蛋白质—蛋白质对接方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质-蛋白质相互作用与识别的研究是分子生物学领域的重要课题。由于实验测定蛋白质复合物结构的困难,目前,通过计算机模拟来预测分子间结合模式的对接方法受到了很大的关注。分子对接的最终目的是预测未知复合物结构的受体和配体之间的结合情况,对这种自由态分子的对接问题,在一定程度上考虑分子的柔性是非常必要的。然而,在蛋白质-蛋白质对接中,体系原子数和自由度数的增加使模拟复合物形成中的构象变化十分困难。另外,搜索过程可能产生数百万的对接构象,在用精细的能量函数打分之前,如何对这些结构进行初步筛选以得到尽可能多的近天然构象是目前方法研究中极具挑战性的问题。
     使用打分函数的目的,是在合理的时间内对结构作出有效评价,以区分出近天然构象。目前,很多对接算法所使用的打分函数是基于热力学假设,即天然蛋白质复合物的结构是结合自由能最低的构象。因此,发展一个计算快且足够准确的结合自由能计算方法是结构预测中十分重要的一步。
     本文包括三个部分。第一部分,针对自由态分子对接问题,提出了一个有效的蛋白质-蛋白质软对接方法;第二部分,在软对接方法的基础上,我们发展了一个依赖于复合物类型的分子对接算法;第三部分是关于对接算法中打分函数的研究。论文的主要研究内容包括以下方面:
     (1)在Wodak和Janin的刚性对接算法基础上,针对自由态分子对接问题,提出了一个蛋白质-蛋白质软对接方法。采用简化蛋白模型:一个残基用一个球来表示,模拟分子的表面,并采用软化分子表面的方式考虑了分子的柔性。由于蛋白质表面氨基酸残基Arg、Lys、Asp、Glu和Met具有较大的柔性,因此,
    
     北京工业大学工学博士学位论文
    一
    我们对蛋白质分子表面的这五种氨基酸模型作了修正,调整了残基球心的位置
    和半径的数值,使分子表面的氨基酸残基在对接时具有一定程度的可交叠性。
    在结构过滤中,将复合物界面残基成对偏好性引入到几何匹配过滤方法中,发
    展了双重过滤技术来筛选合理的结合模式。最后对这些保留下来的结构进行能
    量优化和打分排序以获得近天然结构(native-like structure)。打分函数中包括
    静电相互作用能、去水化自由能和范德华能。用该方法对26个蛋白质-蛋白质
    复合物体系作了测试,结果发现以上改进确实大大提高了自由态分子对接预测
    的成功率。其中,在胰蛋白酶-APPI复合物结构预测中,尽管抑制剂 APPI的 15
    号残基Arg侧链在复合物形成过程中发生了较大的构象变化,但其近天然结构
    仍然被找到了,并在打分中排在了第一位。
     仅)在软对接方法的基础上,我们对过滤方案作了进一步的改进,得到了
    依赖于复合物类型的分子对接方法。根据复合物界面的特性,对蛋白酶-抑制剂
    类、抗原。抗体类和其它类复合物采用不同的过滤方法,其中考虑了界面几何匹
    配、疏水性和静电互补性。用该方法对46个蛋白质-蛋白质复合物体系进行了
    对接测试,其中有 25个蛋白酶-抑制剂类、11个抗体-抗原类、10个其它类型,
    结果全部找到了近天然结构,并有30个体系的近天然构象排在了前20位。与
    第一部分的软对接算法相比,依赖于复合物类型的对接方法抓住了不同类型复
    合物中分子间相互作用与识别的重要差异,能够在过滤中筛选到更多的近天然
    构象,提高了结构预测的成功率。
     另外,采用该分子对接方法,我们对 2002年 CAPRI(Critical Assessment o7
    Prediction of Interactions)学术大会提供的三种不同突变形式的骆驼 VHH抗体
    和胰腺a.淀粉酶分子之间相互作用与识别进行了预测(分别记作T04、T05和
    T06)。才据抗体分于的 CDRS(CO*plCmeflt盯ity DCtC*illiflg RCgioflS)与其抗
    原发生结合这一假设来限制抗体表面的搜索范围。在几何匹配过滤和静电相互
    作用能过滤后,对筛选得到的结构用最陡下降法优化,然后再进行打分排序。
     互I
    
     摘 要
    打分中考虑了去水化自由能和静电相互作用能,分别用修正的原子接触能模型
    和有限差分解泊松-玻尔兹曼方程方法(Finite Difference Polsson刁oltZmann,
    FDPB)来计算。在预测结果中,对T06,有两个近天然结构排在了前五位。
    可以认为此结构的预测是非常成功的,这也得到了CAPRI检测小组的肯定。
    对T04和 T05,尽管没有找到近天然构象,但预测也并不是完全失败的,在前
    五个结构中,我们各找到了两个这样的结构,其中抗体识别到了抗原决定簇一
    半以上的氨基酸残基,但抗体相对于抗原的方位是错误的。与其他参赛小组相
    比,我们的预测结果还是可信的。这也进一步说明依赖于复合物类型的软对接
    算法与相关的生物信息相结合能够对一些复合物的结构作出很好的预测,可以
    作为研究分子识别的有效工具。
     ()通过分析蛋白质分子间静电、疏水作用和嫡效应与相对于蛋白质晶体
    结构主链原子的均方根偏差(ILMSD)的相关性,定量地考察了它们在蛋白质-
    蛋?
Investigation of protein-protein interaction and recognition is an important problem in the field of molecular biology. Given the difficulties in experimentally determining the structures of protein complexes, the docking method to computationally predict potential binding modes is currently of great interest. The final goal of molecular docking is to construct a complex using the unbound structures of the receptor and the ligand. For the unbound docking problem, it is necessary to take into account molecular flexibility in some degree. In protein-protein docking, however, because of the large number of atoms and degrees of freedom involved, it has been very difficult to simulate the conformational changes occurring during the formation of complexes. Additionally, a search procedure may produce millions of docked structures. How to drastically eliminate the incorrect structures and retain the near-native ones as many as possible before scoring them with a refined energy function is a serious challenge topic of current researches.
    The main goal of a scoring function is to distinguish between the near-native structures and a large number of incorrect ones within a reasonable time. Currently, the scoring functions used in many docking algorithms are based on the thermodynamic hypothesis that the native protein-protein complex is the structure with the lowest binding free energy. Thus, an important step in this approach is to develop the binding free energy functions that are computationally feasible and yet accurate enough to discriminate the near-native conformations from the incorrect ones.
    
    
    
    In the present work three parts are included. In the first part, aiming at the unbound docking problem, we have proposed an efficient protein-protein soft docking method. In the second part, the complex type-dependent docking algorithm is developed according to the soft docking method. The last part is a study on the scoring function in protein-protein docking algorithm. The main concept of this work includes the following aspects:
    (1) Our soft docking method is proposed based on Wodak and Janin's protein-protein rigid docking algorithm. In our method, the "simplified protein" model is used with one sphere per residue, and the molecule is of flexibility to some extent taken into account through softening the molecular surface. Because the large conformational changes occurring upon complex formation are frequently confined to the protein surface, especially for the side chains of flexible amino acids Arg, Lys, Asp, Glu and Met, the locations of the mass centers and the values of radii of these residues are modified for modeling protein surface. This tolerates overlap in some degree between the amino acid side chains on the surfaces of the receptor and the ligand. The interface residue pairing preferences are introduced into the geometric matching .filter, and a double filtering technique is implemented to eliminate most of the unreasonable binding modes. The energy minimization is performed on the retained structures, and then these structures are evaluated with a scoring function which includes electrostatic, desolvation and van der Waals energy terms. The 26 complexes were used to test this docking algorithm and good results were obtained. The results indicate that because of the improvement in two aspects mentioned above, the successful probability of the docking prediction is increased from unbound structures. For the case of enzyme trypsin-inhibitor APPI, although the large conformational change occurs to the Arg 15 side chain of APPI upon complex
    
    
    
    
    formation, the native-like structure was still found and ranked first.
    (2) On the basis of the soft docking method, the further improvement is made in the filtering stage to develop the complex type-dependent docking algorithm. In terms of the interface features of complexes, the different filtering methods based on the geometric matching, hydrophobicity and electrostatic complementarity of interfaces are applied to different types of complexes including
引文
1 李林.蛋白组学的进展.生物化学与生物物理进展.2000,27(3):227~231
    2 王大成.21世纪的生物学后基因时代中的结构生物学.生物化学与生物物理进展.2000,27(40):340~344
    3 S. Vajda, Z. Weng, R. Rosenfeld and C. Delisi. Effect of Conformational Flexibility and Solvation on Receptor-Ligand Binding Free Energy. Biochemistry. 1994, 33:13977~13988
    4 J. Novotny, R. E. Bruccoleri and F. A. Saul. On the Attribution of Binding Energy in the Antigen-Antibody Complexes mcpc 603. D1.3 and hyhe1-5. Biochemistry. 1989, 28:4735~4749
    5 N. Horton and M. Lewis. Calculation of the Free Energy of Association for Protein Complexes. Prot. Sci. 1992, 1: 169~181
    6 L. Wesson and D. Eisenberg. Atomic Solvation Parameters Applied Molecular Dynamics of Proteins in Solution. Prot. Sci. 1992, 1: 227~235
    7 K. Gulukota, S. Vajda and C. DeLisi. Peptide Docking Using Dynamic Programming. J.Comput. Chem. 1996, 17:418~428
    8 G. Schreiber and A. R. Fersht. Rapid, Electrostatically Assisted Association of Proteins. Nal.Struct. Biol. 1996, 3:427-431
    9 C.J. Camacho, S. R. Kimura, C. DeLisi and S. Vajda. Kinetics of Desolvation Mediated Protein-Protein Binding. Biophys. 2000, 78:1094~1105
    10 C.J. Camacho, Z. Weng, S. Vajda and C. DeLisi. Free Energy Landscapes of Encounter Complexes in Protein-Protein Association. Biophys. 1999, 76:1166~1178
    11 S.R. Kimura, R. C. Brower, S. Vajda and C. J. Camacho. Dynamical View of the Positions
    
    of Key Side Chains in Protein-Protein Recognition. Biophys. 2001, 80:635~642
    12 J.Y. Trosset and H. A. Scheraga. Reaching the Global Minimum in Approach Using Bezier Splines. Proc. Natl. Acad. Sci. USA. 1998, 95:8011~8015
    13 J.Y. Trosset and H. A. Scheraga. PRODOCK: Software Package for Protein Modeling and Docking. J. Comput. Chem. 1999, 20:412~427
    14 M. Totrov and R. Abagyan. Flexible Protein-Ligand Docking by Global Energy Optimization Internal Coordinates. Proteins. 1997, 31:215~220
    15 J. Holland. Adaptation in Nature and Artificial Systems. University of Michigan Press, 1975:120~142
    16 D. E. Goldberg. Genetic Algorithm in Search, Optimization, and Machine Learning.Addison-Wesley, Reading, 1989
    17 P.J.M. Van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and Applications.D. Reidel Publishing Company, 1988
    18 R. Norel, S. L. Lin, H. Wolfson and R. Nussinov. Shape Complementarity at Protein-Protein Inter-Faces. Biopolymers. 1994, 34:933-940
    19 R. Norel, D. Petrey, H. Wolfson and R. Nussinov. Examination of Shape Complementarity in Docking of Unbound Proteins. Proteins. 1999, 35:403~419
    20 R. Norel, H. Wolfson and R. Nussinov. Small Molecule Recognition: Solid Angles Surface Representation and Shape Complementarity. Comb. Chem. High Throughput Screen. 1999,2:177~191
    21 R. Norel, D. Fischer, H. Wolfson and R. Nussinov. Molecular Surface Recognition by a Computer Vision Based Technique. Prot. Eng. 1994, 7:39~46
    22 R. Norel, S. L. Lin, H. Wolfson and R. Nussinov. Molecular Surface Complementarity at Protein-Protein Interfaces: the Critical Role Played by Surface Normals at Well Placed,Sparse Points in Docking. J. Mol. Biol. 1995, 252:263~273
    
    
    23 D. Fischer, S. L. Lin, H. Wolfson and R. Nussinov. A Geometry Based Suite of Molecular Docking Processes. J. Mol. Biol. 1995, 248:459~477
    24 R. Norel, S. L. Lin, D. Xu, H. Wolfson and R. Nussinov. Molecular Surface Variability and Induced Conformational Changes upon Protein-Protein Association. Structure, Motion, Interaction and Expression of Biological Macromolecules. Adenine Press, 1998:33~51
    25 R. Norel, F. Sheinerman, D. Petrey and B. Honig. Electrostatic Contributions to Protein-Protein Interactions: Fast Energetic Filters for Docking and Their Physical Basis. Prot. Sci.2001, 10(11):2147~2161
    26 D. W. Ritchie and G. J. L. Kemp. Protein Docking using Spherical Polar Fourier Correlations. Proteins. 2000, 39:178~194
    27 P.N. Palma, L. Krippahl, J. E. Wampler and J. J. G. Moura. BIGGER: A New Soft Docking Algorithm for Predicting Protein Interactions. Proteins. 2000, 39:372~384
    28 R.M. Burnett and J. S. Taylor. DARWIN: A Program for Docking Flexible Molecules.Proteins. 2000, 41:173~191
    29 E.J. Gardiner, P. Willett and P. J. Artymiuk. Protein Docking Using a Genetic Algorithm.Proteins. 2001, 44:44~56
    30 T.J. Hou, J. M. Wang, L. R. Chen and X. J. Xu. Automated Docking of Peptides and Proteins by Using Genetic Algorithm Combined with a Tabu Search. Prot. Eng. 1999, 12:639~647
    31 E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. Friesem, C. Aflalo and I. Vakser.Molecular Surface Recognition: Determination of Geometric Fit between Protein and Their Ligands by Correlation Techniques. Proc. Natl. Acad. Sci. USA. 1992, 89:2195~2199
    32 H.A. Gabb, R. M. Jackson and M. J. E. Sternberg. Modelling Protein Docking Using Shape Complimentarity, Electrostatics, and Biochemical Information. J. Mol. Biol. 1997, 272:106~120
    
    
    33 I. A. Vakser. Evaluation of GRAMM Low-Resolution Docking Methodology on the Hemagglutinin-Antibody Complex. Proteins. 1997, 11:226~320
    34 R. Chen and Z. P. Weng. Docking Unbound Proteins Using Shape Complementarity,Desolvation, and Electrostatics. Proteins. 2002, 47:281~294
    35 J.G. Mandell, V. A. Roberts, M. E. Pique, V. Kotlovyi, J. C. Mitchell, E. Nelson, I. Tsigelny and L. F. Ten Eyck. Protein Docking Using Continuum Electrostatics and Geometric Fit.Prot. Eng. 2001, 14(2):105~113
    36 S. Miyazawa and R. L. Jernigan. Estimation of Effective Interresidue Contact Energies from Protein Crystal Structures: Quasi-Chemical Approximation. Macromolecules. 1985, 18:534~552
    37 S. Miyazawa and R, L. Jernigan. Residue-Residue Potentials with a Favorable Contact Pair Term and Unfavorable High Packing Density Term, for Simulation and Threading. J. Mol.Biol. 1996, 256:623~644
    38 C. Zhang, G. Vasmatzis, J. L. Cornette and C. DeLisi. Determination of Atomic Desolvation Energies from the Structures of Crystallized Protein. J. Mol. Biol. 1997, 267(3):707~726
    39 C. Zhang, J. Chen and C. DeLisi. Protein-Protein Recognition: Exploring the Energy Funnels near the Binding Sites. Proteins. 1999, 34:255~267
    40 J.C. Camacho, D. W. Gatchel, S. R. Kimura and S. Vajda. Scoring Docked Conformations Generated by Rigid Body Protein-Protein Docking. Proteins. 2000, 40:525~537
    41 E. Althaus, O. Kohlbacher, H. P. Lenhof and P. Muller. A Combinatorial Approach to Protein Docking with Flexible Side-Chains. CAM. In RECOMB 2000-Proceedings of the Fourth International Conference on Computational Molecular Biology, Tokyo, 2000:15~24
    42 H. Claussen, C. Buning, M. Rarey and T. Lengauer. FlexE: Efficient Molecular Docking Considering Protein Structure Variations. J. Mol. Biol. 2001, 308:377~395
    43 T.J. Ewing, S. Makino, A. G. Skillman and I. D. Kuntz. DOCK 4.0: Search Strategies for
    
    Automated Molecular Docking of Flexible Molecule Databases. J. Comput. Aided Mol. Des.2001, 15:411~428
    44 J.C. Camacho and S. Vajda. Protein Docking along Smooth Association Pathways. Proc.Natl. Acad. Sci. USA. 2001, 98:10636~10641
    45 S.J. Wodak and J. Janin. Computer Analysis of Protein-Protein Interaction. J. Mol. Biol.1978, 124:323~342
    46 I. Kuntz, J. Blaney, S. Oatley, R. Langridge and T. Ferrin. A Geometric Approach to Macromolecule-Ligand Interactions. J. Mol. Biol. 1982, 161:269~288
    47 D.S. Goodsell and A. J. Olson. Automated Docking of Substrates to Proteins by Simulated Annealing. Proteins. 1990, 8:195~202
    48 G.M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew and A. J.Olson. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comp. Chem. 1998, 19:1639~1662
    49 A. Tovchigrechko and I. A. Vakser. How Common is the Funnel-Like Energy Landscape in Protein-Protein Interactions? Prot. Sci. 2001, 10:1572~1583
    50 I. A. Vakser. Low Resolution Docking: Prediction of Complexes for Underdetermined Structures. Biopolymers. 1996, 39:455~464
    51 R. Abagyan and P. Argos. Optimal Protocol and Trajectory Visualization for Conformational Searches of Peptide and Proteins. J. Mol. Biol. 1992, 225:519~532
    52 R. Abagyan and M. Totrov. Biased Probability Monte Carlo Conformational Searches and Electrostatic Calculations for Peptides and Proteins. J. Mol. Biol. 1994, 235:983~1002
    53 M. Totrov and R. Abagyan. Detailed ab initio Prediction of Lysozyme-Antibody Complex with a 1.6 (?) Accuracy. Nat. Struct. Biol. 1994, 4:259~263
    54 Z. Li and H. A. Scheraga. Monte Carlo-Minimization Approach to the Multiple Minima Problem in Protein Folding. Proc. Natl. Acad. Sci. USA. 1987, 84:6611~6615
    
    
    55 B. Sandak, R. Nussinov and H. J. Wolfson. An Automated Computervision and Robotics Based Technique for 3-D Flexible Biomolecular Docking and Matching. Comp. Appl.BioSci. 1995, 11:87~99
    56 B. Sandak, H. J. Wolfson and R. Nussinov. Hinge-Bending at Molecular Interfaces:Automated Docking of a Dihydroxyethylene-Containing Inhibitor of the HIV-1 Protease. J.Biomol. Struct. Dyn. Proceedings of the Ninth Conversation, New York, 1996. Adenine Press, 233~252
    57 B. Sandak, R. Nussinov and H. J. Wolfson. Docking of Conformationally Flexible Proteins.Seventh Symposium on Combinatorial Pattern Matching, Laguna Beach, California, 1996.New York Springer Verlag, Lecture Notes in Computer Science. 1075:271~287
    58 B. Sandak, H. J. Wolfson and R. Nussinov. Flexible Docking Allowing Induced Fit in Proteins: Insights from an Open to Closed Conformational Isomers. Proteins. 1998, 32:159~174
    59 B. Sandak, R. Nussinov and H. J. Wolfson. A Method for Biomolecular Structural Recognition and Docking Allowing Conformational Flexibility. J. Comput. Biol. 1999, 5:631~654
    60 R.M.A. Knegtel, I. D. Kuntz and C. M. Oshiro. Molecular Docking to Ensembles of Protein Structures. J. Mol. Biol. 1997, 266:424~440
    61 M.L. Connolly. Solvent-Accessible Surfaces of Proteins and Nucleic Acids. Science. 1983,221:709~713
    62 B.K. Shoichet, A. R. Leach and I. D. Kuntz. Ligand Solvation in Molecular Docking.Proteins. 1999, 34:4~16
    63 D.S. Goodsell, G. M. Morris and A. J. Olson. Automated Docking of Flexible Ligands Applications of AutoDock. J. Mol. Recog. 1996, 9:1~5
    64 M.S. Ran and A. J. Olson. Modelling of Factor Xa-Inhibitor Complexes: A Computational
    
    Flexible Docking Approach. Proteins. 1999, 34:173~183
    65 F. Osterberg, G. M. Morris, M. F. Sanner, A. J. Olson and D. S. Goodsell. Automated Docking to Multiple Target Structures: Incorporation of Protein Mobility and Structural Water Heterogeneity in AutoDock. Proteins. 2002, 46:34~40
    66 E.E. Lattman. Optimal Sampling of the Rotation Function. Acta. Crystallogr. 1972, B28:1065~1068
    67 G. Moont, H. A. Gabb, M. J. E. Sternberg. Use of Pair Potentials across Protein Interfaces in Screening Predicted Docked Complexes. Proteins. 1999, 35:364~373
    68 R.M. Jackson, H. A. Gabb and M. J. E. Sternberg. Rapid Refinement of Protein Interfaces Incorporating Solvation: Application to the Docking Problem. J. Mol. Biol. 1998, 276:265~285
    69 R.M. Jackson and M. J. E. Sternberg. A Continuum Model for Protein-Protein Interactions:Application to the Docking Problem. J. Mol. Biol. 1995, 250:258~275
    70 Z. Weng, S. Vajda and C. DeLisi. Prediction of Complexes Using Empirical Free Energy Functions. Prot. Sci. 1996, 5:614~626
    71 F. Jiang and S. H. Kim. "Soft Docking": Matching of Molecular Surface Cubes. J. Mol.Biol, 1991, 219:79~102
    72 J. Cherfils, S. Duquerroy and J. Janin. Protein-Protein Recognition Analyzed by Docking Simulation. Proteins. 1991, 11:271~280
    73 J. Cherfils, T. Bizebard, M. Knossow and J. Janin. Rigid-Body Docking with Mutant Constraints of Influenza Hemagglutinin with Antibody HC19. Proteins. 1994, 18: 8~18
    74 M. Levitt. A Simplified Representation of Protein Conformation for Rapid Simulation of Protein Folding. J. Mol. Biol. 1976, 104:59~107
    75 J. Cherfils and J. Janin. Protein Docking Algorithms: Simulating Molecular Recognition.Curr. Opin. Struct. Biol. 1993, 3:265~269
    
    
    76 R. Najmanovitch, J. Kuttner, V. Sobolev and M. Edelman. Side-Chain Flexibility in Proteins upon Ligand Binding. Proteins. 2000, 39:261~268
    77 F. Glaser, D. M. Steinberg, I. A Vakser and N. Ben Tal. Residue Frequencies and Pairing Preferences at Protein-Protein Interfaces. Proteins. 2001, 43:89~102
    78 B.K. Lee and F. M. Richards. The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 1971, 55:379~400
    79 B.K. Shoichet and I. D. Kuntz. Protein Docking and Complementarity. J. Mol. Biol. 1991,221:327~346
    80 D. van der Spoel, A. R. van Buuren, E. Apol, P. J. Meulenhoff, A. L. T. M. Sijbers, B. Hess,K. A. Feenstra and et al. Biomolecular Simulation: the GROMACS User Manual.Groningen, Netherlands, Biomos, 1991
    81 W.F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hünenberger, R. Krüger, A. E. Mark,W. R. P. Scott and et al. Biomolecular Simulation: The GROMOS96 Manual and User Guide. Zürich, Switzerland, Hochschulverlag AG an der ETH, 1996
    82 J. Janin, S. Miller and C. Chothia. Surface, Subunit Interfaces, and Interior of Oligomeric Proteins. J. Mol. Biol. 1988, 204:155~164
    83 S. Miller. The Structure of Interfaces between Subunits of Dimeric and Tetrameric Proteins.Prot. Eng. 1989, 3:77~83
    84 P. Argos. An Investigation of Protein Subunit and Domain Interfaces. Prot. Eng. 1988, 2:101~113
    85 S. Jones and J. M. Thornton. Protein-Protein Interactions: A Review of Protein Dimer Structures. Prog. Biophys. Mol. Biol. 1995, 63:31~65
    86 J. Janin and C. Chothia. The Structure of Protein-Protein Recognition Sites. J. Biol. Chem.1990, 265:16027~16030
    87 S. Duquerroy, J. Cherfils and J. Janin. Protein-Protein Interaction: An Analysis by Computer
    
    Simulation. Ciba Found. Symp. 1991, 161:237~249
    88 J.M. Thornton and S. Jones. Principles of Protein-Protein Interactions. Proc. Natl. Acad. Sci.USA. 1996, 93:13~20
    89 D.R. Davies and G. H. Cohen. Interactions of Protein Antigens with Antibodies. Proc. Natl.Acad. Sci. USA. 1996, 93:7~12
    90 R.M. Jackson. Comparison of Protein-Protein Interactions in Serine Protease-Inhibitor and Antibody-Antigen Complexes: Implications for the Protein Docking Problem. Prot. Sci.1999, 8:603~613
    91 K. Decanniere, T. R. Transue, A. Desmyter, D. Maes, S. Muyldermans and L. Wyns.Degenerate Interfaces in Antigen-Antibody Complexes. J. Mol. Boil. 2001, 313:473~478
    92 P. Chakrabarti and J. Janin. Dissecting Protein-Protein Recognition Sites. Proteins. 2002, 47:334~343
    93 B.R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus.Charmm: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comp. Chem. 1983, 4:187~217
    94 J. Janin. Welcome to CAPRI: A Critical Assessment of PRedicted Interactions. Proteins.2002, 47:257
    95 S. Vajda, I. A. Vakser, M. J. E. Steinberg and J. Janin. Modeling of Protein Interactions in Genomes. Proteins. 2002, 47:444~446
    96 S. Muyldermans, C. Cambillau and L. Wyns. Recognition of Antigens by Single Domain Antibody Fragments: The Superfluous Luxury of Paired Domains. Trends in Biochem, Sci.2001, 26:230~234
    97 A. Desmyter, S. Spinelli, F. Payan, M. Lauwereys, L. Wyns, S. Muyldermans and C.Cambillau. Three Camelid VHH Domains in Complex with Porcine Pancreatic a-Amylase. J.Biol. Chem. 2002, 227:23645~23650
    
    
    98 I. Halperin, B. Ma, H. Wolfson and R. Nussinov. Principles of Docking: An Overview of Search Algorithms and a Guide to Scoring Functions. Proteins. 2002, 47:409~443
    99 C.V. Gegg, K. E. Bower and C. R. Mattews. Probing Minimal Independent Folding Units in Dihydrofolate Reductase. Prot. Sci. 1997, 6:1885~1892
    100 D. A. Pearlman and P. S. Charifson. Are Free Energy Calculations Useful in Practice? A Comparison with Rapid Scoring Functions for the p38 MAP Kinase Protein System. J. Med.Chem. 2001,44:3417~3423
    101 D. Hoffmann, B. Kramer, T. Washio, T. Steinmetzer, M. Rarey and T. Lengauer. Two-Stage Method for Protein-Ligand Docking. J. Med. Chem. 1999, 42:4422~4433
    102 S. L. Lin, R. Nussinov, D. Fischer and et al. Molecular Surface Representations by Sparse Critical Points. Proteins. 1994, 18:94~101
    103 P. H. Walls and M. J. Sternberg. New Algorithm to Model Protein-Protein Recognition Based on Surface Complementarity. Applications to Antibody-Antigen Docking. J. Mol.Biol. 1992, 228:277~297
    104 C. Bissantz, G. Folkers and D. Rognan. Protein-Based Virtual Screening of Chemical Databases. 1. Evaluation of Different Docking/Scoring Combinations. J. Med. Chem. 2000,43:4759~4767
    105 P. S. Charifson, J. J. Corkery, M. A. Murcko and W. P. Walters. Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins. J. Med. Chem. 1999, 42:5100-5109
    106 G. E. Terp, B. N. Johansen, I. T. Christensen and F. S. Jorgensen. A New Concept for Multidimensional Selection of Ligand Conformations (Multiselect) and Multidimensional Scoring (Multi-Score) of Protein-Ligand Binding Affinities. J. Med. Chem. 2001, 44:2333~2343
    107 H. J. Bohm and G. Klebe. What Can We Learn from Molecular Recognition in Protein-
    
    Ligand Complexes for the Design of New Drugs? Angew. Chem. Int. 1996, 35:2588~2614
    108 E. A. Padlan. On the Nature of Antibody Combining Sites: Unusual Structural Features that May Confer on These Sites an Enhanced Capacity for Binding Ligands. Proteins. 1990, 7:112~124
    109 P. Zielenkiewicz and A. Rabaczenko. Protein-Protein Recognition: Method for Finding Complementary Surfaces of Interacting Proteins. J. Theor. Biol. 1984, 111:17~30
    110 M. Connolly. Shape Complementarity at the Hemoglobin α_1 β_1 Subunit Interface.Biopolymers. 1986, 25:1229~1247
    111 J. Greer and B. L. Bush. Macromolecular Shape and Surface Maps by Solvent Exclusion.Proc. Natl. Acad. Sci. USA. 1978, 75:303~307
    112 C. J. Tsai, D. Xu and R. Nussinov. Protein Folding via Binding, and Vice Versa. Fold Design.1998, 3:71~80
    113 C. J. Tsai, B. Ma and R. Nussinov. Folding and Binding Cascades: Shifts in Energy Landscapes. Proc. Natl. Acad. Sci. USA. 1999, 96:9970~9972
    114 M. Vieth, J. D. Hirst, B. N. Dominy, H. Dailer and C. L. Brooks. Ⅲ. Assessing Search Strategies for Flexible Docking. J. Comp. Chem. 1998, 19:1623~1631
    115 M. Vieth, J. D. Hirst, A. Kolinski and C. L. Brooks. Ⅲ. Assessing Energy Functions for Flexible Docking. J. Comp. Chem. 1998, 19:1612~1622
    116 B. A. Luty, Z. R. Wasserman, P. F. W. Stouten, C. N. Hodges, M. Zacharias and J. A.McCammon. A Molecular Mechanics/Grid Method Evaluation of Ligand-Receptor Interactions. J. Comp. Chem. 1995, 16:454~464
    117 S. L. Lin and R. Nussinov. Molecular Recognition via Face Center Representation of a Molecular Surface. J. Mol. Graph. 1996, 14:78~90
    118 G. Ausiello, G. Cesareni and M. Helmer-Citterich. ESCHER: A New Docking Procedure Applied to the Reconstruction of Protein Tertiary Structure. Proteins. 1997, 28:556~567
    
    
    119 B. K. Shoichet, D. L. Bodian and I. D. Kuntz. Molecular Docking Using Shape Descriptors.J. Comp. Chem, 1992, 13:380~397
    120 C. Frommel, K. P. Peters and J. Fauck. The Automatic Search for Ligand Binding Sites in Proteins of Known Three Dimensional Structure Using only Geometric Criteria. J. Mol. Biol.1996, 256:201~213
    121 S. Y. Yue. Distance Constrained Molecular Docking by Simulated Annealing. Prot. Eng.1990, 4:177~184
    122 M. J. Betts and M. J. E. Sternberg. An Analysis of Protein Conformational Changes on Protein-Protein Association: Implications for Predictive Docking. Prot. Eng. 1999, 12:271~283
    123 M. Mangoni, D. Roccatano and A. Di Nola. Docking of Flexible Ligands to Flexible Receptors in Solution by Molecular Dynamics Simulation. Proteins. 1999, 35:153~162
    124 S. Zhao, D. S. Goodsell and A. J. Olson. Analysis of a Data Set of Paired Uncomplexed Protein Structures: New Metrics for Side-Chain Flexibility and Model Evaluation. Proteins.2001, 43:271~279
    125 R. Nussinov and H. Wolfson. Efficient Detection of Three-Dimentional Structural Motifs in Biological Macromolecules by Computer Vision Techniques. Proc. Natl. Acad. Sci. USA.1991, 88:10495~10499
    126 B. Honig and A. Nicholls. Classical Electrostatics in Biology and Chemistry. Science. 1995,268:1144~1149
    127 A. Nicholls and B. Honig. A Rapid Finite Difference Algorithm, Utilizing Successive Over Relaxation to Solve the Poisson-Boltzmann Equation. J. Comput. Chem. 1991, 12:435~445
    128 A. Nicholls. GRASP: Graphical Representation and Analysis of Surface Properties. New York Columbia University Press, 1992
    129 J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty, A. Lin, J. Antosiewicz, M.
    
    K. Gilson, B. Bagheri, L. R. Scott and J. A. McCammon. Electrostatics and Diffusion of Molecules in Solution: Simulations with the University of Houston Brownian Dynamics Program. Comput. Phys. Commun, 1995, 91:57~95
    130 M. Rarey, B. Kramer and T. Lengauer. Docking of Hydrophobic Ligands with Interaction-Based Matching Algorithms. Bioinformatics. 1999, 15:243~250
    131 X.H. Ma. C. X. Wang, C. H. Li and W. Z. Chen. A Fast and Valuable Empirical Approach on Protein-Protein Binding Free Energy Calculation. Prot. Eng. 2002, 15(8):677~681
    132 D. Eisenberg and A. D. McLachlan. Solvation Energy in Protein Folding and Binding.Nature. 1986, 319:199~203
    133 T. Ooi, M. Oobatake, G. Nemethy and et al. Accessible Surface Areas as a Measure of the Thermodynamic Parameters of Hydration of Peptides. Proc. Natl. Acad. Sci. USA. 1987, 84:3086~3090
    134 S. Vajda, Z. Weng and C. DeLisi. Extracting Hydrophobicity Parameters from Solute Partition and Protein Mutation/Unfolding Experiments. Prot. Eng. 1995, 8:1081~1092
    135 Y. K. Kang, G. Nemethy and H. A. Scheraga. Free Energies of Dydration of Solute Molecules 1. Improvement of the Hydration Shell Model by Exact Computations of Overlap Volumes. J. Chem. Phys. 1987, 91:4105~4109
    136 J. D. Augspurger and H. A. Scheraga. An Efficient Differentiable Hydration Potential of Peptides and Proteins. J. Comp. Chem. 1996, 17:1549~1558
    137 P. F. W. Stouten, C. Frommel, H. Nakamura and et al. An Effective Solvation Term Based on Atomic Occupancies for Use in Protein Simulations. Mol. Simul. 1993, 10:97~120
    138 W. C. Still, A. Tempczyl, R. C. Hawley and et al. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc. 1990, 112:6127~6129
    139 S.D. Pickett and M. J. Sternberg. Empirical Scale of Side-Chain Conformational Entropy in Protein Folding. J. Mol. Biol. 1993, 231:825~839
    
    
    140 A. Shrake and J. A. Rupley. Environment and Exposure to Solvent of Protein Atoms.Biochemistry. 1973, 79:353~371
    141 D. W. Gatchell, S. Dennis and S. Vajda. Discrimination of Near-Native Protein Structures from Misfolded Models by Empirical Free Energy Functions. Proteins. 2000, 41:518~534

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700