基于深刻蚀槽的InP多段耦合腔激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波分复用技术是提升现代光传输效率的一个重要手段,该技术的思想是将多个波长的光信号通过一路光纤进行传播,一次提高光纤传输的效率,因此光源是该技术中非常关键的部分。目前市场上所使用的固定波长光源主要是DFB激光器,波长可调谐激光器主要是DFB激光器阵列或者DBR激光器,这些现行技术的主要问题是都用到了二次外延、光栅等结构,对于制造工艺要求较高,而且大部分现行的波长可调谐激光器方案都无法实现单电极调谐波长,控制电路非常复杂,这些因素都会提高生产成本。
     针对这一问题我们提出深刻蚀槽耦合腔激光器的设计,该结构利用深刻蚀槽将多个FP腔耦合,利用游标效应实现单模输出以及波长调谐的效果。这一设计无需二次外延,依靠普通的半导体制造工艺就可以实现,可以大大降低制造成本。
     本文首先对深刻蚀槽耦合腔激光所涉及到的各个制造工艺步骤进行了优化,特别是对其中的干法刻蚀环节进行了细致的研究,包括刻蚀中的各种效应、把不同气体配方的选择与影响以及各种掩模刻蚀效果的对比,并针对深刻蚀槽结构的刻蚀配方进行了讨论和优化。
     我们对于深刻蚀槽耦合腔激光器的原理、设计和各个参数对于性能的影响进行了讨论,分别制造了固定波长和波长可调谐两种激光器,并对于其中关键的深刻蚀槽结构进行了详细的研究,证明这一结构对于腔内引入的损耗较小并且能够为腔内提供较大的反馈。固定波长深刻蚀槽耦合腔激光器显示了非常好的单模性能,并在线宽方面具有非常突出的优势(达到78kHz,是目前同类型半导体激光器中线宽最窄的报道结果),利用这一结构我们还展示了一个8X100GHz激光器阵列芯片。波长可调谐深刻蚀槽耦合腔激光器显示了非常好的调谐性能,通过载流子注入效应,我们可以实现单电极控制调谐得到所有的9个连续的100GHz的光通信信道,所有信道的边模抑制比都大于30dB,并且各信道输出功率均一,功率差小于1.6dB。
     最后我们讨论了深刻蚀槽耦合腔激光器的未来研究方向,
     我们相信这个激光器设计可以满足未来光通信的要求,作为波分复用以及相干通信方面的光源选择方案之一。
Wavelength-division multiplexing (WDM) is an important technique in morden optical communication. It multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths enablng bidirectional communications over one strand of fiber, as well as multiplication of capacity. Light source, including single-mode laser and tunable laser, is an essential component in the WDM system. The most widely used lasers are the DFB lasers and DBR lasers. These devices require second re-growth which increase the fabrication cost. Besides, most of the tunable lasers have a very complicated tuning mechanism whcih involve at least2electrodes at the same time.
     In this thesis, we are trying to propose a novel design called coupled-cavity laser with deep trenches. By coupling several fP cavitieswith deep trenches we are able to realize both single-mode lasers and tunable lasers. Such lasers do not need gratings or second re-growth. Its low manufacture requirement would help to reduce the fabiration cost.
     We first studied and optimized each fabrication step for the coupled-cavity laser. The process of dry etching has been thoroughly discussed including different effects during the etching, the choice of gas recipe and the etching results of using various mask materials. We discussed a lot on the etching process of deep trenches and developed an specially optimized recipe for the deep etching.
     The working theory and design principle of the coupled-cavity laser are dicussed for both single-mode lasers and tunable lasers. The effect of the deep trench, as a key component in our laser, has been studied and compared with those reported shallow trenches. It is proved by both theory and experiments that deep trenches can provide more feed back with less loss than the shallow ones. The tested results of the the single-mode laser shows a good spectrum purity, and the linewidth can be as small as78kHz which is the smallest ever reported for semiconductor lasers of similar designs. An8X100GHz Laser arry has been fabricated and demonstrated.
     We have also successfully fabricated the tunable version of coupled-cavity laser with deep trenches. The device showed agood tunability and was able to achieve all the9100GHz channels by single electrode control. The SMSR of all the channels are larger than30dB and the power variation is less than1.6dB
     At the end of this work, we discussed about the futurewrok on our laser design.
     We believe this coupled-cavity laser with deep trenches can fufill the requirements of future optical communication, especially in WDM and coherent communication. Its tight structure and ease of fabrication will make this novel design a possible candidate of light source in future.
引文
[1]G. Keiser, Optical Fiber Communications, McGraw-Hill, New York,2000.
    [2]C. R. Doerr, "InP-Based photonic devices", OFC/NFOEC 2008,OWE3
    [3]Larry A. Coldren, Leif. A. Johansson, Mingzhi Lu, Hyun-chul Park, John Parker, Abirami Sivananthan, and Mark Rodwell, "Single-chip integrated transmitters and receivers", Optics Express B,2012, Vol.20 No.26, pp.377-385
    [4]M. M. Dummer, J. Klamkin, A. Tauke-Pedretti, and L. A. Coldren, "A bit-rate-transparent monolithically integrated wavelength converter," ECOC, Th.2.C.1, Belgium (2008).
    [5]W. H. Guo, P. R. A. Binetti, C. Althouse, A. Bhardwaj, J. K. Doylend, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, "InP photonic integrated circuit for 2D optical beam steering," Post-deadline paper, IEEE Photonics Conf., Arlington (2011).
    [6]D. F. Welch, F. A. Kish, R. Nagarajan, C. H. Joyner, R. P. Schneider, Jr., V. G. Dominic, M. L. Mitchell, S. G. Grubb, T.-K. Chiang, D. D. Perkins, and A. C. Nilsson, "The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems," J. Lightwave Technol.24(12), 4674-4683 (2006).
    [7]Gunther Roelkens, Shahram Keyvaninia, Stevan Stankovic, Yannick De Koninck, Martijn Tassaert, Pauline Mechet, Thijs Spuesens, N. Hattasan, A. Gassenq, M. Muneeb, E. Ryckeboer, Samir Ghosh, D. Van Thourhout and R. Baets, "Ⅲ-Ⅴ/silicon photonic integrated circuits for communication and sensing applications", Integrated Optics:Devices, Materials, and Technologies XVII, 862707,2013
    [8]Mikitaka Itoh and Yu Kurata, "Heterogeneous integration of InP PDs on silica-based PLCs", Optical Fiber Communication Conference, Anaheim, CA, March 17,2013, Semiconductor Photodiodes and Modulators (OTh3H)
    [9]S. Guilet,S. Bouchoule, C. Jany, C. S. Corr, and P. Chabert, International Conference on Indium Phosphide and Related Materials, Princeton, NJ,7-11 May 2006, Paper No. WB2.3, p.262.
    [10]S. L. Rommel et al., J. Vac. Sci. Technol. B 20,1327 (2002).
    [11]S. Guilet, S. Bouchoule, C. Jany, C. S. Corr, and P. Chabert, J. Vac. Sci. Technol. B 24,2381
    [12]John S. Parker,a_ Erik J. Norberg, Robert S. Guzzon, Steven C. Nicholes, and Larry A. Coldren, "High verticality InP/InGaAsP etching in Cl2/H2 /Ar inductively coupledplasma for photonic integrated circuits", J. Vac. Sci. Technol. B 29(1), Jan/Feb 2011
    [13]Uppiliappan Krishnamachari, Sasa Ristic, Chin-Hui Chen, Leif Johansson, Anand Ramaswamy, Jonathan Klamkin, Erik Norberg, John E. Bowers, and Larry A. Coldren, " InP/InGaAsP-Based Integrated 3-dB Trench Couplers for Ultra-Compact Coherent Receivers", IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 23, NO.5, MARCH 1,2011
    [14]E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, IEEE Photonics Technol. Lett.22,109_2010_
    [15]F. Karouta, B. Docter, A. A. M. Kok, E. J. Geluk, J. J. G. M. van det Tol, and M. K. Smit, Electrochemical Society Fall Meeting, Honolulu, HI,12-17 October 2008, Paper No. E5, p.987.
    [16]Romain Chanson, Ahmed Rhallabi, Marie Claude Fernandez, Christophe Cardinaud, "Modeling of InP Etching Under ICP Cl2/Ar/N2 Plasma Mixture:Effect of N2 on the Etch Anisotropy Evolution", Plasma Process. Polym. 2013,10, pp.213-224
    [17]G. Morthier, P. Vankwikelberge, K. David, and R. Baets, "Improved performance of AR-coated DFB lasers by the introduction of gain coupling," IEEE Photon. Technol. Lett., vol.2,170-172,1990.
    [18]H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, and H. Imai, "Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB losers,"IEEE J. Quantum Elecrron., vol.23,804-814,1987.
    [19]K. Sato, S. Kuwahara, Y. Miyamoto, and N. Shimizu, "40 Gbit/s direct modulation of distributed feedback laser for very-short-reach optical links," Electron. Lett., vol.38,816-817,2002.
    [20]K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, "40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers," IEEE Photon. Technol. Lett., vol.19, pp. 1436-1438,2007.
    [21]U. Troppenz, J. Kreissl,W. Rehbein, C. Bornholdt, T. Gaertner, M. Radziunas, A. Glitzky, U. Bandelow, and M.Wolfrum, "40 Gb/s directly modulated InGaAsP passive feedback DFB laser," presented at the Eur. Conf. Opt. Fiber Commun., Cannes, France,2006, Paper Th4.5.5.
    [22]M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, "Improving the modulation bandwidth in semiconductor lasers by passive feedback," IEEE J. Sel. Topics Quantum Electron., vol.13, 136-142, Jan./Feb.2007.
    [23]W. Hofmann, N. H. Zhu, M. Ortsiefer, G. B'ohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55μm InGaAlAs-InP VCSELs," Electron. Lett., vol.42, pp.976-978,2006.
    [24]F. Mederer, M. Grabherr, F. Eberhard, I. Ecker, R. Jager, J. Joos, C. Jung, M. Kicherer, R. King, P. Schnitzer, H. Unold, D. Wiedenmann, and K. J. Ebeling, "High performance selectively oxidized VCSELs and arrays for parallel high-speed optical interconnects," in Proc.50th Electron. Compon. Technol. Conf., 1242-1251,2000.
    [25]T. P. Lee, C.A. Burrus, D. P. Wilt, "MEASURED SPECTRAL LINEWIDTH OF VARIABLE-GAP CLEAVED-COUPLED-CAVITY", ELECTRONICS LETTERS 17th January 1985 Vol.21. No.2, pp.53-54
    [26]Coldren, L.A, Koch, T.L.; Bridges, T.J.; Burkhardt, E.G.; Miller, B.I., " Etched-groove coupled-cavity vapor-phase-transported window lasers at 1.55 μm", Applied Physics Letters, Volume:46, Issue:1, pp.5-7
    [27]Brian Corbett, Christopher Percival, and Paul Lambkin, "Multiwavelength Array of Single-Frequency Stabilized Fabry-Perot Lasers", IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL.41, NO.4, APRIL 2005, pp.490-494
    [28]Qiaoyin Lu,, Weihua Guo, Marta Nawrocka, Azat Abdullaev, Chris Daunt, James O'Callaghan, Michael Lynch, Vincent Weldon, Frank Peters, and John F. Donegan, "Single mode lasers based on slots suitable for photonic integration", OPTICS EXPRESS B,/Vol.19, No.26/12 December 2011, pp. 140-145
    [29]Synchronous Optical Network (SONET) Transport System:Common Generic Criteria GR-253, Telcordia Std.
    [30]Larry A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C.W. Coldren,"Tunable Semiconductor Lasers:A Tutorial," J. Lightwave Technol.,vol.22,193-202,2004.
    [31]DJ Blumenthal, "Photonic packet switching and optical label swapping", Optical Networks Magazine 2 (Nov.2001) 54.
    [32]Viachos, K.; Zhang, J.; Cheyns, J.; Sulur; Chi, N.; Van Breusegem, E.; Monroy, I.T.; Jennen, J.G.L.; Holm-Nielsen, P.V.; Peucheret, C.; O'Dowd, R.; Demeester, P.; Koonen, A.M.J.;, "An optical IM/FSK coding technique for the implementation of a label-controlled arrayed waveguide packet router," Lightwave Technology, Journal of, vol.21, no.11, pp.2617-2628, Nov.2003
    [33]Jens Buus and Edmond J. Murphy, "Tunable Lasers in Optical Networks," J. Lightwave Technol.24,5-(2006)
    [34]K. J. Knopp, D. Vakhshoori, P. D.Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakhitab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, and R. Gurjar, "High power MEMs-tunable vertical-cavity surfaceemitting lasers," in Proc. Advanced Semiconductor Lasers, Dig. LEOS Summer Topical Meet., Copper Mountain, CO,31-32,2001.
    [35]C. J. Chang-Hasnain, "Tunable VCSEL's," IEEE J. Select. Topics Quantum Electron., vol.6, pp.978-987, Nov.-Dec.2000.
    [36]Hatakeyama H "Wavelength selectable microarray light sources for S, C, and L-bands WDM applications"[A]. OFC2002[c]. Los Angeles, USA: OSA,2002. WF2.
    [37]Ishii H "High power (40 mw) L-band tunable DFB laser array module using current tuning" OFC/NFOEC2005. LOS Angeles, USA:OSA, 2005. OTuE1.
    [38]Pezeshki B. "12 element multi-wavelength DFB arrays for widely tunable laser modules" OFC2002. Los Angeles, USA:OSA,2002. ThGG71/
    [39]Zou S, "100 mw phase-shifted 1550 Bin BH DFB arrays with a 10 micron pitch" [A]. OFC/NFOEC2005[c]. Los Angeles, USA:OSA,2005. JWA28.
    [40]Hong J. "Matrix-grating strongly gain-coupled(MC-SGC) DFB lasers with 34 nm continuous wavelength tuning range" [J]. Photonic Technol. Letter, 1999,11 (5):515-517
    [41]Hiromi Oohashi, Nobuhiro Nunoya, and Hiroyuki Ishii, "Tunable semiconductor lasersfor optical communications",201217th Opto-Electronics and Communications Conference (OECC 2012)
    [42]Li Ma, Hongliang Zhu, Minghua Chen, Can Zhang, Baojun Wang, "InGaAsP/InP DFB laser array monolithically integrated with MMI combiner and SOA", Proc. of SPIE Vol.8552, pp.85520Fl-6,2012
    [43]V. Jayaraman, A. Mathur, and L. A. Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings", IEEE J. Quantum Electron.29, pp.1824-1834 (1993).
    [44]L. A. Coldren, "Monolithic Tunable Diode Lasers", IEEE J. Sel. Top. Quantum Electron.6,988-999 (2000).
    [45]P. M. Anandarajah, R. Maher, L. P. Barry et al., "Characterization of frequency drift of sampled-grating DBR Laser module under direct modulation", IEEE Photon. Technol. Lett.20,239-241 (2008).
    [46]Y. Tohmori, Y. Yoshikuni, H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers", IEEE J. Quantum Electron.29, 1817-1823 (1993).
    [47]Oberg, M.; Rigole, P.-J.; Nilsson, S.; Klingo, T; Backbom, L.; Streubel, K.; Wallin, J.; Kjellberg, T. "Complete single mode wavelength coverage over 40 nm with a super structure grating DBR laser" Journal of Light wave Technology, Vol.13 pp 1892-1898 (1995)
    [48]Ishii,H.; Tohmori, Y; Yoshikuni, Y.; Tamamura, T.; Kondo, Y.; "Multiple-phase shift super structure grating DBR lasers for broad wavelength tuning", IEEE, Photonics Technology Letters, Vol.5, pp:613-615 (1993)
    [49]Fujiwara, N.; Ishii, H.; Okamoto, H.; Kawaguchi, Y; Kondo, Y.; Oohashi, H.; "Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator", IEEE Journal of Selected Topics in Quantum Electronics, Volume: 13, Page(s):1164-1169 (2007)
    [50]Steven C. Nicholes, Milan L. Masanovic, Erica Lively, Larry A. Coldren, "An 8x8 Monolithic Tunable Optical Router (MOTOR) Chip in InP", OSA/IPNRA/NLO/SL(IMB) 2009
    [51]D. J. Robbins, G. Busico, L. Ponnampalam, J. P. Duck, P. J. Williams, R. A. Griffin, A. J. Ward, D. C. J. Reid, N. D. Whitbread, and E. Barton, "A high power, broadband tunable laser module based on a DS-DBR laser with integrated SOA", Optical Fiber Communication Conference, Washington DC, Paper TuE3 (2004)
    [52]Andrew J. Ward, David J. Robbins, Giacinto Busico, Elena Barton, Lalitha Ponnampalam, Jeremy P. Duck, Neil D. Whitbread, Peter J. Williams, Douglas C. J. Reid, Andrew C. Carter, and Michael J. Wale, "Widely Tunable DS-DBR Laser With Monolithically Integrated SOA:Design and Performance," IEEEJ. Select. Topics Quantum Electron., vol.11,149-156,2005.
    [53]Whitbread N D, "AIGalnAS-lnP C-Band Tunable DS-DBR Laser for Semi-Cooled Operation at 55℃" ECOC 2008, Brussels, Belgium:Nexus Media Limited,2008. We.3.C.4.
    [54]Isaksson M. "10Gbit/s Direct Modulation of 40nm Tunable Modulated-Grating Y-branch Laser", [A].OFC/NFOEC2005[C].Los Angeles, USA: OSA,2005.OTuE2.
    [55]J.-O. Wesstrom, Gert Sarlet, Stefan Hammerfeldt, "State of the art performance of widely tunable modulated grating Y-branch lasers", Optical Fiber Communication Conference, Washington DC, paper TuE2 (2004)
    [56]Jan-Olof Wesstrom, Stefan Hammerfeldt, Jens Buus, Robert Siljan, Reinhard Laroy, and Harry de Vries, "Design of a Widely Tunable Modulated Grating Y-branch Laser using the Additive Vernier Effect for Improved Super-Mode Selection,"
    [57]Jialiang Jin, Lei Wang, Tingting Yu, Yin Wang, and Jian-Jun He, "Widely wavelength switchable V-coupled-cavity semiconductor laser with-40dB side-mode suppression ratio", Optics Letters, Vol.36, Issue 21, pp. 4230-4232,2011
    [58]Jialiang Jin, Lei Wang, Jian-Jun He, "Digitally Wavelength Switching by Thermal and Carrier Injection Effects in V-Coupled Cavity Semiconductor Laser", Chinese Optics Letters, Vol.10, Issue 10.2012
    [59]Jialiang Jin, Lei Wang, Tingting Yu, Yin Wang, Jian-jun He, "16×100GHz Digitally Wavelength Switchable V-Coupled-Cavity Laser with 40dB SMSR", post deadline paper, The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim, August 28-September 1,2011, Sydney, Australia.
    [60]Jian-Jun He, Jialiang Jin, Dekun Liu, Lei Jin, Min Lou, Tingting Yu, and Lei Wang, "Novel semiconductor lasers and integrated photonic devices", Invited, Photonics Asia, Proceedings of the SPIE, Volume 7844, pp.784402-784402-8 (2010).
    [61]K. Shi, F. Smyth D. Reid, B. Roy croft, B. Corbett, F.H. Peters, L.P. Barry, "Characterization of a tunable three-section slotted Fabry-Perot laser for advancedmodulation format optical transmission", Optics Communications,284 (2011), pp.1616-1621
    [62]Frank Smyth, Kai Shi, Prince M. Anandarajah, Brendan Roycroft, Brian Corbett, Frank H. Peters and Liam P. Barry, " Tunable Slotted Fabry-Perot Lasers for Agile Optical Networks", OSA/OFC/NFOEC,2011,OThP6
    [63]Jeong-Hoon Kim; Guangming Liu; Seong H. Kim, "Deposition of stable hydrophobic coatings with in-line CH4 atmospheric rf plasma", J. Mater. Chem.,2006,16, pp.977-981.
    [64]Bauer, J.; Drescher, G.; Illig, M.;, "Surface tension, adhesion and wetting of materials for photolithographic process," Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, vol.14, no.4, pp.2485-2492, Jul 1996
    [65]Yun Sun; Liu Zhi; Machuca Francisco; Pianetta Piero E.; Spicer William E. Jr., "Optimized cleaning method for producing device quality InP(100) surfaces", Journal of applied physics,2005, Vol.97 No.12, pp.124902.1-124902.7
    [66]M. Adamiec; E. Talik; A. Gladki, "Investigation of surface cleaning procedure of InP:S (100) substrates by high resolution XPS", Applied Surface Science,2006, Vol.252 No.10, pp.3481-3487
    [67]谭满清;茅冬升,“InP衬底表面的H2/N2等离子体清洁技术”,半导体学报,1999年10月,Vol.20 No.10,pp.941-944
    [68]J. Hopwood., "Review of inductively coupled plasmas for plasma processing", Plasma Sources Science and Technology,1992, Vol.1 No.2, pp. 109-116
    [69]R. Varrazza; L. Deng; A. Goodyear and S. Yu., "Controllable H-Free, Anisotropic InP ICP Etching Processes for Photonics Applications" Presented at the Dry Etching-Advances Trends Conf, London, U.K., Jan.22,2003.
    [70]D. L Flamm, Pure Appl. Chem.,62,1709 (1990).
    [71]Shunquan Wang; Changhe Zhou; Huayi Ru and Yanyan Zhang, "Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology", Appl. Opt., Vol.44, pp.4429-4434,2005
    [72]Chei-wei Lee; D.nie; T.Mei; M.K.Chin, "Study and optimization of room temperature ICP etching of InP using CI2/CH4/H2 and CH4/H2", Journal of Crystal Growth,,2006, pp.213-216
    [73]Schramm, Jeff E.; Babic, Dubravko I.; Hu, Evelyn L.; Bowers, John E.; Merz, James L.;, "Fabrication of high-aspect-ratio InP-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching," Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, vol.15, no.6, pp.2031-2036, Nov 1997
    [74]Lin, Jie; Leven, Andreas; Weimann, N. G.; Yang, Y.; Kopf R. F.; Reyes, R.; Chen, Y. K.; Choa, Fow-sen;, "Smooth and vertical-sidewall InP etching using Cl2/N2 inductively coupled plasma," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, no.2, pp.510-512, Mar 2004
    [75]Kyoji Inoshita and Toshihiko Baba, "Fabrication of GaInAsP/lnP Photonic Crystal Lasers by ICP Etching and Control of Resonant Mode in Point and Line Composite Defects", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.9, NO.5, SEPTEMBER/OCTOBER 2003
    [76]P. Strasser, R. Wuest, et al. "An ICP-RIE etching process for InP-based photonic crystals using Cl2/Ar/N2 chemistry," in 17th Int. Conf. Indium Phosphide Related Materials, May 8-12, Glasgow, Scotland, UK, pp. TuP-24,2005.
    [77]Haruhiko ABE, Masahiro YONEDA and Nobuo FUJIWARA; "Developments of Plasma Etching Technology for Fabricating Semiconductor Devices", Japanese Journal of Applied Physics, Vol.47, No.3,2008, pp.1435 1455
    [78]Y. H. Qian, M. Owen, A. C. Bryce, J. H. Marsh, C. D. W. Wilkinson, R. V. Penty, I. H. White, S. Perrin, D. Drogers, and H. Robertson, Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99), Davos, Switzerland,1999, p.103.
    [79]Rohit Grover, John Vetold Hryniewicz, Oliver Simon King and Vien Van, "Process development of methane-hydrogen-argon-based deep dry etching of InP for high aspect-ratio structures with vertical facet-quality sidewalls", J. Vac. Sci. Technol., Sep/Oct,2001, B 19(5), pp.1694-1498
    [80]刘恩科 等著,《半导体物理学》(第7版),电子工业出版社,2011
    [81]A.G. Baca, F. Renb, J.C. Zolper, R.D. Briggs, S.J. Pearton, "A survey of ohmic contacts to Ⅲ-Ⅴ compound semiconductors", Thin Solid Films,308-309 (1997), pp.599-606
    [82]A. Katz, in:A. Katz (Ed.) InP and Related Materials:Processing, Technology, and Devices, Artech House, Boston,1992.
    [83]T. Sands, Mat. Sci. Eng., B 1 (1989) 289.
    [84]J.M. Woodall, J.L. Freeouf, G.D. Pettit, T.N. Jackson P. Kircher, J. Vac. Sci. Technol.,19 (1981) 626.
    [85]D. G. IVEY, P. JIAN, "Microstructural analysis of Au/Pt/Ti contacts to p-type InGaAs", Journal of Materials Science:Materials in Electronics, Vol.6, pp. 219-227,1995
    [86]Ladany L, Marinell DP, RCA Review,1983,44;101.
    [87]李鸿渐,石瑛,“测量计算金属-半导体接触电阻率的方法”,半导体技术,第33卷,第2期,2008,pp.155-159
    [88]L. Coldren, K. Furuya, B. Miller, J. Rentschler, "Etched Mirror and Groove-Coupled GaInAsP/InP Laser Devices for Integrated Optics" IEEE J. Quantum Electron. QE-18, pp.1679-1688,1982.
    [89]K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause and C. Laperle, "Performance of dual-polarization QPSK for optical transport systems", J. Lightwave Technol., Vol.27, pp.3546-3559,2009.
    [90]S. O'Brien, A. Amann, R. Fehse, S. Osborne, E. P., O'Reilly, "Spectral manipulation in Fabry-Perot lasers:perturbative inverse scattering approach", J. Opt. Soc. Am. B, vol.23, pp.1046-1056,2006.
    [91]R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, J. F. Donegan, "A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching", IEEEJ. Quantum Electron., vol.44, pp.331-337,2008.
    [92]S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, A. Ellis, "A multiwavelength low-power wavelength-locked slotted Fabry-Perot laser source for WDM applications", IEEE Photon. Technol. Lett., vol. 19, pp.744-746,2007.
    [93]Qiaoyin Lu, Wei-Hua Guo, Diarmuid Byrne, and John F. Donegan, "Design of Slotted Single-Mode Lasers Suitable for Photonic Integration ", IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO.11, JUNE 1,2010
    [94]Qiaoyin Lu, Weihua Guo, Marta Nawrocka, Azat Abdullaev, Chris Daunt, James O'Callaghan, Michael Lynch, Vincent Weldon, Frank Peters, and John F. Donegan, "Single mode lasers based on slots suitable for photonic integration", OPTICS EXPRESS B,12 December 2011, Vol.19, No.26, pp. 140-145
    [95]Tingting Yu, lei Wang, Li Zou and Jianjun He, "Deep submicron etched-slot coupled semiconductor lasers fabricated by standard UV-lithography," Silicon and Nano-Photonics (IPR) Topical Meeting, Integrated Photonics Research 2012.
    [96]高振阳,“基于耦合腔结构的双波长半导体激光器研究”,硕士毕业论文,浙江大学光电系,2010
    [97]R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical Techniques for Modeling Guided-Wave Photonic Devices", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.6, NO.1, JANUARY/FEBRUARY 2000
    [98]Thomas L. Koch, Uziel Koren, "Semiconductor Lasers for Coherent Optical Fiber Communications", JOURNAL OF LIGHTWAVE TECHNOLOGY. VOL.8. NO.3. MARCH 1990, pp.274-291
    [99]C. DeCusatis, "Fiber Optic Data Communication:Technological Trends and Advances",2002, Academic Press
    [100]Yin Wang, Lei Wang, Jialiang Jin and Jian-Jun He," Deep Groove Etching for Partial Reflectors in InP-based Monolithically Integrated Photonic Devices", Communications and Photonics Conference and Exhibition (ACP),2010 Asia,730-731
    [101]Brian Corbett, Christopher Percival, and Paul Lambkin, "Multiwavelength Array of Single-FrequencyStabilized Fabry-Perot Lasers", IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO.4, APRIL 2005
    [102]Okoshl T, "Novel method for high resolution measurement of laser output spectrum". Electron Lett,1980(16), pp.630-631
    [103]Tetsuhiko Ikegami, Shoichi Sudo, YOshih Sakai. Frequency stabilization of semiconductor laser diodes[M] Boston. London:Artech House.1995. pp.29-40.
    [104]K. Shi, F. Smyth, D. Reid, B. Roy croft, B. Corbett, J.H. Song, P. O'Brien, F. H. Peters, L. P. Barry, "Characterization of a Novel Three-Section Tunable Slotted Fabry-Perot Laser",OWU3, OSA/OFC/NFOEC,2010
    [105]R. A. Griffin and G. Busico, "Laser FM Noise Impact on DCF-free Transmission Utilising Electronic Dispersion Compensation," in Proc. ECOC,2005, pp.261-262.
    [106]Andrew J. Ward, Giacinto Busico, Neil D. Whitbread, Lalitha Ponnampalam, J. P. Duck, and David J. Robbins, "Linewidth in Widely Tunable Digital Supermode Distributed Bragg Reflector Lasers:Comparison Between Theory and Measurement ", IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL.42, NO.11, NOVEMBER 2006
    [107]Charles H. Henry, "Theory of Spontaneous Emission Noise in Open Resonators and its Application to Lasers and Optical Amplifiers", Journal of Lightwave Technology, Vol LT-4, No.3, pp.288-297,1986]
    [108]G. P. Li, T. Makino, A. Sarangan, and W. Huang, "16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability", IEEE Photonics Technology Letter, Jan.1996, Vol.8 No.1, pp.22-24
    [109]Shinsuke Tanaka, Ayahito Uetake, Susumu Yamazaki, Mitsuru Ekawa, and Ken Morito," Output Level Control of SOA Using On-Chip Heater for High Output Power Opera", JOURNAL OF LIGHTWAVE TECHNOLOGY, SEPTEMBER 1, 2010, VOL.28, NO.17,, pp.2477-2482
    [110]Larry A. Coldren等著,《二极管激光器与集成光路》(第1版),北京邮电大学出版社,2006
    [111]Jialiang Jin, Lei Wang, Tingting Yu, Yin Wang, and Jian-Jun He, "Widely wavelength switchable V-coupled-cavity semiconductor laser with ~40dB side-mode suppression ratio", Optics Letters, Vol.36, Issue 21, pp.4230-4232
    [112]Larry A. Coldren," Monolithic Tunable Diode Lasers", IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS,, NOVEMBER/DECEMBER 2000, VOL.6, NO.6, pp.988-999
    [113]金嘉亮,“基于V型耦合腔的数字式波长可切换半导体激光器研究”,博士毕业论文,浙江大学光电系,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700