf in oceanic island basalts—implicationsfor crustal-mantle differentiation and the fate of Niobium. Earth and Planetary ScienceLetters,2007,254:158–172.
    Philpotts A R. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology,1967,62:303-315.
    Pin C, Marini F. Early Ordovician continental break-up on Variscan Europe: Nd–Sr isotope andtrace element evidence for bimodal igneous associations of the southern Massif Central,France. Lithos,1993,29:177–196.
    Pin C, Paquette J L. A mantle-derived bimodal suite in the Hercynian belt: Nd isotope and traceelement evidence for a subduction-related rift origin of the late Devonian Brevennemetavolcanics, Massif Central (France). Contributions to Mineralogy and Petrology,1997,129:222–238.
    Pirajno F. Hotspots and mantle plumes: global intraplate tectonics, magmatism and ore deposits.Mineralogy and Petrology,2004,82:183-216.
    Pirajno F. Mantle plumes, associated intraplate tectono-magmatic processes and ore systems.Episodes,2007,30(1):6-19.
    Pirajno F. Ore deposits and mantle plumes. Netherland: Kluwer Academic Publishers Dordrecht,2000,556.
    Poitrasson F, Duthou J L, Pin C. The relationship between petrology and Nd isotopes as evidencefor contrasting anorogenic granite genesis: example of the Corsican Province. Journal ofPetrology,1995,36:1251–1274.
    Putirka K D, Mikaelian H, Ryerson F, et al. New clinopyroxene-liquid thermobarometers formafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibetand the Snake River Plain, Idaho. American Mineralogist,2003,88:1542–1554.
    Qi L, Grégoire D C. Determination of trace elements in twenty-six Chinese geochemistryreference materials by inductively coupled plasma mass spectrometry. GeostandardNewsletter,2000,24:51–63.
    Rainbird R H. The sedimentary record of mantle plume uplift preceding eruption of theNeoproterozoic Natkusiak flood basalt. Journal of Geology,1993,101:305-318.
    Reynolds I M. The nature and origin of titaniferous magnetite-rich layers in the Upper Zone of theBushveld Complex: a review and synthesis. Economic Geology,1985,80:1089-1108.
    Richards M A, Duncan R A, Courtillot V E. Flood basalts and hot-spot tracks; plume heads andtails. Science,1989,246:103-107.
    Ripley E M, Severson M J, Hauck S A. Evidence for sulfide and Fe-Ti-P-rich liquid immiscibilityin the Duluth Complex, Minnesota. Economic Geology,1998,93:1052-1062.
    Rosenthal A, Foley S F, Pearson D G, et al. Petrogenesis of strongly alkaline primitive volcanicrocks at the propagating tip of the western branch of the East African Rift. Earth andPlanetary Science Letters,2009,284:236–248.
    Ryerson F J, Hess P C. The role of P2O5in silicate melts. Geochim et Cosmochim Acta,1980,44:611–624.
    Sang Z N, Xia B, Zhou YS, et al. Experimental study of ore gabbro liquid immiscibility. Sciencein China Series D: Earth Sciences,2005,48(4):496–505.
    Shellnutt J G, Jahn B M, Zhou M F. Crustally-derived granites in the Panzhihua region, SW China:Implications for felsic magmatism in the Emeishan large igneous province. Lithos,2010,123:145–157.
    Shellnutt J G, Jahn B M. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanicigneous complex: Implications for the genesis of Fe-Ti oxide deposits and A-type granites ofSW China. Earth and Planetary Science Letters,2010,289:509–519.
    Shellnutt J G, Zhou M F, Yan D P, et al. Longevity of the Permian Emeishan mantle plume (SWChina):1Ma,8Ma or18Ma?. Geological Magazine,2008,145:373–388.
    Shellnutt J G, Zhou M F. Permian peralkaline, peraluminous and metaluminous A-type granites inthe Panxi district, SW China: their relationship to the Emeishan mantle plume. ChemicalGeology,2007,243:286–316.
    Shellnutt J G, Zhou M F. Rifting-related, Permian fayalite syenite in the Panxi region, SW China.Lithos,2008,101:54–73.
    Shellnutt J G, Zhou MF, Zellmer G F. The role of Fe-Ti oxide crystallization in the formation ofA-type granitoids with implications for the Daly gap: An example from the Permian Baimaigneous complex, SW China. Chemical Geology,2009,259:204–217.
    Shellnutt J G, Pang K N. Petrogenetic implications of mineral chemical data for the PermianBaima igneous complex, SW China. Mineralogy and Petrology,2012, DOI10.1007/s00710-012-0217-7.
    Shellnutt J G, Wang K L, Zellmer G F, et al. Three Fe-Ti oxide ore-bearing gabbro-granitoidcomplexes in the Panxi region of the Emeishan large igneous province, SW China. AmericanJournal of Science,2011a,311:773–812.
    Shellnutt J G, Denyszyn S W, Mundil R. Precise age determination of mafic and felsic intrusiverocks from the Permian Emeishan large igneous province (SW China). Gondwana Research,2011b, doi:10.1016/j.gr.2011.10.009.
    Shellnutt J G, Jahn B M. Origin of Late Permian Emeishan basaltic rocks from the Panxi region(SW China): Implications for the Ti-classification and spatial–compositional distribution ofthe Emeishan flood basalts. Journal of Volcanology and Geothermal Research,2011,199:85–95.
    Shellnutt J G, Iizuka Y. Mineralogy from three peralkaline granitic plutons of the Late PermianEmeishan large igneous province (SW China): evidence for contrasting magmatic conditionsof A-type granitoids. European Journal of Mineralogy,2011,23:45–61.
    Shellnutt J G, Iizuka Y. Oxidation zonation within the Emeishan large igneous province: Evidencefrom mantle-derived syenitic plutons. Journal of Asian Earth Sciences,2012,54–55:31–40.
    Shellnutt J G. A-type granites of the Permian Emeishan large igneous province (SW China):implications for the formation of the giant magmatic oxide deposits:[PHD thesis]. HongKong: The University of Hong Kong,2007.
    Sheth H C, Pande K, Bhutani R.40Ar–39Ar ages of Bombay trachytes: evidence for a Paleocenephase of Deccan volcanism. Geophysical Research Letters,2001,28:3513–3516.
    Sheth H C. Flood basalts and large igneous provinces from deep mantle plumes: fact, fiction, andfallacy. Tectonophysics,1999,311:1-29.
    Sillitoe R H. Tin mineralization above mantle hot spots. Nature,1974,248:497-499.
    Sisson T W, Grove T L. Experimental investigations of the role of H2O in cal-alkalinedifferentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology,1993,113:143–166.
    Sláma J, Ko ler J, Condon D J, et al. Ple ovice zircon: A new natural reference material for U-Pband Hf isotopic microanalysis. Chemical Geology,2008,249:1–35.
    Song X Y, Zhou M F, Hou Z Q, et al. Geochemical constraints on the mantle source of the UpperPermian Emeishan continental flood basalts, southwestern China. International GeologyReview,2001,43:213-225
    Song X Y, Zhou M F, Keays R R, et al. Geochemistry of the Emeishan flood basalts atYangliuping, Sichan, SW China: Implications for sulfide segregation. Contributions toMineralogy and Petrology,2006,152:53–74.
    Song X Y, Zhou M F, Tao Y, et al. Controls on the metal compositions of magmatic sulfidedeposits in the Emeishan large igneous province, SW China. Chemical Geology,2008,253:38–49.
    Song X Y, Zhou M F, Cao Z M, et al. Ni-Cu-(PGE) magmatic sulfide deposits in the Yangliupingarea, Permian Emeishan igneous province, SW China. Mineralium Deposita,2003,38:831–843.
    Song X Y, Keays R R, Xiao L, Qi H W, Ihlenfeld C. Platinum-group element geochemistry of thecontinental flood basalts in the central Emeisihan Large Igneous Province, SW China.Chemical Geology,2009a,262:246-261.
    Spencer K J, Lindsley D H. A solution model for coexisting iron-titanium oxides. AmericanMineralogist,1981,66(11-12):1189–1201.
    Steiger R H, J ger E. Subcommission on geochronology: Convention on the use of decayconstants in geochronology and cosmochronology. Earth and Planetary Science Letters,1977,36:359–362.
    Stern R J. Subduction zones. Reviews of Geophysics,2002,40:1–38.
    Storey B C, Kyle P R. An active mantle mechanism for Gondwana breakup. South African Journalof Geology,1997,100:283-290.
    Storey B C. The role of mantle plumes in continental breakup: case histories from Gondwanaland.Nature,1995,377:301-308.
    Strong D F. Formation of the hour-glass structure in augite. Mineralogical Magazine,1969,37(288):472–479.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications formantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in theOcean Basins. London: Geological Society Special Publications,1989,42:313–345.
    Sun W, Bennett V C, Eggins S M, et al. Rhenium systematics in submarine MORB and back-arcbasin glasses: laser ablation ICP-MS results. Chemical Geology,2003,196:259–281.
    Sun X M, Wang S W, Sun W D, et al. PGE geochemistry and Re-Os dating of massive sulfideores from the Baimazhai Cu–Ni deposit, Yunnan province, China. Lithos,2008,105:12–24.
    Tao Y, Li C S, Song X Y, et al. Mineralogical, petrological, and geochemical studies of theLimahe mafic–ultramatic intrusion and associated Ni–Cu sulfide ores, SW China.Mineralium Deposita,2008,43:849-872.
    Tao Y, Li C S, Hu R Z, et al. Re–Os isotopic constraints on the genesis of the Limahe Ni–Cudeposit in the Emeishan large igneous province, SW China. Lithos,2010,119:137–146.
    Tao Y, Li C S, Hu, R Z, et al. Petrogenesis of the Pt–Pd mineralized Jinbaoshan ultramaficintrusion in the Permian Emeishan Large Igneous Province, SW China. Contributions toMineralogy and Petrology,2007,153:321–337.
    Taylor S R, McLennan S. The geochemical evolution of the continental crust. Reviews ofGeophysics,1995,33:241–265.
    Thompson G M, Ali J R, Song X Y. Emeishan basalts, SW China: reappraisal of the formation’stype area stratigraphy and a discussion of its significance as a large igneous province. Journalof Geological Society,2001,158:593-595
    Thompson R N, Gibson S A. Transient high temperatures in mantle plume heads inferred frommagnesian olivines in Phanerozoic picrites. Nature,2000,407:502–506.
    Thy P, Lesher C E, Nielsen T F D, et al. Experimental constraints on the Skaergaard liquid line ofdescent. Lithos,2006,92:154–180.
    Toplis M J, Carroll M R. An experimental study of the influence of oxygen fugacity on Fe–Tioxide stability, phase relations, and mineral–melt equilibria in ferro-basaltic systems. Journalof Petrology,1995,36:1137–1170.
    Ulmer, P.,1989, The dependence of the Fe2+-Mg cation-partitioning between olivine and basalticliquid on pressure, temperature and composition: Contributions to Mineralogy and Petrology,v.101, p.261–273.
    Vervoort J D, Patchett J P, Albarede F, et al. Hf–Nd isotopic evolution of the lower crust. Earthand Planetary Science Letters,2000,181:115–119.
    Visser W, Koster van Groos A F. Effects of P2O5and TiO2on liquid-liquid equilibria in thesystem K2O-FeO-Al2O3-SiO2. American Journal of Science,1979,279:970–988.
    von Gruenewaldt G. Ilmenite-apatite enrichments in the Upper Zone of the Bushveld Complex: Amajor titanium-rock phosphate resource. International Geology Review,1993,35:987-1000.
    Wager L R. The major element variation of the Layered Series of the Skaergaard intrusion and are-estimation of the average composition of the hidden Layered Series and of the successiveresidual magma. Journal of Petrology,1960,1:364–398.
    Wang C Y, Zhou M F, Qi L. Origin of extremely PGE-rich mafic magma system: An examplefrom the Jinbaoshan ultramafic sill, Emeishan large igneous province, SW China. Lithos,2010,119:147-161.
    Wang C Y, Zhou M F, Zhao D G. Mineral chemistry of chromite from the Permian JinbaoshanPt-Pd-sulphide-bearing ultramafic intrusion in SW China with petrogenetic implications.Lithos,2005,83:47-66
    Wang C Y, Zhou M F. Genesis of the Permian Baimazhai magmatic Ni–Cu–(PGE) sulfide deposit,Yunnan, SW China. Mineralium Deposita,2006,41:771-783.
    Wang C Y, Zhou M F, Keays R R. Geochemical constraints on the origin of the PermianBaimazhai mafic–ultramafic intrusion, SW China. Contributions to Mineralogy andPetrology,2006,152:309–321.
    Wang C Y, Zhou M F, Qi L. Permian flood basalts and mafic intrusions in the Jinping (SWChina)–Song Da (northern Vietnam) district: Mantle sources, crustal contamination andsulfide segregation. Chemical Geology,2007,243:317–343.
    Wang C Y, Zhou M F, Zhao D G. Fe–Ti–Cr oxides from the Permian Xinjie mafic–ultramaficlayered intrusion in the Emeishan large igneous province, SW China: Crystallization fromFe-and Ti-rich basaltic magmas. Lithos,2008,102:198–217.
    Wang Y. Petrogenesis of permian flood basalts and maficultramafic intrusions in the Jinping (SWChina) and Song Da (Northern Vietnam) districts:[PHD thesis]. Hong Kong: The Universityof Hong KONG,2006.
    Weaver B L. The origin of ocean island basalt end-member compositions: trace element andisotopic constraints. Earth and Planetary Science Letters,1991,104:381–97.
    Whalen J B, Currie K L, Chappell BW. A-type granites: geochemical characteristics,discrimination and petrogenesis. Contributions to Mineralogy and Petrology,1987,95:407–419.
    White R S, McKenzie D P. Magmatism at rift zones: the generation of volcanic continentalmargins and flood basalts. Journal of Geophysical Research,1989,94:7685-7729.
    Wignall P B. Large igneous provinces and mass extinctions. Earth Science Reviews,2001.53:l-33.
    Wilson J T. A possible origin of the Hawaiian islands. Canadian Journal of Physics,1963,41:863-870.
    Wolfe C, Bjarnason I, Vandecar J C, et al. Seismic structure of the Iceland mantle plume. Nature,1997,385:245-247.
    Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for ‘conservative’element mobility during subduction zone processes. Earth and Planetary Science Letters,2001,192:331–46.
    Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: Element and isotope evidencefrom Neoproterozoic granodiorite in South China. Precambrian Research,2006,146:179–212.
    Xiao L, Xu Y G, Chung S L, et al. Chemostratigraphic correlation of Upper Permian lavas fromYunnan Province, China: extent of the Emeishan large igneous province. InternationalGeology Review,2003,45:753-766
    Xiao L, Xu Y G, Mei H J, et al. Distinct mantle sources of low-Ti and high-Ti basalts from thewestern Emeishan large igneous province, SW China: implications for plume-lithosphereinteraction. Earth and Planetary Science Letters,2004,228:525–546.
    Xu Y G, Chung S L, Jahn B, et al. Petrologic and geochemical constraints on the petrogenesis ofPermian-Triassic Emeishan flood basalts in southwestern China. Lithos,2001,58:145-168.
    Xu Y G, Luo Z Y, Hang X L, et al. Zircon U–Pb and Hf isotope constraints on crustal meltingassociated with the Emeishan mantle plume. Geochimica et Cosmochimica Acta,2008,72:3084–3104.
    Ying J F, Zhang H F, Tang Y J. Zoned olivine xenocrysts in a late Mesozoic gabbro from thesouthern Taihang Mountains: implications for old lithospheric mantle beneath the centralNorth China Craton. Geological Magazine,2010,147:161–170.
    Zhang X H, Zhang H F, Zhai M G, et al. Geochemistry of Middle Triassic gabbros from northernLiaoning, North China: origin and tectonic implications. Geological Magazine,2009c,146(4):540–551.
    Zhang Z C, Mao J W, Chai F M, et al. Geochemistry of the Permian Kalatongke Mafic Intrusions,Northern Xinjiang, Northwest China: Implications for the Genesis of Magmatic Ni-CuSulfide Deposits. Economic Geology,2009a,104:185–203.
    Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic-ultramaficlayered intrusions in the Emeishan large igneous province, SW China, based on isotopic andbulk chemical constraints. Lithos,2009b,113:369–392.
    Zhang Z C, Mahoney J J, Mao J W, et al. Geochemistry of Picritic and Associated Basalt Flows ofthe Western Emeishan Flood Basalt Province, China. Journal of Petrology,2006,47(10):1997–2019.
    Zhang Z C, Zhi X C, Chen L, et al. Re–Os isotopic compositions of picrites from the Emeishanflood basalt province, China. Earth and Planetary Science Letters,2008b,276:30–39.
    Zhang Z C, Xiao X C, Wang J, et al. Post-collisional Plio-Pleistocene shoshonitic volcanism in thewestern Kunlun Mountains, NW China: Geochemical constraints on mantle sourcecharacteristics and petrogenesis. Journal of Asian Earth Sciences,2008a,31:379–403.
    Zheng L, Yang Z, Tong Y, et al. Magnetostratigraphic constraints on two stage eruptions of theEmeishan continental flood basalts. Geochemisty Geophysics Geosystems,2010,doi:10.1029/2010GC003267.
    Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodesof Neoproterozoic granitoids in South China: Implications for growth and reworking ofcontinental crust. Lithos,2007,96:127–150.
    Zhong H, Campbell I H, Zhu W G, et al. Timing and source constraints on the relationshipbetween mafic and felsic intrusions in the Emeishan large igneous province: Geochimica etCosmochimica Acta,2011a,75:1374–1395.
    Zhong H, Qi L, Hua R Z, et al. Rhenium–osmium isotope and platinum-group elements in theXinjie layered intrusion, SW China: Implications for source mantle composition, mantleevolution, PGE fractionation and mineralization. Geochimica et Cosmochimica Acta,2011b,75:1621–1641.
    Zhong H, Yao Y, Hu S F, et al. Trace-element and Sr–Nd isotopic geochemistry of thePGE-bearing Hongge layered intrusion, southwestern China. International Geology Review,2003,45:371-382.
    Zhong H, Yao Y, Prevec S A, et al. Trace-element and Sr-Nd isotopic geochemistry of thePGE-bearing Xinjie layered intrusion in SW China. Chemical Geology,2004,203:237-252
    Zhong H, Zhou X H, Zhou M F, et al. Platinum-group element geochemistry of the Honggelayered intrusion in the Pan-Xi area, southwestern China. Mineralium Deposita,2002,37:226-239.
    Zhong H, Zhu W G, Chu Z Y, et al. Shrimp U–Pb zircon geochronology, geochemistry, andNd–Sr isotopic study of contrasting granites in the Emeishan large igneous province, SWChina. Chemical Geology,2007,236:112–133.
    Zhong H, Zhu W G, Hu R Z, et al. Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of thePanzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest Chinaand implications for growth of juvenile crust. Lithos,2009,110:109–128.
    Zhong H, Zhu W G. Geochronology of layered mafic intrusions from the Pan-Xi area in theEmeishan large igneous province, SW China. Mineralium Deposita,2006,41:599–606.
    Zhou L H, Wang J, Gou S Y, et al. Development of utilization of vanadic titanomagnetite. AppliedMechanics and Materials,2012,184-185:949-953.
    Zhou M F, Arndt N T, Malpas J, et al. Two magma series and associated ore deposit types in thePermian Emeishan large igneous province, SW China. Lithos,2008,103:352–368.
    Zhou M F, Robinson P T, Lesher C M, et al. Geochemistry, petrogenesis and metallogenesis ofthe Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, SichuanProvince, SW China. Journal of Petrology,2005,46:2253-2280.
    Zhou M F, Yang Z X, Song X Y, et al. Magmatic Ni-Cu-(PGE) sulfide deposits in China. In:Cabri L J, eds. The geology, geochemistry, mineralogy, mineral Beneficiation of thePlatinum-Group Elements. Canadian Institute of Mining, Metallurgy and Petroleum, SpecialVolume,2002,54:619-636.
    Zhou M F, Zhao J H, Qi L, et al. Zircon U–Pb geochronology and elemental and Sr–Nd isotopicgeochemistry of Permian mafic rocks in the Funing area, SW China. Contributions toMineralogy and Petrology,2006,151:1–19.
    Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U–Pb zircon geochronological andgeochemical evidence for Neoproterozoic arc-magmatism along the western margin of theYangtze block, South China. Earth and Planetary Science Letters,2002b,196:51–67.
    Zorpi M J, Coulon C, Orisini J B. Hybridization between felsic and mafic magma in calk-alkalinegranitoids—a case study in northern Sardinia, Italy. Chemical Geology,1991,92:45-86.
    从柏林.攀西古裂谷的形成与演化.北京:科学出版社,1988.
    何斌,徐义刚,肖龙,等.攀西裂谷存在吗?.地质论评,2003,49(6):572-582.
    侯可军,李延河,邹天人,等. La-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,2007,23(10):2595-2604.
    胡瑞忠,陶琰,钟宏,等.地幔柱成矿系统:以峨眉山地幔柱为例.地学前缘,2005,(1):42-54.
    黄开年.我国西南地区峨眉山玄武岩的岩石地球化学特征及其大地构造意义.北京:中国科学院地质研究所,1986,173.
    黄小龙,徐义刚,杨启军,等.滇西莴中晚始新世高镁富钾火山岩中单斜辉石斑晶环带结构的成因:岩浆补给-混合过程.高校地质学报,2007,13(2):250-260.
    李宏博.峨眉山大火成岩省地幔柱动力学:基性岩墙群、地球化学及沉积地层学证据:博士学位论文.北京,中国地质大学(北京),2012.
    李莹.攀西地区力马河镁铁-超镁铁质岩体的岩石学和地球化学研究:硕士学位论文.北京,中国地质大学(北京),2010.
    林建英.中国西南三省二叠纪玄武岩系的时空分布及其地质特征.科学通报,1986,12:929-932.
    刘家铎,张成江,李佑国等.攀西地区金属成矿系统.北京:地质出版社,2007.
    罗照华,AA马拉库舍夫,HA潘妮娅,等.铜镍硫化物矿床的成因——以诺里尔斯克(俄罗斯)和金川(中国)为例.矿床地质,2000,19(4):330-339.
    马昌前,杨坤光,唐仲华,等.花岗岩类岩浆动力学—理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社,1994,44-48.
    濮巍,高剑峰,赵葵东,等.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法.南京大学学报(自然科学),2005,41(4):445-450.
    濮巍,赵葵东,凌洪飞,等.新一代高精度高灵敏度的表面热电离质谱仪(Triton TI)的Nd同位素测定.地球学报,2004,52(2):271-274.
    四川省地质矿产局.四川省区域地质志.北京:地质出版社,1991.
    宋谢炎,张成江,胡瑞忠,等.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系.矿物岩石,2005,(4):35-44.
    宋谢炎,胡瑞忠,陈列锰.铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义.地学前缘,2009,(4):287-305.
    陶琰,胡瑞忠,漆亮,等.四川力马河镁铁-超镁铁质岩体的地球化学特征及成岩成矿分析.岩石学报,2007,23(11):2785-2800.
    王登红,骆耀南,傅德明,等.四川杨柳坪Cu-Ni-PGE矿区基性-超基性岩的地球化学特征及其含矿性.地球学报,2001,22(1):135-140.
    王登红.地幔柱及其成矿作用.北京:地震出版社,1998.
    王凯元,陈克祥.中国西南扬子大陆西缘大地构造的分带探讨.云南地质科技情报,1991,3~4.
    吴海威,张连生,嵇少丞.红河-哀牢山断裂带——喜山期陆内大型左行走滑剪切带.1987.地质科学,1989,1-10.
    夏斌,刘红英,张玉泉.攀西古裂谷钠质碱性岩锆石SHRIMP U-Pb年龄及地质意义—以红格、白马和鸡街岩体为例.大地构造与成矿学,2004,28:149-154
    徐义刚.地幔柱构造、大火成岩省及其地质效应.地学前缘,2002,9(4):341-353.
    余星.塔里木早二叠世大火成岩省的岩浆演化与深部地质作用:[博士学位论文].杭州:浙江大学,2009.
    云南省地质矿产局.云南省区域地质志.北京:地质出版社,1990.
    翟裕生.矿床学的百年回顾与发展趋势.地球科学进展,2001,16(5):719-725.
    张云湘,骆耀南,杨崇喜.攀西裂谷.北京:地质出版社,1988,1-466.
    张招崇,李莹,赵莉,等.攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束.岩石学报,2007,23(10):2339–2352.
    张招崇.关于峨眉山大火成岩省一些重要问题的讨论.中国地质,2009,36(3):634-646.
    朱丹,徐义刚,罗泰义,等.峨眉山玄武岩的输送通道:云南元谋朱布岩体.矿物学报,2007,27:273-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700