面向移动互联网的无线接入及传输机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动互联网是通过移动网络进行接入的互联网,它是移动通信同互联网的融合。近年来已成为工业界、学术界研究的热点之一。随着移动互联网访问需求的不断增加,传统移动网络的接入、传输能力面临重大挑战。为应对这一挑战,一方面,出现了各种新的支持用户接入的网络结构,比如Femtocell网络(飞蜂网)等;另一方面,在接入技术发展的同时,新型的移动网络传输模式被提出,比如机会传输等。Femtocell网络技术的引入,改善了传统蜂窝网络接入中数据传输速率低、能量利用效率低等问题。机会传输模式的引入,使得数据传输可通过节点间“存储-携带-转发”方式进行,降低了骨干网络负载,提升了服务能力。
     在Femtocell网络中,不同用户同基站间的通信相互影响。为达到全局网络性能的优化,我们研究了用户关联基站的选择、信道分配及功率控制。进一步地,在无Femtocell基站覆盖的区域,我们考虑了机会传输。网络中仅需要部分节点直接接入因特网,其余节点经由它们获得数据,这些节点被称为移动无线网络同因特网间的网关。为使用户快速获取数据,我们对网关选择方法进行研究,以期从所选网关开始,广播数据报文所需要的期望时间最短。当网关节点从因特网获取到数据之后,它们通过机会传输方式进行共享。特别地,在移动用户感兴趣的因特网数据中,视频文件等大数据(Bulk Data)是其中重要组成部分,我们研究了针对大数据如何设计端到端传输机制,以达到高吞吐量。最后,针对混合传输模式并存的移动无线网络(对于两个用户而言,他们既可通过接入点、Femtocell基站等经由骨干网络通信,亦可以机会传输方式通信),我们分析了容量、时延等传输性能如何随节点数量而演化。本文主要贡献可以概括为以下个方面:
     (1)针对基于Femtocell接入的通信资源分配,我们以最大化最小蜂窝吞吐量为目标,研究了其中的用户-基站关联、信道分配、功率控制问题。在基站功率连续可调的场景中,我们将其建模为一类非凸的混合整型非线性问题(Non-convex Mixed Integer Non-linear Problem, MINLP),证明了信道分配及用户关联都是NP-Complete的,特别的,当可分配信道数目大于等于3时,对信道分配问题,当且仅当NP=P时存在近似比大于等于1的多项式时间复杂度近似算法。类似的,对用户关联问题,证明了当且仅当NP=P时存在近似比大于1小于2的多项式时间复杂度近似算法。为解决此问题,我们提出一种基于轮循优化思想的算法,迭代地对用户关联、信道分配和功率控制进行优化。在设备功率离散可调的场景中,我们研究了当用户、基站关联关系确定时信道、功率分配问题。基于粒子群优化,我们提出了一种新的分配算法PCASO,其中,为产生新的粒子,定义了三个操作:变异、局部交叉和全局交叉。实验显示,PCASO极大地提升了网络的性能。
     (2)针对移动无线网络同因特网互联的网关选择问题,我们证明其为#P难,并提出了四种启发式算法:Random, MCS, CBS和FT。基于生成函数理论,我们对Random算法的性能进行了理论分析,其对应的广播时延可近似作为MCS、CBS和FT算法结果的上界。通过模拟实验,我们对四种算法性能进行了比较,其中当网络节点数为30时,FT算法对应平均时延低于Random算法15%;当网络节点数为40,…,50时,CBS算法对应平均时延低于Random算法10%。
     (3)针对移动无线网络中的大数据传输,我们引入了无反馈的分段网络编码机制。首先,基于节点间通信机会的概率分布,利用微分方程对目的端的数据接收过程进行建模,并给出了其在一段时间内成功接收K个编码报文概率的闭解。基于此,我们对端到端数据传输的最大持续吞吐量进行了分析,给出了其上限的闭解表达,并分析了达到此上限的必要条件。进一步的,我们设计了一种基于分段网络编码的传输机制,模拟实验表明,实验结果同理论分析相吻合,同时,所提出的传输机制也逼近于理论上的最优值。
     (4)针对有骨干网络支持的移动无线网络,我们对其容量、平均报文时延等传输性能指标进行了分析。讨论了独立同分布、固定速率的随机游走、列维飞行三类模型。对独立同分布、固定速率为(?)(1/√n)的随机游走模型,我们给出当容量为(?)(1)、(?)(1/√n)时的平均报文时延,其中,n为网络节点数目。证明当网络容量的上限为时,平均报文时延可达最优,其中,K为骨干网接入点数目。对三类模型,求得了平均报文时延同容量间的比率,分析了同固定混合无线网络相比的关键平均时延;我们的工作为该类型网络传输性能分析提供了理论支持。
In mobile Internet, users connects the Internet through mobile devices they carry. It is the convergence of mobile communication and Internet. In recent years, it has be-come the hot topic in both the industrial and academic areas. As the applications on mobile Internet grow, the traditional wireless access and transmission mode through cellular networks has to be improved. Femtocell networks have been introduced and the users can enjoy higher data transmission rate. In addition, this type of networks benefits the operators because the power efficiency of the femtocell base stations will be higher than the marco base stations. Since it is beneficial for users and operators, special attention for developing femtocell solutions has been received recently from a lot of researchers. Besides the development of wireless access method, a new transmis-sion mode based on the contact between two mobile users has been proposed. Due to the lack of continuously connected paths between every pair of nodes, communication usually adopts the "store-carry-and-forward" manner. Because opportunistic transmis-sion is usually through Wi-Fi or Bluetooth devices, it's free of charge and generates no traffic on the cellular infrastructure network. Thus, it can decrease the overhead and improve the service quality.
     In Femtocell networks, communication between different base stations and users may interfere with each other. To optimize the performance, the macrocell and all in-volved different femtocells need to allocate the communication resources to a group of users cooperatively, such as power and channels. We investigate the resource allocation problem in femtocell networks. For opportunistic transmission, some nodes are chosen as gateways to connect with the Internet via cellular networks. We address the problem of choosing suitable gateways from all the nodes to reduce traffic overhead and delay of information access in mobile wireless networks. After the gateways get data from the Internet, they can deliver it to others. Because a large proportion of the data which the users are interested in is bulk data, we study how to design transmission protocols with high throughput for it. For all pairs of source and destination, there are two dif-ferent transmission modes. One is without the help of gateways, which is similar with opportunistic transmission. The other is through gateways, which is like the traditional infrastructure based transmission. We investigate the trade-offs between delay and ca-pacity in mobile wireless networks with infrastructure support. In this paper, the main contributions are as follows.
     (1) For the resource allocation in femtocell networks, we target at maximizing the minimal throughput among the cells. We discuss two different cases. When the power can be adjusted continuously, a joint optimization over power control, channel allocation and user association is considered and the problem is then formulated as a non-convex mixed integer non-linear problem (MINLP). For the sub-problem of channel allocation and user association, we prove they are both NP-complete. Furthermore, we prove that when the number of channels is equal or larger than3, there is no polynomial-time algorithm with approximation ra-tio ρ≥1for the channel allocation problem unless NP=P. Similarly, we also prove that there is no polynomial-time algorithm with approximation ra-tio1≤ρ<2for the user association problem unless NP=P. To solve this problem, we proposed an alternating optimization based algorithm, which applies branch-and-bound and simulated annealing in solving sub-problems at each optimization step. When there are different discrete levels for the power to set, a joint optimization problem over power control and channel allocation is formulated. We propose a particle swarm optimization based algorithm PCASO, in which we define three operations for generating a new particle, such as mu-tation, local crossover and global crossover. We demonstrate the efficiency of PCASO by numerical experiments.
     (2) For gateway selection in mobile wireless networks, we formulate it as K-GW Selection problem, where K nodes are selected as gateways to distribute data in order to minimize the expected broadcast delay. We prove that the problem is#P-hard. To solve it, we propose four heuristic algorithms, namely Random, MCS (Monte Carlo-based gateway Selection), CBS (Centrality Based gateway Selection), and FT (Frequent Trajectory based gateway selection). Based on generating function, we propose a theoretical method for the calculation of the expected broadcast delay in Random. Intuitively, the delay can be regarded as an upper bound for that in MCS, CBS and FT. Through simulations, we compare the performance of the four algorithms. It is found that FT outperforms Random by about15%when the network size n=30. The algorithm CBS outperforms Random by10%when n=40,...,100.
     (3) For bulk data transmission in mobile wireless networks, we introduce feedback-less segmented network coding. Based on the knowledge of the contact rate among nodes, we model the data reception process at the destination using dif-ferential equation, and calculate the probability that it can receive K coded pack-ets successfully during a period of time in closed-form. To our best knowledge, we are the first to derive the upper bound of the maximum sustained throughput in a closed-form when feedbackless segmented network coding is involved. We provide two necessary conditions, i.e., the intra-segment coding condition and the inter-segment scheduling condition, for achieving this optimal performance. Based on the understanding of these conditions, we then propose a practical SNC protocol that approaches the theoretical bound asymptotically. The segment de-lay of the proposed protocol is also analyzed. Correctness of our theoretical analysis is verified through simulations. Also, the experiment results prove the effectiveness our proposed protocol.
     (4) For the trade-offs between capacity and average packet delay in mobile wireless networks with infrastructure support, we consider two synthetic models I.I.D mo-bility model, random walk mobility model with constant speed and Levy flight mobility model which is based on human mobility. For I.I.D mobility model and random walk mobility model with constant speed (?)(-/(?)n), we give theoretical results of the average packet delay when capacity is (?)(1),(?)(1/(?)) individually. n is the number of nodes in the network. It is proved that capacity is bounded above by; when the average packet delay is optimized. K is the number of gateways in the network. The bounds of the average packet delay divided by capacity under the three models are established, as well as the criti-cal average delay for the capacity comparing with that in static hybrid wireless networks. Our work provides useful theoretical insights on the performance of mobile wireless networks with infrastructure support, and will help the schedul- ing and routing protocol design.
引文
[1]工业和信息化部电信研究院.移动互联网白皮书,2011.
    [2]L. McNamara, C. Mascolo, and L. Capra. Media sharing based on colocation prediction in urban transport. In Proceedings of Mobicom, pages 58-69,2008.
    [3]N. Vallina-Rodriguez, H. Pan, and J. Crowcroft. Has anyone seen my goose? social network services in developing regions. In Proceedings of the CSE-Volume 04, pages 1048-1053,2009.
    [4]罗军舟,吴文甲,杨明.移动互联网:终端、网络与服务.计算机学报,34(11):2029-2051,2011.
    [5]UC优视.2012移动互联网趋势报告,2012.
    [6]Cisco. Cisco visual networking index:Global mobile data traffic forecast up-date,2009-2014,2010.
    [7]I.F. Akyildiz, X.D. Wang, and W.L. Wang. Wireless mesh networks:a survey. Computer Networks,47(4):445-487,2005.
    [8]V. Chandrasekhar, J. Andrews, and A. Gatherer. Femtocell networks:a survey. IEEE Communications Magazine,46(9):59-67,2008.
    [9]J. R. Pierce. An Introduction to Information Theory:Symbols, Signals and Noise. Dover Publications, Inc., second edition,1980.
    [10]A. Lindgren and H. Pan. The quest for a killer app for opportunistic and delay tolerant networks:(invited paper). In Proceedings of CHANTS, pages 59-66, 2009.
    [11]K. Fall. A delay-tolerant network architecture for challenged internets. In Pro-ceedings of SIGCOMM, pages 27-34,2003.
    [12]NSF. The networking and information technology research and development program-supplement to the president's budget for fiscal year 2010,2009.
    [13]P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Transactions on Information Theory,46(2):388-404,2000.
    [14]T. Spyropoulos, K. Psounis, and C.S. Raghavendra. Efficient routing in inter-mittently connected mobile networks:the single-copy case. IEEE/ACM Trans-actions on Networking,16(1):63-76,2008.
    [15]T. Spyropoulos, K. Psounis, and C.S. Raghavendra. Efficient routing in intermit-tently connected mobile networks:the multiple-copy case. IEEE/ACM Trans-actions on Networking,16(1):77-90,2008.
    [16]Q. Yuan, I. Cardei, and J. Wu. Predict and relay:an efficient routing in disruption-tolerant networks.In Proceedings of MobiHoc, pages 95-104,2009.
    [17]C. Liu and J. Wu. An optimal probabilistic forwarding protocol in delay tolerant networks. In Proceedings of MobiHoc, pages 105-114,2009.
    [18]E. M. Daly and M. Haahr. Social network analysis for routing in disconnected delay-tolerant manets. In Proceedings of MobiHoc, pages 32-40,2007.
    [19]H. Pan, J. Crowcroft, and E. Yoneki. Bubble rap:social-based forwarding in delay tolerant networks. In Proceedings of MobiHoc, pages 241-250,2008.
    [20]Y. F. Lin, B. C. Li, and B. Liang. Stochastic analysis of network coding in epi-demic routing. IEEE Journal on Selected Areas in Communications,26(5):794-808,2008.
    [21]J. Widmer and J. Le Boudec. Network coding for efficient communication in extreme networks. In Proceedings of, pages 284-291,2005.
    [22]Y. Wang, S. Jain, M. Martonosi, and K. Fall. Erasure-coding based routing for opportunistic networks. In Proceedings of WDTN, pages 229-236,2005.
    [23]Y. F. Lin, B. Liang, and B. C. Li. Efficient network coded data transmissions in disruption tolerant networks. In Proceedings of INFOCOM, pages 1508-1516, 2008.
    [24]S. Ahmed and S. S. Kanhere. Hubcode:message forwarding using hub-based network coding in delay tolerant networks. In Proceedings of MSWiM, pages 288-296,2009.
    [25]P. Tournoux, E. Lochin, J. Leguay, and J. Lacan. Robust streaming in delay tolerant networks. In Proceedings of ICC, pages 1-5,2010.
    [26]W. T. Huang, X. B. Wang, and Q. Zhang. Capacity scaling in mobile wireless ad hoc network with infrastructure support. In Proceedings of ICDCS, pages 848-857,2010.
    [27]M. Grossglauser and D.N.C. Tse. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking,10(4):477-486, 2002.
    [28]C. W. Sung. Log-convexity property of the feasible sir region in power-controlled cellular systems. IEEE Communications Letters,6(6):248-249,2002.
    [29]H. Boche and S. Stanczak. Convexity of some feasible qos regions and asymp-totic behavior of the minimum total power in cdma systems. IEEE Transactions on Communications,52(12):2190-2197,2004.
    [30]H. Boche, S. Naik, and M. Schubert. Combinatorial characterization of inter-ference coupling in wireless systems. IEEE Transactions on Communications, 59(6):1697-1706,2011.
    [31]H. Boche, S. Naik, and T. Alpcan. Characterization of convex and concave resource allocation problems in interference coupled wireless systems. IEEE Transactions on Signal Processing,59(5):2382-2394,2011.
    [32]L. P. Qian and Y. J. Zhang. Optimal throughput-oriented power control by linear multiplicative fractional programming. In Proceedings of ICC, pages 4009-4015,2008.
    [33]L. P. Qian, Y. J. Zhang, and J. W. Huang. Mapel:Achieving global optimality for a non-convex wireless power control problem. IEEE Transactions on Wireless Communications,8(3):1553-1563,2009.
    [34]L. P. Qian and Y. J. Zhang. Monotonic optimization for non-concave power con-trol in multiuser multicarrier network systems. In Proceedings of INFOCOM, Infocom'09, pages 172-180,2009.
    [35]Z. Lotker, M. Parter, D. Peleg, and Y. A. Pignolet. Distributed power control in the sinr model. In Proceedings of INFOCOM, pages 2525-2533,2011.
    [36]C. W. Tan, M. Chiang, and R. Srikant. Maximizing sum rate and minimizing mse on multiuser downlink:Optimality, fast algorithms and equivalence via max-min sir. In Proceedings of ISIT, pages 2669-2673,2009.
    [37]Y. Song, C. Zhang, and Fang Y. G. Joint channel and power allocation in wireless mesh networks:a game theoretical perspective. IEEE Journal on Selected Areas in Communications,,26(7):1149-1159,2008.
    [38]M. B. Xiao, N. B. Shroff, and E. K. P. Chong. A utility-based power-control scheme in wireless cellular systems. IEEE/ACM Transactions on Networking, 11(2):210-221,2003.
    [39]V. Shrivastava, D. Agrawal, A. Mishra, S. Banerjee, and T. Nadeem. Understand-ing the limitations of transmit power control for indoor wlans. In Proceedings of IMC, pages 351-364,2007.
    [40]V. P. Mhatre, K. Papagiannaki, and F. Baccelli. Interference mitigation through power control in high density 802.11 wlans. In Proceedings of INFOCOM, pages 535-543,2007.
    [41]J. H. Yun and K. G. Shin. Ctrl:a self-organizing femtocell management archi-tecture for co-channel deployment. In Proceedings of Mobicom, pages 61-72, 2010.
    [42]I. Ashraf, L. T. W. Ho, and H. Claussen. Improving energy efficiency of femto-cell base stations via user activity detection. In Proceedings of WCNC,2010.
    [43]M. Chiang, P. Hande, T. Lan, and C. W. Tan. Power control in wireless cellular networks. Foundations and Trends in Networking,2(4):381-533,2008.
    [44]X. Y. Li, Y. H. Liu, S. Li, and S. J. Tang. Multicast capacity of wireless ad hoc networks under gaussian channel model. IEEE/ACM Transactions on Network-ing,18(4):1145-1157,2010.
    [45]N. Olano, M. Petrova, and P. Mahonen. Sdr implementation and verification of distributed load balancing spectrum allocation algorithm. In Proceedings of PIMRC, pages 2613-2617,2009.
    [46]M. Petrova, N. Olano, and P. Mahonen. Balls and bins distributed load balancing algorithm for channel allocation. In Proceedings of WONS, pages 25-30,2010.
    [47]X. N. Yue, C. F. Wong, and S.-H.G. Chan. Cacao:distributed client-assisted channel assignment optimization for uncoordinated wlans. IEEE Transactions on Parallel and Distributed Systems,22(9):1433-1440,2011.
    [48]M. K. Panda and A. Kumar. Modeling multi-cell ieee 802.11 wlans with appli-cation to channel assignment. In Proceedings of WiOpt, pages 1-10,2009.
    [49]C. W. Chen, C. Y. Wang, S. L. Chao, and H. Y. Wei. Dance:a game-theoretical femtocell channel exchange mechanism. SIGMOBILE Mob. Comput. Commun. Rev.,14(1):13-15,2010.
    [50]T. Lee, H. Kim, J. Park, and J. Shin. An efficient resource allocation in ofdma femtocells networks. In Proceedings of VTC, pages 1-5,2010.
    [51]Z. N. Shi, H. Wang, M. Zhao, and M. C. Reed. An uplink analytical model for two-tiered 3g femtocell networks. In Proceedings of WiOpt, pages 367-372, 2010.
    [52]L. Benmesbah, B.W.K. Ling, V. Chandrasekhar, X. Chu, and M. Dohler. Decentralized spectral resource allocation for ofdma downlink of coexisting macro/femto networks using filled function method. In Proceedings ofCSNDSP, pages 881-885,2010.
    [53]T. Bonald, A. Ibrahim, and J. Roberts. The impact of association on the capacity of wlans. In Proceedings of WiOpt, pages 1-10,2009.
    [54]M. M. Lu and J. Wu. Localized access point association in wireless lans with bounded approximation ratio. In Proceedings ofICCCN, pages 1-8,2008.
    [55]W. C. Xu, C. Q. Hua, and A. P. Huang. A game theoretical approach for load bal-ancing user association in 802.11 wireless networks. In Proceedings of GLOBE-COM, pages 1-5,2010.
    [56]I. Koukoutsidis and V.A. Siris. Access point assignment algorithms in wlans based on throughput objectives. In Proceedings of WiOpt, pages 375-383,2008.
    [57]B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki, and C. Diot. Measurement-based self organization of interfering 802.11 wireless access networks. In Proceedings of INFOCOM, pages 1451-1459,2007.
    [58]T. Chen, H. G. Zhang, M. Hoyhtya, and M.D. Katz. Spectrum self-coexistence in cognitive wireless access networks. In Proceedings of GLOBECOM, pages 1-6,2009.
    [59]W. C. Xu, C. Q. Hua, and A. P. Huang. Channel assignment and user association game in dense 802.11 wireless networks. In Proceedings of ICC, pages 1-5, 2011.
    [60]J. P. M Torregoza, R. Enkhbat, and W. J. Hwang. Joint power control, base station assignment, and channel assignment in cognitive femtocell networks. EURASIP Journal on Wireless Communications and Networking,2010(January 2010):6:1-6:12,2010.
    [61]F. Li, Y. Wang, X. Li, A. Nusairat, and Y. Wu. Gateway placement for throughput optimization in wireless mesh networks. Mob. Netw. Appl.,13(1-2):198-211, 2008.
    [62]U. Ashraf, S. Abdellatif, and G. Juanole. Gateway selection in backbone wire-less mesh networks. In Proceedings of WCNC, pages 2548-2553,2009.
    [63]X. H. Xu, S. J. Tang, X. F. Mao, and X. Y. Li. Distributed gateway placement for cost minimization in wireless mesh networks. In Proceedings of ICDCS, pages 507-515,2010.
    [64]K. Papadaki and V. Friderikos. Gateway selection and routing in wireless mesh networks. Comput. Netw.,54(2):319-329,2010.
    [65]Y. Song, S. Wong, and K. Lee. Optimal gateway selection in mulit-domain wireless networks:a potential game perspective. In Proceedings of MobiCom, pages 325-336,2011.
    [66]J. Vazifehdan, M. Jacobsson, and I. Niemegeers. A framework for gateway and access network selection in ad-hoc distributed personal networks. In Proceed-ings of CCNC, pages 1-5,2009.
    [67]T. He, K. W. Lee, N. Sofra, and K. K. Leung. Utility-based gateway deployment for supporting multi-domain dtns. In Proceedings of SECON, pages 1-9,2010.
    [68]K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi. Mobile data offloading:how much can wifi deliver? In Proceedings of CoNEXT, pages 26:1-26:12,2010.
    [69]A. Vahdat and D. Becker. Epidemic routing for partially-connected ad hoc net-works. Technical report, Duke University,2000.
    [70]E. P. C. Jones, L. Li, J. K. Schmidtke, and P. A. S. Ward. Practical routing in delay-tolerant networks. IEEE Transactions on Mobile Computing,6(8):943-959,2007.
    [71]Y. C. Wu, Y. M. Zhu, and B. Li. Trajectory improves data delivery in vehicular networks. In Proceedings of INFOCOM, pages 2183-2191,2011.
    [72]H. Z. Zhu, S. Chang, M. L. Li, K. Naik, and S. Shen. Exploiting temporal depen-dency for opportunistic forwarding in urban vehicular networks. In Proceedings of INFOCOM, pages 2192-2200,2011.
    [73]A. Iacono and C. Rose. Infostations:new perspectives on wireless sata networks. In Next Generation Wireless Networks, volume 598, pages 3-63.
    [74]T. Small and Z. J. Haas. The shared wireless infostation model:a new ad hoc networking paradigm (or where there is a whale, there is a way). In Proceedings of MobiHoc, pages 233-244,2003.
    [75]J. L. Fan, Y. Du, W. Gao, J. M. Chen, and Y. X. Sun. Geography-aware active data dissemination in mobile social networks. In Proceedings of MASS, pages 109-118,2010.
    [76]E. M. Daly and M. Haahr. Social network analysis for routing in disconnected delay-tolerant manets. In Proceedings of MobiHoc, pages 32-40,2007.
    [77]H. Pan, J. Crowcroft, and E. Yoneki. Bubble rap:social-based forward-ing in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11):1576-1589,2011.
    [78]W. Gao, Q. H. Li, B. Zhao, and G. H. Cao. Multicasting in delay tolerant net-works:a social network perspective. In Proceedings of MobiHoc, pages 299-308,2009.
    [79]F. Li, J. Wu, and A. Srinivasan. Thwarting blackhole attacks in disruption-tolerant networks using encounter tickets. In Proceedings of INFOCOM, pages 2428-2436,2009.
    [80]Q. H. Li, S. C. Zhu, and G. H. Cao. Routing in socially selfish delay tolerant networks. In Proceedings of INFOCOM, pages 1-9,2010.
    [81]M. E. Mahmoud, M. Barua, and X. Shen. Sats:secure data-forwarding scheme for delay-tolerant wireless networks. In Proceedings of GLOBECOM, pages 1-5,2011.
    [82]X. D. Lin and H. H. Chen. A secure and efficient rsu-aided bundle forwarding protocol for vehicular delay tolerant networks. Wireless Communications and Mobile Computing,11(2):187-195,2011.
    [83]A. Einstein. Investigations on the Theory of the Brownian Motion. Dover Pub-lications, Inc.,1956.
    [84]D.B. Johnson and D.A. Maltz. Dynamic source routing in ad hoc wireless net-works. In Mobile Computing, pages 153-181. Kluwer Academic Publishers, 1996.
    [85]V. Davies. Evaluating mobility models within an ad hoc networks. Master's thesis, Colorado School of Mines, USA,2000.
    [86]X. Y. Hong, M. Gerla, G. Y. Pei, and C. C. Chiang. A group mobility model for ad hoc wireless networks. In Proceedings of MSWiM, pages 53-60,1999.
    [87]A. Mei and J. Stefa. Swim:A simple model to generate small mobile worlds. In Proceedings of INFOCOM, pages 2106-2113,2009.
    [88]K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong. Slaw:a new mobility model for human walks. In Proceedings of INFOCOM, pages 855-863,2009.
    [89]N. Bansal and Z. Liu. Capacity, delay and mobility in wireless ad-hoc networks. In Proceedings of INFOCOM, volume 2, pages 1553-1563,2003.
    [90]M.J. Neely and E. Modiano. Capacity and delay tradeoffs for ad hoc mobile networks. IEEE Transactions on Information Theory,51(6):1917-1937,2005.
    [91]S. Toumpis and A.J. Goldsmith. Large wireless networks under fading, mobility, and delay constraints. In Proceedings of INFOCOM,2004.
    [92]X. J. Lin and N. B. Shroff. Towards achieving the maximum capacity in large mobile wireless networks under delay constraints. Journal of Communication and Networks,6(4):352-361,2004.
    [93]J. J. Liu, X. H. Jiang, H. Nishiyama, and N. Kato. Delay and capacity in ad hoc mobile networks with f-cast relay algorithms. IEEE Transactions on Wireless Communications,10(8):2738-2751,2011.
    [94]A. El. Gamal, J. Mammen, B. Prabhakar, and D. Shah. Throughput-delay trade-off in wireless networks. In Proceedings of INFOCOM,2004.
    [95]X. Lin, G. Sharma, R.R. Mazumdar, and N.B. Shroff. Degenerate delay-capacity tradeoffs in ad-hoc networks with brownian mobility. IEEE Transactions on Information Theory,52(6):2777-2784,2006.
    [96]A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah. Optimal throughput-delay scaling in wireless networks-part i:the fluid model. IEEE Transactions on Information Theory,52(6):2568-2592,2006.
    [97]A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah. Optimal throughput-delay scaling in wireless networks-part ii:constant-size packets. IEEE Transactions on Information Theory,52(11):5111-5116,2006.
    [98]J. Mammen and D. Shah. Throughput and delay in random wireless networks with restricted mobility. IEEE Transactions on Information Theory,53(3):1108-1116,2007.
    [99]G. Sharma, R. Mazumdar, and B. Shroff. Delay and capacity trade-offs in mobile ad hoc networks:a global perspective. IEEE/ACM Transactions on Networking, 15(5):981-992,2007.
    [100]L. Ying, S. C. Yang, and R. Srikant. Optimal delay-throughput tradeoffs in mo-bile ad hoc networks. IEEE Transactions on Information Theory,54(9):4119-4143,2008.
    [101]M. Garetto, P. Giaccone, and E. Leonardi. Capacity scaling in ad hoc networks with heterogeneous mobile nodes:the subcritical regime. IEEE/ACM Transac-tions on Networking,17(6):1888-1901,2009.
    [102]M. Garetto, P. Giaccone, and E. Leonardi. Capacity scaling in ad hoc networks with heterogeneous mobile nodes:the super-critical regime. IEEE/ACM Trans-actions on Networking,17(5):1522-1535,2009.
    [103]M. Garetto and E. Leonardi. Restricted mobility improves delay-throughput tradeoffs in mobile ad hoc networks. IEEE Transactions on Information Theory, 56(10):5016-5029,2010.
    [104]D. Ciullo, V. Martina, M. Garetto, and E. Leonardi. Impact of correlated mobility on delay-throughput performance in mobile ad-hoc networks. In Proceedings of INFOCOM, pages 1-9,2010.
    [105]C. Wang, X. Y. Li, S. J. Tang, C. J. Jiang, and Y. H. Liu. Capacity and delay in mobile ad hoc networks under gaussian channel model. SIGMOBILE Mob. Comput. Commun. Rev.,14(3):22-24,2010.
    [106]K. Lee, Y. Kim, S. Chong, I. Rhee, and Y. Yi. Delay-capacity tradeoffs for mobile networks with levy walks and levy flights. In Proceedings of INFOCOM, pages 1-10,2011.
    [107]X. Y. Li. Multicast capacity of wireless ad hoc networks. IEEE/ACM Transac-tions on Networking,17(3):950-961,2009.
    [108]A. Keshavarz-Haddad, V. Ribeiro, and R. Riedi. Broadcast capacity in multihop wireless networks. In Proceedings of MobiCom, pages 239-250,2006.
    [109]B. Tavli. Broadcast capacity of wireless networks. IEEE Communications Let-ters,10(2):68-69,2006.
    [110]Y. Wang, X. Y. Chu, X. B. Wang, and Y. Cheng. Optimal multicast capacity and delay tradeoffs in manets:a global perspective. In Proceedings of INFOCOM, pages 1-10,2011.
    [111]M. Jarinen. Femtocell deployment in 3rd generation networks. Master's thesis, Helsinki University of Technology, Espoo, Finland,2009.
    [112]G. Giir, S. Bayhan, and F. Alagoz. Cognitive femtocell networks:an overlay architecture for localized dynamic spectrum access. IEEE Wireless Communi-cations,17(4):62-70,2010.
    [113]R. Horst and N. V. Thoai. Dc programming:overview. Journal of Optimization Theory and Applications,103(1):1-43,1999.
    [114]R. Horst, T. Q. Phong, Ng. V. Thoai, and J. Vries. On solving a d.c. programming problem by a sequence of linear programs. Journal of Global Optimization, 1(2):183-203,1991.
    [115]R. Karp. Reducibility among combinatorial problems. In Complexity of Com-puter Computations, pages 85-103.1972.
    [116]I. Bezakova and V. Dani. Allocating indivisible goods. SIGecom Exch.,5(3):11-18,2005.
    [117]S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-nealing. Science,220(4598):671-680,1983.
    [118]S. Kirkpatrick. Optimization by simulated annealing:Quantitative studies. Jour-nal of Statistical Physics,34(5):975-986,1984.
    [119]J. C. Bezdek and R. J. Hathaway. Some notes on alternating optimization. In Proceedings of AFSS, pages 288-300,2002.
    [120]J. H. Yun and K. G. Shin. Ctrl:a self-organizing femtocell management archi-tecture for co-channel deployment. In Proceedings of MobiCom, pages 61-72, 2010.
    [121]J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, pages 1942-1948,1995.
    [122]J. B. Park, Y. W. Jeong, J. R. Shin, and K. Y. Lee. An improved particle swarm optimization for nonconvex economic dispatch problems. IEEE Transactions on Power Systems,25(1):156-166,2010.
    [123]A. Salman, I. Ahmad, and S. Al-Madani. Particle swarm optimization for task assignment problem. Microprocessors and Microsystems,26(8):363-371,2002.
    [124]M. B. Abdelhalim and S. E. D. Habib. Modeling communication cost and hard-ware alternatives in pso based hw/sw partitioning. In Proceedings of ICM, pages 111-114,2007.
    [125]B. Han, H. Pan, V. Kumar, M. Marathe, G. Pei, and A. Srinivasan. Cellular traffic offloading through opportunistic communications:a case study. In Proceedings of CHANTS, pages 31-38,2010.
    [126]H. Cai and D. Y. Eun. Crossing over the bounded domain:from exponential to power-law inter-meeting time in manet. In Proceedings of MOBICOM, pages 159-170,2007.
    [127]T. Karagiannis, J. Le Boudec, and M. Vojnovic. Power law and exponential decay of inter contact times between mobile devices. In Proceedings of MOBI-COM, pages 183-194,2007.
    [128]L. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,8(3):410-421,1979.
    [129]D. Karger. A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM J. Comput.,29(2):492-514, 1999.
    [130]H.S.Wilf. Generatingfunctionology.2nd. Academic Press, London,1994.
    [131]S. Newman, M.and Strogatz and D. Watts. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E,64(2 Pt 2),2001.
    [132]M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser. CRAWDAD data set (v.2009-02-24), http://crawdad.cs.dartmouth.edu/epfl/mobility,2009.
    [133]M. Piorkowski, N. Sarafijanovoc-Djukic, and M. Grossglauser. A parsimonious model of mobile partitioned networks with clustering.In Proceedings of COM-SNETS, pages 1-10,2009.
    [134]A. Lindgren, A. Doria, and O. Schelen. Probabilistic routing in intermittently connected networks. ACMSIGMOBILE Mob. Comput. Commun. Rev.,7(3):19-20,2003.
    [135]J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine. Maxprop:routing for vehicle-based disruption-tolerant networks. In Proceedings of INFOCOM, pages 1-11,2006.
    [136]A. Balasubramanian, B. Levine, and A. Venkataramani. DTN routing as a re-source allocation problem. In Proceedings of SIGCOMM, pages 373-384,2007.
    [137]T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray and wait:an efficient routing scheme for intermittently connected mobile networks. In Proceedings of WDTN, pages 252-259,2005.
    [138]X. L. Zhang, G. Neglia, J. Kurose, and D. Towsley. On the benefits of ran-dom linear coding for unicast applications in disruption tolerant networks. In Proceedings of Netcod, pages 1-7,2006.
    [139]H. Z. Zhu, L. Y. Fu, G. T. Xue, Y. M. Zhu, M. L. Li, and L. M. Ni. Recognizing exponential inter-contact time in vanets. In Proceedings of INFOCOM, pages 101-105,2010.
    [140]B. Han, H. Pan, V. S. A. Kumar, M. V. Marathe, G. H. Pei, and A. Srinivasan. Cellular traffic offloading through opportunistic communications:a case study. In Proceedings of CHANTS, pages 31-38,2010.
    [141]Q. S. Wang, X. B. Wang, and X. J. Lin. Mobility increases the connectivity of k-hop clustered wireless networks. In Proceedings of MobiCom, pages 121-132, 2009.
    [142]I. Rhee, M. S. Shin, S. Hong, K. Lee, and S. Chong. On the levy-walk nature of human mobility:do human walk like monkeys? IEEE/AC'MTransactions on Networking,19(3),2011.
    [143]A. Zemlianov and G. Veciana. Capacity of ad hoc wireless networks with infras-tructure support. IEEE Journal on Selected Areas in Communications,23(3):657-667,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700