基于槽式孔板的凝析天然气计量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝析天然气的在线计量属于多相计量的一个分支,是石油天然气工业迫切需要解决的问题之一。本文将其简化为低含液率气液两相流计量问题,基于课题组自行开发的凝析天然气流量计样机和大量的实验数据。本文为流量计开发一种基于软测量模型的快速、高效的数据处理方法,扩大流量计的测量范围、提高测量精度和实时性,为流量计计量算法的完善奠定基础。
     研究工作分为两部分,第一部分对单个槽式孔板测量数据进行处理,先后完成了基于差压平均值的孔板压降倍率特性研究和基于差压波动部分的特征量提取;第二部分为基于双槽式孔板组合的两相流参数检测技术研究,分别为基于相关技术的相含率测量和基于神经网络的流型辨识和流量测量。
     基于差压信号的平均值,详细分析了不同孔径比的槽式孔板ΦG随X、Frg和γ变化的规律,并将X、Frg和γ作为变量对Murdock相关式进行修正,提出了一种新的适用于不同孔径比槽式孔板的压降相关式;与前人基于标准孔板的相关式相比,由于修正了γ对ΦG的影响,在文中实验条件下其流量计算精度最高。
     基于差压信号具有强烈的非线性、非平稳性和非高斯性,应用Hilbert-Huang变换和高阶统计分析方法对差压信号波动部分进行处理,提取了一组新的特征量:IMF分频段能量及能量分数、IMF熵、HHT熵和双谱熵;分析表明:上述特征量对气液两相流动参数的变化非常敏感,为建立气液两相流参数检测的软测量模型提供了依据。基于流量计的双槽式孔板结构,应用小波变换和经验模式分解对上下游差压信号进行处理,分别将分解结果作为相关量计算相关速度,研究了相关速度与X及液相含率之间的关系;结果表明:原始差压信号得到的相关速度不能很好地反映两相流动参数的变化,而由分解后的某些分量获得的相关速度与相含率之间具有稳定的关系。
     提出了一种新的信号特征选择方法——mRMR+BP,分别以mRMR+BP方法和主成分分析法对差压信号特征量进行预处理;以流型和气液分相流量作为BP网络输出,以从上下游差压信号中提取的两组特征量及其组合作为网络输入,建立了三个独立的子网络;通过对子网络的输出进行集成建立了基于集成BP神经网络的软测量模型;在文中实验条件下,软测量模型的流型辨识准确度高于93%,气液分相流量测量的平均相对误差分别低于5%和15%。
Wet gas metering is a subset of multiphase flow metering, and it is one of the major unsolved problems for oil and gas industry. In this thesis it is simplified to the metering of gas-liquid two-phase flow with low liquid fractions. Based on a self developed prototype of wet gas meter and experimental data set, a series of works have been carried out. The main target of this thesis is to develop a fast and efficient data processing method, and to improve the performance of wet gas meter, such as expending the metering range, high accuracy, fast response and so on.
     This thesis consists of two parts. The first part is mainly focus on the metering characteristics of a single slotted orifice, which included the two-phase multiplier analysis based on the mean value of differential pressure, and the dynamic feature extraction based on fluctuation of the differential pressure. The second part is mainly focus on the metering algorithm development, which included the phase fraction measurement based on correlation analysis, flow regime identification and flow rate measurement based on neural networks.
     Based on the mean value of differential pressure, detail analysis about how two-phase multipliers changing with X、Frg andγwas made for slotted orifices with different beta ratios. A new correlation for slotted orifice was put forward based on the modification to the Murdock correlation. The proposed correlation shows a more accurate calculation results compared with the existing correlations for standard orifice plates as the effect ofγhas been considered.
     Based on the recognition that the differential pressure is nonlinear, non-stationary and non-Gaussian, Hilbert-Huang transform and high-order statistics were employed to analyze the differential pressure. A group of features such as the energy and fraction of IMFs, entropy of IMF, HHT and bispectrum were extracted and qualitative analysis shows that the features are sensitive to the variation of flow parameters. The results provide the basis for the building of soft-sensing models for flow parameters measurement.
     Based on the dual slotted orifices of wet gas meter, the upstream and downstream differential pressures were processed through wavelet analysis and empirical mode decomposition approaches. Correlation velocities were obtained based on the corresponding components of a, d and IMFs, and the relationship between correlation velocities and X, phase fraction was investigated. The results show that the relationship between X, phase fraction and correlation velocities calculated by the above signal components are more stable than those by the original differential pressures.
     A novel feature selection approach called mRMR+BP was put forward and used to preprocess the original features together with the principal component analysis method. Flow regimes and gas/liquid individual phase flow rates were taken as outputs of the BP network, and those selected features as inputs, then three sub networks were built. Soft-sensing models for flow regimes identification and flow rates measurement were built based on neural networks ensemble. The results show that the neural network ensemble based model is more accurate than any sub network, and the accuracy rate of flow regimes identification is above 93%, and the mean relative errors are below 5% and 15% for gas and liquid flow rates respectively.
引文
[1]冯叔初,郭揆常,王学敏.油气集输[M].东营:石油大学出版社,1988:133-185
    [2] Jamieson A.W.. Multiphase Metering - the Challenge of Implementation. 16th North Sea Flow Measurement Workshop,1998
    [3] Falcone G., Hewit G.F., Alimonti C., et al. Multiphase Flow Metering: Current Trends and Future Developments. SPE 71474, 2001
    [4]邱中建,康竹林,何文渊.从近期发现的油气新领域展望中国油气勘探发展前景[J].石油学报,2002,23(4):1-6
    [5]康竹林.中国深层天然气勘探前景[J].天然气工业,2000,20(5):1-4
    [6]耿艳峰,冯叔初,郑金吾,等.凝析天然气计量技术[J].自动化仪表,2005,26(8):1-3
    [7] Mehdizadeh P., Marrelli J., Ting V. C.. Wet Gas Metering: Trends in Applications and Technical Developments. SPE 77351, 2002
    [8]曹学文,林宗虎,耿艳峰,等.在线多相流量计测量技术研究[J].中国海上油气(工程),2002,14(2):37-40
    [9]窦剑文.多相计量技术与产品的应用前景[J].石油矿场机械,2000,29(1):1-4
    [10]林宗虎,王树众,王栋.气液两相流和沸腾传热[M].西安:西安交通大学出版社,2003:1-2
    [11]林宗虎,李永光,卢家才,等.气液两相流漩涡脱落特性及工程应用[M].北京:化学工业出版社,2001:43-47
    [12]鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社,2002:2-8
    [13]孔珑.两相流体力学[M].北京:高等教育出版社,2004:2-6
    [14]陈学俊.两相流与传热——原理及应用[M].北京:原子能出版社,1991:1-22
    [15]李海青.多相流测试技术现状及趋势[A].多相流检测技术进展[C].北京:石油工业出版社,1996:33-42
    [16] Darwich T.D., Toral H. Archer J.S.. An Expert System for Multiphase Measurement and Regime Identification. SPE 19136, 1989
    [17] Toral H., Cai S., Akartuna E., et al. Field Tests of the ESMER Multiphase Flowmeter., North Sea Flow Measurement Workshop, 1998
    [18] Ahmed B., Steve G.. Field Testing of Multiphase Meters. SPE 56583, 1999
    [19] Steward D., Brown G., Hodges D.. Wet Gas Venturing Metering. SPE 77350, 2002
    [20] Agar J., Farchy D.. Wet Gas Metering Using Dissimilar Flow Sensors: Theory and Field Trial Results. SPE77349, 2002
    [21] Steward D., Steven R.. Wet Gas Metering with V-CONE Meters. North Sea Flow Measurement Workshop, 2002
    [22] Steven R., Peters RJW.. Wet Gas Metering with V-CONE Meters. 3rd International SE Asia Hydrocarbon Flow Measurement Workshop, 2004
    [23] Morrison G.L., Hall K.R., Holste J.C., et al. Comparison of Orifice and Slotted Plate Flowmeters[J]. Flow Measurement and Instrumentation, 1994, 5(2): 71-77
    [24] Morrison G.L., Terracina D., Brewer C., et al. Response of a Slotted Orifice Flow Meter to an Air/Water Mixture[J]. Flow Measurement and Instrumentation, 2001, 12(3): 175-180
    [25] Macek M.L.. A Slotted Orifice Plate Used as a Flow Measurement Device[D]. Texas A&M University, College Station, 1993
    [26] Geng Yanfeng., Li Yuxing., Feng Shuchu, Study on a New Type of Sensor for Wet Gas Meter[A]. Advances in Multiphase Flow[C]. Hangzhou. 2004: 536-541.
    [27]耿艳峰,冯叔初,郑金吾,等.基于槽式孔板的凝析天然气计量技术[J].仪器仪表学报,2006,20(8):873-876
    [28]耿艳峰,冯叔初,郑金吾.槽式孔板的气液两相压降倍率特性[J].化工学报,2006, 57(5):1138-1142
    [29] Geng Yanfeng, Zheng Jinwu, Shi Tianming. Study on the Metering Characteristics of a Slotted Orifice for Wet Gas Flow[J]. Flow Measurement and Instrumentation, 2006, 17(2): 123-128
    [30]邢兰昌,耿艳峰,石岗.槽式孔板的气液两相流测量特性[J].传感技术学报,2006, 19(3):771-775
    [31]孙淮青,王建中.流量测量节流装置设计手册[M].第二版.北京:化学工业出版社,2005:4-5
    [32]郑金吾,耿艳峰.海上含液天然气流量计开发[J].化工自动化及仪表,2006, 33(3): 74-77
    [33] Geng Yanfeng, Zheng Jinwu, Shi Tianming, et al. Wet Gas Meter Development Basedon Slotted Orifice Couple and Neural Network Techniques[J]. Chinese Journal of Chemical Engineering, 2007, 15(2):281-285
    [34]何利民,郭烈锦,陈学俊.测量水平管道液塞速度和长度的差压波动分析法[J].化工学报,2003,54(2):192-198
    [35]何利民,赵庆军,陈振瑜.水平管段塞流液塞速度波动的非线性分析[J].中国电机工程学报,2003,23(12):189-193
    [36]江延明,李玉星,冯叔初.气液两相流流量变化的瞬态特性[J].化工学报,2003, 54(3):321-326
    [37]李海青等.两相流参数检测及应用[M].杭州:浙江大学出版社,1991
    [38] Murdock J. W.. Two-phase Flow Measurement with Orifices[J]. Journal of Basic Engineering, 1962, 84 (4):419-433
    [39] James R.. Metering Steam-water Two-phase by Sharp-edged Orifices[J]. Proceeding of the Institution of Mechanical Engineers, 1965,180 (23):549-566
    [40] Lin Z. H.. Two-phase Flow Measurements with Sharp-edged Orifice[J]. International Journal of Multiphase Flow, 1992, 8(6):683-693
    [41]王文然,佟允宪,仲朔平.利用标准锐边孔板测量汽水两相流的实验研究[J].清华大学学报, 1988,28 (S2):74-82
    [42]申国强,林宗虎.应用动态法进行气液两相流的双参数测量[J].计量学报,1993, 14(2):140-145
    [43]仲朔平,佟允宪,王文然.利用孔板差压噪声测量汽水两相流[J].清华大学学报,1997, 37(5):15-18
    [44] Steven R. N.. Wet Gas Metering With a Horizontally Mounted Venturi Meter[J].Flow Measurement and Instrumentation. 2002, 13(12):361-372
    [45] Xu Lijun, Xu Jian, Dong Feng. On Fluctuation of the Dynamic Differential Pressure Signal of Venturi Meter for Wet Gas Metering, Flow Measurement and Instrumentation, 2003, 14(4):211-217
    [46]张宏建,岳伟挺,马龙博,等.文丘里管中气液两相流差压波动信号与空隙率关系[J].化工学报,2005,56(11): 2102-2107
    [47] Zhang Hongjian, Yue Weiting, Huang Zhiyao. An Investigation of Oil-air Two-phase Mass Flow Rate Measurement Using Venturi and Void Fraction Sensor[J].Journal ofZhejiang University (Science), 2005, 6A(4): 601-606
    [48] Smith R. V.. Leang J. T.. Evaluation of Correlations for Two-phase Flowmeters Three Current–One New[J].Journal of Engineering for Power, 1975, 97(4):589-593
    [49] Chisholm D.. Flow of Incompressible Two-phase Mixtures through Sharp-edged Orifices[J].Journal of Mechanical Engineering Science,1974,16(5):353-355
    [50] Chisholm D.. Two-phase Flow through Sharp-edged Orifices[J].Journal of Mechanical Engineering Science,1977,19(3):128-130
    [51]佟允宪,王文然,仲朔平,等.孔板在两相流中的相分离效应与两相流湿度测量[J].清华大学学报,1991,31(3):12-17
    [52] Wu Haojiang, Zhou Fangde and Wu Yuyuan. Intelligent Identification System of Flow Regime of Oil–gas–water Multiphase Flow [J]. International Journal of Multiphase Flow, 2001, 27(3):459-475
    [53]孙斌,周云龙.基于支持向量基和小波包能量特征的气液两相流流型识别方法[J].中国电机工程学报,2005,25(17):93-99
    [54] Sun Bin, Zhang Hongjian, Cheng Lu, et al. Flow Regime Identification of Gas-liquid Two-phase Flow Based on HHT[J]. Chinese Journal of Chemical Engineering, 2006, 17(1): 24-30
    [55]周云龙,王强,孙斌,等.基于希尔伯特——黄变换和Elman神经网络的气液两相流流型识别方法[J].中国电机工程学报,2007,27(11):50-56
    [56]孙斌,周云龙,向新星,等.基于经验模式分解和概率神经网络的气液两相流识别[J].中国电机工程学报,2007,27(17):72-77
    [57]白博峰,郭烈锦,陈学俊.空气水两相流压力波动现象非线性分析[J].工程热物理学报,2001,22(3):359-362
    [58]杨靖,郭烈锦.气液两相流压差信号数据的分形插值拟合[J].西安交通大学学报, 2002,36 (9):921-924
    [59]孙斌,周云龙,张玲,等.基于小波包分解和Kohonen神经网络的气液两相流流型识别方法[J].热能动力工程,2005,20(1):48-51
    [60]丁浩,黄志尧,李海青.基于高阶谱的气液两相流差压波动信号分析[J].浙江大学学报(工学版),2006,40 (1):1-4
    [61]劳力云.基于动态差压信号分析的两相流参数辨识方法研究[D].杭州:浙江大学,1998
    [62]张贤达.现代信号处理[M].第二版.北京:清华大学出版社,2002
    [63]胡广书.现代信号处理教程[M].北京:清华大学出版社,2004
    [64] Huang N. E., Shen Z., and Long S. R., et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society of London A, 1998, 454: 903-995
    [65] Huang N. E., Shen Z., and Long S. R., et al. A New View of Nonlinear Water Waves: The Hilbert Spectrum, Annu. Rev. Fluid Mech., 1999, 31:417-457
    [66]王宏禹.信号处理相关理论综合与统一法[M].北京:国防工业出版社,2005: 208-254
    [67]谭善文,秦树人,汤宝平.Hilbert-Huang变换的滤波特性及其应用[J].重庆大学学报(自然科学版),2004,27 (2):9-12
    [68] Flandrin P., Rilling G., Goncalves P.. Empirical Mode Decomposition as a Filter Bank [J].IEEE Signal Processing Letters, 2004, 11 (2): 112-114
    [69]江力,李长云.基于经验模分解的小波阈值滤波方法研究[J].信号处理,2005,21 (6):659-662
    [70]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006:75-78
    [71]田宝玉.工程信息论[M].北京:北京邮电大学出版社,2004:15-21
    [72] Yu Dejie, Yang Yu, Cheng Junsheng. Application of Time-frequency Entropy Method Based on Hilbert-Huang Transform to Gear Fault Diagnosis [J]. Measurement, 2007,40(9-10): 823-830
    [73]徐苓安.相关流量测量技术[M].天津:天津大学出版社,1988
    [74]赵鑫,金宁德,王化祥.相关流量测量技术发展[J].化工自动化及仪表,2005, 32(1): 1-5
    [75]徐苓安,杨惠连,陈军,等.相关流量测量系统的仿真研究[J].自动化仪表,1992,13 (8):27-31
    [76]曹理平,陈彦萼.一种气液两相流双参数测量方法[J].自动化仪表,1991,12 (6):25-31
    [77]李海青,黄志尧.软测量技术原理及应用[M].北京:化学工业出版社,2000
    [78]李海青,黄志尧.特种检测技术及应用[M].杭州:浙江大学出版社,2000
    [79]黄志尧,王保良,史志才,等.软测量技术在多相流检测中的应用[J].仪器仪表学报,2001,22 (s3):421-424
    [80] EI-Sayed Osman A.. Artificial Neural Network Models for Identifying Flow Regimes and Predicting Liquid Holdup in Horizontal Multiphase Flow [J]. SPE Production & Facilities, 2004:33-40
    [81] Mi Y., Ishii M., Tsoukalas L. H.. Flow Regime Identification Methodology with Neural Networks and Two-phase Flow models[J]. Nuclear Engineering and Design, 2001, 204:87-100
    [82] Beg N. A., Toral H.. Off-site Calibration of a Two-phase Pattern Recognition Flowmeter [J]. International Journal Multiphase Flow, 1993, 19(6): 999-1012
    [83]黄志尧,王保良,李海青.用于两相流流型显示和空隙率测量的电容层析成像技术[J].化工学报,2001, 52(11):1035-1038
    [84]陈珙,王保良,杨江,等.基于小波分析的气液两相流流型模糊辨识[J].高校化学工程学报,1999,13(4):303-308
    [85]冀海峰.小波分析技术在两相流检测中的应用研究[D].杭州:浙江大学,2002
    [86]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993
    [87]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2005
    [88]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003
    [89]邢兰昌,耿艳峰.基于BP神经网络的气液两相流分相流量测量[J].电子测量与仪器学报,2007, 21(4):102-107
    [90] Guyon I., Elisseeff A.. An Introduction to Variable and Feature Selection[J]. Journal of Machine Learning Research 3, 2003: 1157-1182
    [91] Dash M., Liu H.. Feature Selection for Classification[J]. Intelligent Data Analysis, 1997,1(1-4): 131-156
    [92]王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12): 68-71
    [93]张丽新,王家钦,赵雁南.机器学习中的特征选择[J].计算机科学,2004,31(11): 180-184
    [94] Blum A.L., Langley P.. Selection of Relevant Features and Examples in MachineLearning[J]. Artificial Intelligence, 1997,97(1-2):245-271
    [95] Huang D. Chow T.W.S.. Effective Feature Selection Scheme Using Mutual Information [J]. Neurocomputing,2005,63:325-343
    [96] Sebban M., Nock R.. A Hybrid Filter/Wrapper Approach of Feature Selection Using Information theory,2002,35(4):835-846
    [97] Ding C. Peng H.C.. Minimum Redundancy Feature Selection from Microarray Gene Expression Data[J]. Proceedings of the Computational System Bioinformatics, 2003
    [98] Peng H.C., Long F.H., Ding C. Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 27(8): 1226-1238
    [99] Kohavi R., John G.H.. Wrappers for Feature Subset Selection[J]. Artificial Intelligence, 1997,97(1-2):273-324
    [100] Zhou Zhihua, Wu Jianxin, Tang Wei. Ensembling Neural Networks: Many Could Be Better Than All [J]. Artificial Intelligence, 2002,137(1-2): 239-263
    [101]周志华,陈世福.神经网络集成[J].计算机学报,2002,25 (1):1-8
    [102]王清河,常兆光,李荣华.随机数据处理方法[M].第三版.东营:石油大学出版社, 2005:280-289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700