认知无线电频谱感知及资源分配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信需求的高速增长,频谱资源的稀缺与实际频谱固定分配机制造成的频谱总体利用率偏低之间的矛盾是制约未来移动通信快速发展的瓶颈。认知无线电(Cognitive Radio, CR)技术能主动感知无线通信环境,动态地接入未被授权用户(Primary User, PU)使用的空闲频段,为解决上述矛盾开辟了一条崭新的途径。然而,频谱资源的动态性和复杂性为CR系统的设计实现带来了挑战。
     本文围绕CR动态频谱共享系统展开了研究,涵盖了频谱感知、频谱分配和功率控制等三个方面,主要创新性成果如下:
     (1)针对基于OFDM的认知无线电宽带频谱感知问题进行了研究,提出了一种联合频谱感知方法。该方法利用了基于循环前缀相关检测的快速性和基于MUSIC算法对频谱空洞定位有效性的优点,在有效降低频谱感知时间的同时,保证了算法的检测性能。通过仿真验证,与传统基于功率谱的能量检测法和一阶导数法相比,联合频谱感知能够有效地降低感知开销,提高认知用户对空闲频谱的利用率。尤其是在多径衰落信道下,该方法的优势更为突出。
     (2)研究了认知无线电MAC层频谱检测周期优化问题。针对认知无线电系统中频谱检测的频率直接影响系统容量以及与授权用户产生冲突的概率问题,分析了授权用户频谱使用的特性,对授权用户行为进行统计建模,提出一种自适应频谱检测算法。该算法通过引入“控制因子”,在保证不对授权用户产生干扰和CR系统稳定性的约束下,自适应地调整频谱感知频率,与周期检测算法相比有效地提高了频谱利用率并减小了系统冲突概率和频谱检测开销,同时理论和仿真证明该算法具有良好的实用性和灵活性。
     (3)针对基于非连续正交频分复用(Non-Contiguous OFDM, NC-OFDM)的认知系统动态频谱分配策略问题进行了研究,提出了一种多用户子信道、功率、比特联合分配的方法。在确保不对授权用户产生干扰的前提下,该算法引入“比例公平”的原则,并充分考虑受限子信道上的功率分配,以保证其获得最优发射功率,从而提高了系统容量和频谱效率。仿真结果表明:与最大化系统容量算法相比,该算法保障了每个认知用户都能满足一定的通信要求;同时,与直接设定功率受限子信道上的功率为其干扰门限值的算法相比,该算法提高了系统容量。算法实现过程中,先分配子信道后分配功率的方法,更利于工程的实现。
     (4)针对分布式CR系统中认知用户的功率控制问题进行了研究,采用博弈论的方法实现对认知用户的功率控制,提出了基于信干噪比效用函数的非合作博弈功率控制算法(NPGP_SINR)和基于归一化效用函数的非合作博弈功率控制算法(NPGP_NUF),并证明了两种算法都存在纳什均衡且均衡点唯一。仿真分析表明:提出的两种算法性能相比于NPG算法和NPGP算法都有明显改善,即具有相对更低的发射功率和较高的效用;且NPGP_NUF算法具有最低的复杂度,其以牺牲少量的用户效用来换取算法的时效性。NPGP_SINR算法和NPGP_NUF算法都不受信号调制方式和接入方式的制约,可以广泛应用于CR系统的功率控制与分配。
With the rapid growth of the demand for wireless communication, thecontradiction between the scarcity of spectrum resources and the low actual spectralutilization by primary users (PU) is becoming a bottleneck restricting the developmentof the future mobile communications. Cognitive Radio (CR), with the ability ofproactively detecting wireless communication and dynamically accessing unusedspectral bands, is considered as a promising technique to solve the contradictionbetween low spectral utilization and the increasing spectral demand. However, thedynamic and complex spectrum resource makes the design and implementation of theCR system challenging.
     The dissertation has carried out analyses and investigations for the CR dynamicspectrum sharing system, including spectrum sensing, dynamic resource allocation andpower control. The main innovation results are as follows:
     (1) Firstly, the OFDM based CR broadband spectrum sensing is studied. A hybridspectrum sensing method combining with the correlation detection based on cyclicprefix and MUSIC algorithm is proposed. The rapidity of the correlation sensingalgorithm and the effectiveness of the MUSIC algorithm for the positioning of spectrumhole are combined together by the proposed method, which can shorten the time ofspectrum sensing with a certain sensing performance guaranteed. Results of thesimulation experiments show that the hybrid spectrum sensing method can effectivelylower the sensing cost and improves the utilization of idle spectrum by cognitive users(CU) compared with the traditional energy detection method based on power-spectrumand the first-order derivative method, and the advantage of which is more prominent inmultipath fading channels.
     (2) The optimal spectrum sensing cycle of CR system in MAC layer is studied inthe dissertation. The system throughput and the probability of collision between PU andCU are directly influenced by the frequency of the spectrum sensing. A statistical modelfor the PU activity is given through an in-depth analysis into the spectral usage patternsof PU. Based on that, an adaptive spectrum sensing algorithm is proposed. By introducing a “control factor”, the proposed algorithm can adaptively adjust thefrequency of spectrum sensing,while maintaining the CR system stability, as well asreducing the probability of collision between PU and CU. Compared with the cycledetection algorithm, the proposed algorithm which has low implementation complexityfor practical applications, can effectively improve the spectrum utilization, reduces theprobability of system conflicts and detection cost.
     (3) Next, the dynamic spectrum allocation policy for Non-Contiguous OFDM(NC-OFDM) CR system is studied, and a method for multi-user’s sub-channels, power,and bit joint allocation is proposed in this dissertation. The proposed method canmaximize the system capacity and improve the system spectral efficiency by allocatingthe sub-channel and power following the principle of “proportional fairness” withoutthe PU being interfered. Results of the simulation studies show that the algorithm hasprotected the communication requirement of each CU compared with the maximizesystem capacity algorithm. Meanwhile, the system capacity can be increased comparedwith the method of directly setting the interference threshold as the power of the limitedsub-channel. The way of firstly allocating sub-channels and then allocating power isutilized to reduce computational complexity, which is conducive to the projectapplication of the method.
     (4) Last, the dissertation discusses the power control of CU in the distributed CRsystem. The game theory is adopted to achieve the power control of CU. TheNPGP_SINR algorithm and the NPGP_NUF algorithm are proposed with the existenceand uniqueness of the Nash equilibrium of each algorithm demonstrated. Simulationresults show that the performance of the two proposed algorithms have significantlyimproved performances compared with both the NPG and NPGP algorithms, whichmeans the two proposed algorithms have relatively lower power and higher utility. TheNPGP_NUF algorithm has the lowest complexity, and the time effectiveness of whichcan be obtained by sacrificing a small amount of user utility. Both the NPGP_SINR andNPGP_NUF algorithm are not subject to the signal modulation and access mode.Therefore, they can be applied to the power control in the CR system.
引文
[1] J. P. Conti. The Internet of things[J]. Communications Engineer,2006,4(6):20-25
    [2] M. Martsola, T. Kiravuo, J. K. O. Lindqvis. Machine to machine communication in cellularnetworks[C]. IEEE International Conf. on Mobile Technology, Applications and Systems,Guangzhou,2005,1-6
    [3] T. S. Rappaport. Wireless communications: principles and practice[M]. Upper Saddle River, NJ,USA: Prentice Hall,2001,26-52
    [4] H. Yang. A road to future broadband wireless access: MIMO-OFDM-Based air interface[J].IEEE Communications Magazine, Jan.2005,43(1):53-60
    [5] S. Liu, Z. Luo, Y. Liu, et al. Spreading code design for downlink space-time-frequency spreadingCDMA[J]. IEEE Trans. on Vehicular Technology,2008,57(5):2933-2946
    [6] A. J. Paulraj, D. A. Gore, R. U. Nabar, etal. An overview of MIMO communications-a key togigabit wireless[J]. Proceedings of the IEEE, Feb.2004,92(2):198-218
    [7] T. Yucek, H. Arslan. A survey of spectrum sensing algorithms for cognitive radio applications[J].IEEE Communications Surveys&Tutorials,2009,11(1):116-130
    [8] FCC. Notice of proposed rule making and order[R]. FCC Et Docket, FCC,2003
    [9] FCC. Spectrum policy task force report[R]. FCC Et Docket, FCC,2002
    [10] M. Wellens, J. Wu, P. Mahonen. Evaluation of spectrum occupancy in indoor and outdoorscenario in the context of cognitive radio[C]. International Conf. on Cognitive Radio OrientedWireless Networks and Communications, Orlando USA, Aug.2007,420-427
    [11] R. Chiang, G. Rowe, K. Sowerby. A quantitative analysis of spectral Occupancy Measurementsfor Cognitive Radio[C]. IEEE65thVehicular Technology Conf., Dublin Ireland, April.2007,3016-3020
    [12] M. Islam, C. Koh, S. Oh, et al. Spectrum survey in singapore: occupancy measurements andanalyses[C]. International Conf. on Cognitive Radio Oriented Wireless Networks andCommunications, Singapore, May2008,1-7
    [13] L. Cranor, S. Wildman. Spectrum management: property rights, markets, and the commons[M].Massachusetts Avenue Cambridge,USA: MIT Press,2008,193-226
    [14] E. Kwerel, J. Williams. A proposal for a rapid transition to market allocation of spectrum[R].Washington: FCC, OSP Working Paper Series,2002
    [15] Goldsmith A. Performance of cognitive radios: myths and realities[D]. Berkeley: University ofCalifornia, Nov.2004,23-46
    [16] E. Hossain, V. Bhargava. Cognitive wireless communication networks[M]. Berlin, Germany:Springer,2007,45-134
    [17] I. F. Akyildiz, W. Y, Lee, M. C. Vuran, et al. Next generation dynamic spectrum access/cognitive radio wireless networks: a survey[J]. Computer Networks,2009,50(13):2127-2159
    [18] R. J. Bergen. Open spectrum: a path to ubiquitous connectivity[J]. ACM Queue,2003,1(3):60-68
    [19] J. Mitola III. Cognitive radio for flexible mobile multimedia communications[C]. IEEEInternational Workshop on Workshop on Mobile ultimedia Communications, San Diego, CA,1999,3-10
    [20] J. Mitola III, G. Q. Maguire. Cognitive radio: making software radios more personal[J]. IEEEPersonal Communications,1999,6(4):13-18
    [21] J. Mitola III. Cognitive radio: An integrated agent architecture for software defined radios[D].Stockholm, Sweden: Royal Institute Technology (KTH),2002,1-313
    [22] S. Haykin. Cognitive radio: brain-empowered wireless communications[J]. IEEE Journal onSelected Area in Communications,2005,23(2):201-220
    [23] W. Tuttlebee, et al.著,杨小牛等译.软件无线电技术与实现[M].北京:电子工业出版社,2004,1-35
    [24] T. C. Clancy III. Dynamic sectrum access in cognitive radio networks[M]. Washington, USA:University of Maryland,2009,40-95
    [25] R. W. Brodersen, A. Wolisz, D. Cabric, et al. CORWS: a cognitive radio approach for usage ofvirtual unlicensed spectrum[R]. Berkeley: Berkeley Wireless Research Center, UC Berkeley,Jul.29,2004
    [26] N. Hoven, A. Sahai. Power scaling for cognitive radio[C]. International Conf. on WirelessNetworks, Communications and Mobile Computing, Jun.2005,250-255
    [27] D. Cabric, S. M. Mishra, R. W. Broderson. Implementation issues in spectrum sensing forcognitive radio[C]. Asilomar Conf. on Signals, Systems, and Computers, Nov.2008,772-776
    [28] Project Summary. NeTS-ProWIN: high performance cognitive radio platform with integratedphysical and network layer capabilities[R]. New Brunswick: Rutgers University,2009
    [29] Defense Advanced Research Projects Agency (DARPA). The XG vision[EB/OL].http://www.ir.bbn. com/projects/xmac/vision.html, Aug.12,2012
    [30] M. oner, F. Jondral. Extracting the channel allocation information in a spectrum pooling systemusing a prefilter delay and multiply nonlinearity[C]. IEEE Workshop on Statistical SignalProcessing, St. Louis, MO, USA,2008,46-49
    [31] F. Capar, I. Martoyo, T Weiss, et al. Comparison of bandwidth utilization for controlled anduncontrolled channel assignment in a spectrum pooling system[C]. IEEE Vehicular TechnologyConf.,2012,1069-1073
    [32] J. Hillenbrand, T. Weiss, ft Jondral. Calculation of detection and false alarm probability inspectrum pooling systems[J]. IEEE Communications Letters, Apr.2005,9(4):349-351
    [33] T. Weiss, J. Hillenbrand, A. Krohn, et al. Efficient signaling of spectral resource in spectrumpooling systems[C]. IEEE Symposium on Communications and Vehicular Technology,Eindhoven Netherlands, Nov.2008,234-248
    [34] T. Weiss, A. Krohn, R Capar, et al. Synchronization algorithms and preamble concepts forspectrum pooling systems[C]. IST Mobile and Wireless Telecommunications Summit, Aveiro,Portugal, Jun.2003,788-792
    [35] T. Weiss, J, Hillenbrand, A. Krohn, et al. Mutual interference in an OFDM-based spectrumpooling systems[C]. IEEE Vehicular Technology Conf., Milan, Italy, May2004,1873-1877
    [36] F. Capar, F. Jondra. Resource allocation in a spectrum pooling system for packet radionetworks using OFDM/TDMA[C]. IST Mobile and Wireless Telecommunications Summit,Karlsruhe, Germany, Jun.2002,1-5
    [37] T. Weiss, M. Spiering, R Jondral. Quality of service in spectrum pooling systems[C]. IEEEPIMRC2004, Barcelona, Spain, Sept.2004,345-349
    [38] F. Capar, I. Martoyo, T. Weiss, et al. Analysis of coexistence strategies for cellular and wirelesslocal area networks[C]. IEEE Vehicular Technology Conf., Fall,2008,1812-1816
    [39] End-to-End Reconfiguration. E2R_WP5_D5.3_50727[EB/OL]. http://e2r.motlabs.com/Deliverables/E2R_WP5_D5.3_50727.pdf, Aug.29,2012
    [40] M. M. Buddhikot, P. Kolodzy, S. Miller, et al. DIMSUMnet: new directions in wirelessnetworking using coordinated dynamic spectrum access[C]. IEEE International Symposiam ona world of wireless Mobile and Multimedia Networks, Fall,2005,78-85
    [41] DIMSUMnet. Dynamic intelligent management of spectrum for ubiquitous mobile neworks[DB/OL]. http://www.bell-labs.com/user/mbuddhikot/dimsumnet/index.htm, Sept.05,2012
    [42] M.M.Buddhikot, K. Ryan. Spectrum management in coordinated dynamic spectrumaccessbased cellular networks[C]. IEEE International Symposium on New Frontiers inDynamic Spectrum Access Networks,2005,299-397
    [43] T. Kamakaris, M. M. Buddhikot, R. Iyer. A case for coordinated dynamic spectrum access incellular networks[C]. IEEE International Symposium on New Frontiers in Dynamic SpectrumAccess Networks,2005,289-298
    [44]赵成仕.认知无线网络中无线资源管理的研究[D].北京:北京邮电大学,2010,6-20
    [45] S. Haykin, D. Thomson, J. Reed. Spectrum sensing for cognitive radio[J]. Proceedings of theIEEE,2009,97(5):849-877
    [46] Yucek T, Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications[J].IEEE Communications Surveys Tutorials,2009,11(1):116-130
    [47] Q. Zhao, B. Sadler. A survey of dynamic spectrum access[J]. IEEE Signal Processing Magazine,2007,24(3):79-89
    [48] L. F. Akyildiz, W.Y. Lee. A survey on spectrum management in cognitiveradio networks[J].IEEE Communications Magazine,2008,46(4):40-48
    [49] T. A. Weiss, F. K. Jondral.Spectrum pooling: an iinnovative strategy for theenhancement ofspectrum efficiency[J]. IEEE Communications Magazine, Mar.2004,42(3):8-14
    [50] Z..Ji, K. J. R. Liu. Cognitive radios for dynamic spectrum access-dynamic spectrum sharing: agame theoretical overview[J]. IEEE Communications Magazine,2007,47(1):88-94
    [51]姚海腾.认知无线电频谱检测及资源分配的研究[D].北京:北京邮电大学,2011,12-95
    [52] D.Cabric, R.W. Brodersen. Physical layer design issues unique to cognitive radiosystems[C].IEEE International Symposium on Personal, Indoor and MobileRadio Communications, Berlin,Sept.2005,759-763
    [53] X. Kang, Y. C. Liang. Optimal power allocation for fading charnelsin cognitive radionetworks: Ergodic capacity and outage capacity[J]. IEEE Trans. on Wireless Communications,Feb.2009,8(2):940-950
    [54] Y. Chen, G. D. Yu, Z. Y. Zhang. On cognitive radio networks with opportunistic power controlstrategies in fading channels[J]. IEEE Trans. on Wireless Communications,2008,7(7):2752-2761
    [55] G. Huang, J. K. Tugnait. On cyclostationarity based spectrum sensing under uncertain gaussiannoise[J]. IEEE Trans. on Signal Processing,2013,61(8):2042-2054
    [56] A. Tani, R. Fantacci. A low-complexity cyclostationary-based spectrum sensing for uwb andwimax coexistence with noise uncertainty[J]. IEEE Trans. on Vehicular Technology,2010,59(6):2940-2950
    [57] H. Sadeghi, P. Azmi, H. Arezumand. Cyclostationarity-based soft cooperative spectrum sensingfor cognitive radio networks[J]. IET Communications,2012,6(1):29-38
    [58] S. Srinivasa, S. A. Jafar. How much spectrum sharing is optimal in cognitive radio networks?[J].IEEE Trans. on Wireless Communications,2008,7(10):4010-4018
    [59] F. Moghimi, A. Nasri, R. Schober. Adaptive L_p-Norm spectrum sensing for cognitive radionetworks[J]. IEEE Trans. on Communications,2011,59(7):1934-1945
    [60] K. L. Du, W. H. Mow. Affordable cyclostationarity-based spectrum sensing for cognitiveradio with smart antennas[J]. IEEE Trans. on Vehicular Technology,2010,59(4):1877-1886
    [61] C. Zhang. Cognitive non-continuous carrier interferometry orthogonal signal division multiplextransmission in autonomous vehicular communications[J]. IEEE Journal on Selected Areas inCommunications,2011,29(1)37-47
    [62] R. Zhou, X. Li, V. Chakarvarthy, et al. Software defined radio implementation of smse basedoverlay cognitive radio in high mobility environment[C]. Global Telecommunications Conf.,Houston, TX, USA, Dec.2011,1-5
    [63] H. S. Chen, W. Gao, D. G. Daut. Spectrum sensing for OFDM systems employing pilottones[J]. IEEE Trans. on Wireless Communications,2009,8(12):5862-5870
    [64] D. Qu, Z. Wang, T. Jiang. Extended active interference cancellation for sidelobe suppression incognitive radio ofdm systems with cyclic prefix[J]. IEEE Trans. on Vehicular Technology,2010,59(4):1689-1695
    [65] B. SWild, K. Ramchandran. Detecting primary receivers for cognitive radio applications[C].IEEE International Symposium on New Frontiers in Dynamic Spectrum AccessNetworks,Baltimore, MD, USA, Nov.2005,124-130
    [66] H. Urkowitz. Energy detection of unknown deterministic signals[J]. Proceedings of the IEEE,1967,55(4):523-531
    [67] F. Digham, M. Alouini, M. Simon. On the energy detection of unknown signals over fadingchannels[J]. IEEE Trans. on Communications,2007,55(1):21-24
    [68] A. Ghasemi, E. S. Sousa. Collaborative spectrum sensing for opportunistic access in fadingenvironment[C]. IEEE International Symposium on New Frontiers in Dynamic SpectrumAccessNetworks, Baltimore, MD, USA. Nov.2005,131-136
    [69] Proakis J. Digital Communications [M]. New York: McGraw-Hill,2001,163-233
    [70] Y. X. Liu, C. Y. Zeng, H. J. Wang, et al. Energy detection threshold optimization forcooperative spectrum sensing[C]. International Conf. on Advanced Computer Control,Shenyang(DySPAN),2010,566-570
    [71] R. Tandra, A Sahai. Fundamental limits on detection in low SNR under noise uncertainty[C].International Conf. on Wireless Networks, Communications and Mobile Computing, Maui, HI,USA,2005,464-469
    [72] A. Fehske, J. D. Gaeddert, J. H. Reed. A new approach to signal classification using spectralcorrelation and neural networks[C]. IEEE DySPAN, Baltimore, MD, USA, Nov.2005,144-150
    [73] W. Gardner. Signal interception: a unifying theoretical framework for feature detection[J].IEEE Trans. on Communications,1988,36(8):897-906
    [74] A. Sahai, D. Cabric, R. Brodersen, et al. Spectrum sensing fundamental limits and practicalchallenges[C]. IEEE International Symposium on New Frontiers in Dynamic SpectrumAccessNetworks, Baltimore, MD, USA, Nov.2005,1-138
    [75] P. D. Sutton, J. Lotze, K. E. Nolan, et al. Cyclostationary signature detection in multipathrayleigh fading environments[C]. Cognitive Radio Oriented Wireless Networks andCommunications, Orlando, Florida, USA, Aug.2007,408-413
    [76] R. Tandra, A. Sahai. SNR walls for feature detectors[C]. Symposium on New Frontiers inDynamic Spectrum Access Networks, Dublin, Ireland, Apr.2007,559-570
    [77] A. Sahai, N. Hoven, R. Tandra. Some fundamental limits on cognitive radio[C]. Allerton Conf.Communication, Control, and Computing, Monticello, IL, Oct.2004,1-11
    [78] Z. Li, F. Yu, M. Huang. A cooperative spectrum sensing consensus scheme in cognitiveradios[C]. IEEE INFOCOM2009proceedings, Rio de Janeiro, Brazil, Apr.2009,2546-2550
    [79] E. Visotsky, S. Kuffner, R. Peterson. On collaborative detection of TV transmissions in supportof dynamic spectrum sharing[J]. IEEE DySPAN, Baltimore, MD, USA, Nov.2005,338-345
    [80] J. Unnikrishnan, V. Veeravalli. Cooperative sensing for primary detection in cognitive radio[J].IEEE Journal of Selected Topics in Signal Processing,2008,2(1):18-27
    [81] G.Ganesan, Y. Li. Cooperative spectrum sensing in cognitive radio, part I: two user networks[J].IEEE Trans. on Wireless Communications,2007,6(6):2204-2213
    [82] W. Zhang, K. Letaief. Cooperative spectrum sensing with transmit and relay diversity incognitive radio networks[J]. IEEE Trans. on Wireless Communications,2008,7(12):4761-4766
    [83]闰琦.认知无线电频谱感知若干关键技术研究[D].西安:西安电子科技大学,2011,11-13
    [84] Z. Zhang, Z. Han, H. Li, et al. Belief propagation based cooperative compressed spectrumsensing in wideband cognitive radio networks[J]. IEEE Trans. on Wireless Communications,2011,10(9):3020-3031
    [85] M. Derakhtian, F. Izedi, A. Sheikhi, et al. Cooperative wideband spectrum sensing for cognitiveradio networks in fading channels[J]. IET Signal Processing,2012,6(3):227-238
    [86] NC-OFDM动态频谱共享系统的关键技术[D].北京:清华大学,2011,22-24
    [87] Z. Quan, S. Cui, A. H. Sayed, et al. Optimal multiband joint detection for spectrum sensing incognitive radio networks[J]. IEEE Trans. on Signal Processing,2009,57(3):1128-1140
    [88] Z. Tian, G. B. Giannakis. A wavelet approach to wideband spectrum sensing for cognitiveradios[C]. International Conf. on Cognitive Radio Oriented Wireless Networks andCommunications, Mykonos Island,2006,1-5
    [89] C. K.Tan, W. K. Lim. Reliable and low-complexity wavelet-based spectrum sensing forcognitive radio systems at low SNR regimes[J]. Electronics Letters,2012,48(24):1565-1567
    [90] C. H. Hwang, G.L. Lai, S. C. Chen. Spectrum sensing in wideband OFDM cognitive radios[J].IEEE Trans. on Signal Processing,2010,58(2):709-719
    [91] W. Zhang, K. Letaief. Cooperative spectrum sensing with transmit and relay diversity incognitive radio networks[J]. IEEE Trans. on Wireless Communications,2008,7(12):4761-4766.
    [92] L. Khalid, K. Raahemifar, A. Anpalagan. Cooperative spectrum sensing for wideband cognitiveofdm radio networks[C]. IEEE Vehicular Technology Conf., Anchorage, AK,2009,1-5
    [93] G. Ganesan, L. Ye. Cooperative spectrum sensing in cognitive radio, part II: Multiusernetworks[J]. IEEE Trans. on Wireless Communications,2007,6(6):2214-2222.
    [94] L Yang, W Hou, L Cao, et al. Supporting demanding wireless applications with frequency-agileradios[C]. Proceedings of Symposium on Networked Systems Design and Implementation,2010.1-15
    [95] N. Khambekar, L. Dong, V. Chaudhary. Utilizing OFDM guard interval for spectrumsensing[C]. IEEE Wireless Communications and Networking Conf., Kowloon, Mar.2007,38-42
    [96] G. Noh, J. Lee, H. Wang, et al. A new spectrum sensing scheme using cyclic prefix forOFDM-based cognitive radio systems[C]. IEEE Vehicular Technology Conf., Singapore,May,2008,1891-1895
    [97] H. Chen, W. Gao, D. Daut. Spectrum sensing for OFDM systems employing pilot tones andapplication to DVB-T OFDM[C]. IEEE International Conf. on Communica, Beijing,2008,3421-3426
    [98] Chen H, Wang X, Wang C, et al. Spectrum sensing of unsynchronized ofdm signals forcognitive radio communications[C]. IEEE Vehicular Technology Conf., Anchorage, AK,2009,1-5
    [99] Y. Liu, Q. C. Peng, H. Z. et al. Shao. Blind estimation of subcarrier numberin in MB-OFDMultra-wide band communications system[C]. IEEE International Conf. on NetworkInfrastructure and Digital Content, Beijing,2009,164-168
    [100] Z. Zhang, H. Li, D. Yang, et al. Collaborative compressed spectrum sensing: what if spectrumis not sparse?[J]. Electronics Letters,2011,47(8):519-520
    [101] L. Wang, B. Zheng, J. Cui, et al. Spectrum sensing for cognitive OFDM system using freeprobability theory[C]. International Wireless Communications and Mobile Computing Conf.,New York, NY, USA,2010,575-579
    [102] Z. Tian, Y. Tafesse, B. M. Sadler. Cyclic feature detection with sub-nyquist sampling forwideband spectrum sensing[J]. IEEE Journal of Selected Topics in Signal Processing,2012,6(1):58-69
    [103] Y. Chi, L. L. Scharf, A. Pezeshki, et al. Sensitivity to basis mismatch in compressedsensing[J]. IEEE Trans. on Signal Processing,2011,59(5):2182-2195
    [104] H. Mamaghanian, N. Khaled, D. Atienza, et al. Design and exploration of low-power analogto information conversion based on compressed sensing[J]. IEEE Journal on Emerging andSelected Topics in Circuits and Systems,20122(3):493-501
    [105] Y. Wang, A. Pandharipande, Polo Y, et al. Distributed compressive wide-band spectrumsensing[C]. International Conf. on Theory and Applications Workshop, San Diego, CA2009,178-183
    [106] A.Ghasemi, E. S. Sousa. Spectrum sensing in cognitive radio networks: requirementschallenges and design trade-offs[J]. IEEE Communications Magazine,2008,46(4):32-39
    [107] Y. C. Liang, Y.Zeng, E. Peh, et al. Sensing-throughput tradeoff for cognitive radionetworks[J]. IEEE Trans. on Wireless Communications,2008,7(4):1326-1337
    [108] Q. Zhao, B. Krishnamachari, and K. Liu. On Myopic Sensing for Multi-ChannelOpportunistic Access: Structure, Optimality, and Performance[J]. IEEE Trans. on WirelessCommunications, Dec.2008,7(12):5431-5440
    [109] A. T. Hoang, Y. C. Liang, D. T. Wong, et al. Opportunistic spectrum access forenergy-constrained cognitive radios[J]. IEEE Trans. on Wireless Communications,2009,8(3):1206-1211
    [110] Q. C. Zhao, S Geirhofer, L. Tong, et al. Opportunistic spectrum access via periodic channelsensing[J]. IEEE Trans.on Signal Processing,2008,56(2):785-796
    [111] H. Kim, K. G. shin. Efficient discovery of spectrum opportunities with MAC-Layer sensing incognitive radio networks[J]. IEEE Trans. On Mobile Computing,2008,7(5):533-544
    [112] N. Han, S. H. Shon, J. H. Chung, et al. Spectral correlation based signal detection method forspectrum sensing in IEEE802.22WRAN systems[C]. International Conf. on AdvancedCommunication Technology, Phoenix Park, Feb.20-22,2006,1770-1789
    [113] Y. H. Zeng, Y. C. Liang. Eigenvalue based spectrum sensing algorithms for cognitiveradio [J]. IEEE Trans. on Communications,2009,57(6):1784-1793
    [114]张宇,冯春燕,郭彩丽.基于可变间隔的认知无线电频谱检测机制[J].北京邮电大学学报,2008,31(11):2801-2806
    [115] K. W. Choi. Adaptive sensing technique to maximize spectrum utilization in cognitiveradio[J]. IEEE Trans. on Vehicular Technology,2010,59(2):992-998
    [116] A.T. Hoang, Y. H. Liang, Y. H. Zeng. Adaptive Joint Scheduling of Spectrum Sensing andData Transmission in Cognitive Radio Network[J]. IEEE Trans. on Communications,58(1):235-246
    [117]郭彩丽,曾志民,冯春燕,等.一种异步频谱检测周期优化模型及自适应2010模糊调整算法[J].电子与信息学报31920-924
    [118]苏曦,沈树群,冯志勇,等.认知无线电系统中的自适应动态频谱分配方法[J].电子与信息学报,2009,31(2):128-131
    [119]刘允,彭启琮,邵怀宗,等.一种基于授权信道特性的认知无线电频谱检测算法[J].物理学报.2013,62(7):0784061-0784069
    [120] D. Brillinger. A maximum likelihood approach to frequency-wavenumber analysis[J]. IEEETrans. on Acoustics, Speech and Signal Processing, Oct.1985.33(5):1076-1085
    [121] W. Y. Lee, I. F. Akyildiz. Optimal spectrum sensing framework for cognitive radionetworks[J]. IEEE Trans. on Wireless Communications. Oct.2008,7(10):3845-3857
    [122] Q. ZHAO, L. TONG, I. A.Swami. Decentralized cognitive MAC for dynamic spectrumaccess[C]. IEEE DySPAN, Newyork,2005,224-232
    [123] S. Geirhofer, L. Tong, B. M. Sadler. Dynamic spectrum access in the time domain: modelingand exploiting white space[J]. IEEE Communications Magazine,2007,49(7):66-72
    [124]郭大伟.最大似然估计的一个推广[J].应用概率统计,2001,17(2):327-332
    [125] J. M. Peha. Sharing Spectrum through spectrum policy reform and cognitive radio[J].Proceedings of the IEEE,2009,97(4):708-719
    [126] S. Pagadarai, A. Kliks, H. Bogucka, et al. Non-contiguous multicarrier waveforms in practicalopportunistic wireless systems[J]. IET Radar, Sonar&Navigation,2011,5(6):674-680
    [127] C. Zhang. Cognitive non-continuous carrier interferometry orthogonal signal divisionmultiplex transmission in autonomous vehicular communications[J]. IEEE Journal onSelected Areas in Communications,2011,29(1):37-47
    [128] R. Airoldi, O. Anjum, F. Garzia, et al. Energy-Efficient fast fourier transforms for cognitiveradio systems[J]. IEEE MICRO,2010,30(6):66-76
    [129] H. Tang. Some physical layer issues of wide-band cognitive radio systems[C]. IEEEDySPAN, Baltimore, MD, USA,2005,151-159
    [130] J. D. Poston, W. D. Horne. Discontinuous OFDM considerations for dynamic spectrum accessin idle TV channels[C]. IEEE DySPAN, Baltimore, MD, USA2005,607-610
    [131] H. Rahul, N. Kushman, D. Katabi, et al. Learning to share: narrowband-friendly widebandnetworks[C]. Proceedings of ACM IGCOMM, Seattle, Washington, USA.2008,147-158
    [132] Z. Shen, J. G. Andrews. AdupLive resource allocation in mulliuser ofdm svslems withproportional rate constrain[J]. IEEE Trans. on Wireless Communications,2005,4(6):2726-2736
    [133] S. Stotas, A. Nallanathan. Optimal sensing time and power allocation in multiband cognitiveradio networks[J], IEEE Trans. on Communications,2011,59(1):226-235
    [134] G, Zhang. Subcarrier and bit allocation for real-time services in multiuser OFDM systems[C].IEEE International Conf. on Communications, Paris, France, June2008,2985-2989.
    [135] C.Y Wong, Roger S. Cheng. Multiuser OFDM with adaptive subcarrier, bit and powerallocation[J]. IEEE Journal on Selected Areas in Communications,1999,17(10):1747-1758.
    [136] W. Rhee, J. M. Cioffi. Increase in capacity of multiuser OFDM system using dynamicsubchannel allocation[J]. IEEE VTC, May2008,2:1085-1089.
    [137] C. Chen, K. Yao. Cognitive radios methodology for dynamic spectrum allocation inbroadband wireless cellular/public safety network systems[C], IEEE Globecom Workshops(GC Wkshps), Anaheim, CA, USA, Dec.2012,157-162
    [138] G. Bansal, M. J. Hossain, V. K. Bhargava. Adaptive power loading for OFDM-Basedcognitive radio systems[C]. IEEE International Conf. on Communications, Glasgow,2007,5137-5142
    [139]李维英,陈东,邢成文.认知无线电系统中的多用户资源分配算法[J].西安电子科技大学学报,2007,34(3):268-272
    [140] K. D. Choe, Y. J. Lin, S. K. Park. Subcarriers adaptive for multiuer ofdm systems[C]. GlobalTelecommunications Conf., Dallas, IEEE2004, Vol2,1230-1233
    [141] P. Cheng, Z. Zhang, H.-H. Chen,et al. Optimal distributed joint frequency,rate,and powerallocation in cognitive OFDMA systems[J]. IET Communications,2008,12(6):815-826
    [142] Y. Zhang, C. Leung.Resource allocation in an OFDM-based cognitive radio systems[J].IEEE Trans. on Communications,2009,57(7):1928-1931
    [143]刘允,彭启琮,邵怀宗,等.基于NC-OFDM的认知无线电自适应动态资源分配算法[J].信号处理,2011,27(4):619-623
    [144] P. Setoodeh, S.Haykin. Robust transmit power control for cognitive radio[J]. Proceedings ofthe IEEE. May2009,97(5):915-939
    [145] C. Saraydar, N. B. Mandayam, D. J. Goodman. Efficient power control via pricing in wirelessdata networks[J]. IEEE Trans. on Communications,2002,50(2):291-303
    [146] J. Nee1, R. Menon, J. H. Reed. Using game theory to analyze physical layer cognitive radioalgorithms[J], IEICE Trans. on Communication, Jan.2011, E64-B(5):1421-1429
    [147] Z. Pan,Y. Wei. Joint power and rate control in cognitive radio networks: a game theoreticalapproach[C]. IEEE International Conf. on Communications. May2008,3296-3301
    [148] D. VEric. Game Theory: The Next Stage[M].Tilburg University, Tilburg,1995,67-124
    [149] M. D. Topkis. Supermodularity and Complementarity[M]. New Jersey, Princeton UniversityPress Princeton,1998,10-78
    [150]孙大卫,郑宝玉,许晓荣.基于认知OFDM的子载波功率分配改进算法[J].信号处理,2010,8(26):1200-1201
    [151] D. Goodman, N. Mandayam. Power control for wireless data[J]. IEEE PersonalCommunication Magazine,2000,7(4):48-54
    [152] X. Wang, Q. Zhu Qi. Power control for cognitive radio base on game theory[C] InternationalConf. on Wireless Communications, Networking and Mobile Computing, Shanghai,2007,1256-1259
    [153] M. Xiao, N. B. Shroff, K.Edwin, et.al. Utility-Based power control in cellular wirelesssystems[C]. Twentieth Annual Joint Conf. of the IEEE Computer and CommunicationsSocieties, Anchorage, AK,2001,412-421
    [154]殷志明,谢剑英.无线数据网络中基于博弈论方法的功率控制[J].计算机研究与发展,2004,41(6):909-914
    [155] Y. Liu, Q. C. Peng, H. Z. Shao, et al. Power control algorithm based on game theory incognitive radio networks[C]. IEEE International Conf. on Apperceiving Computing andIntelligence Analysis, Chengdu, China, Dec.2010,164-168
    [156]林玉清,王霞,朱琦.认知无线电系统中基于归一化效用函数的功率控制方法[J].南京邮电大学学报,2011,31(1):39-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700