大鼠老化时认知功能变化及其与白质损害关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:认知功能损害是脑老化的显著特点,其机制还不清楚,迄今亦无有效预防及治疗方法。近年来,基础及临床研究已经证实,脑白质损害是认知功能降低的重要原因之一,临床上也常见到脑白质改变能引起认知功能的下降。脑白质主要成分是胶质细胞、髓鞘和轴突。蛋白脂蛋白(Protein Lipid Protein,PLP)是髓鞘的重要成分之一,郎飞结(Ranvier node)的结旁区粘附分子Caspr(Contactin-associated protein)是维持髓鞘及轴突功能关键分子,两者变化会引起髓鞘和轴突结构和功能变化,进而影响白质功能。本研究从以下四个方面探讨了老龄大鼠学习记忆功能变化、白质结构和功能改变:(1)从行为学角度探讨老年大鼠认知功能变化;(2)老化时中枢神经传导功能的改变;(3)髓鞘蛋白PLP表达改变;(4)胶质/轴突界面粘附分子Caspr2变化及与轴突、髓鞘损害关系,目的是揭示老化对认知功能的影响及髓鞘和轴突的变化在其中的意义。
     方法:将wistar大鼠分为两组:青年组(6-7月龄)和老年组(18-24月龄)。采用Morris水迷宫评定大鼠学习记忆功能;电生理方法记录大鼠穿通通路传导潜伏时,评定前脑区中枢神经传导功能;透射电镜观察大鼠的轴突、髓鞘等白质区结构的超微改变;应用免疫组化技术检测脑老化过程中PLP及粘附分子Caspr2表达变化,并用LEICAQWIN图像分析系统对PLP免疫染色的积分光密度值进行分析。
     结果:
     1.老年组大鼠较青年组大鼠隐匿平台逃避潜伏时显著延长(P<0.01);空间探索实验中:老年组大鼠游泳路径,在平台95%中心区域占总路径的百分数明显低于青年组(P<0.01),第1次穿越平台所在位置的时间明显长于青年组(P<0.05);可见平台逃避潜伏时,老年组较青年组明显延长(P<0.05)。
     2.中枢传导功能:两组间存在显著差别,老年大鼠中枢传导潜伏时较青年组显著延长(P<0.01)。
     3.白质区超微结构变化:老年大鼠轴突直径增加,轴突内含有巨大线粒体,线粒体结构模糊不清,脊崩解,轴突内也可见到囊泡和致密颗粒。轴突周围间隙扩大。髓鞘致密层分离,部分板层结构排列紊乱破坏、模糊、融合。胶质细胞胞浆内及细胞间隙电子密度增高,可见脂褐素沉积。
     4.PLP免疫组化:两组于纹状体、胼胝体、前联合、皮层下区均可见阳性染色。但老年组各部位PLP表达量明显减少、其积分光密度值明显增大(P<0.01)。
     5.Caspr2免疫荧光染色:青年组和老年组大鼠均可见到Caspr2的荧光染色。在纤维的顺行切面上表现为对称点状,呈绿色荧光,在横切面上表现为点状。老年组荧光染色强度显著低于青年组。
     结论:
     1.老年组大鼠空间参考学习、记忆能力较青年组大鼠明显减退,空间探索及记忆维持能力明显降低。
     2.脑老化时穿通通路传导潜伏时延长,反映中枢神经传导功能降低,可能与老年大鼠学习、记忆功能减退有关。
     3.脑老化时少突胶质细胞、髓鞘及轴突超微结构存在明显变化,是白质功能减退的重要原因。
     4.髓鞘蛋白PLP表达减少,与髓鞘形态结构改变有关,这种变化可能与老化时神经传导功能降低和认知功能损害有一定联系。
     5.脑老化时胶质/轴突间粘附分子Caspr2表达减少,导致髓鞘与轴突分离,进而影响白质结构及功能,在老化白质损害的机制中具有重要地位。
Objective:
     The significant character of brain aging is the damage of recognitive function.Up to now,its mechanism is unknown.There are not effective methods of prevention and treatment.In the past several years,the basic and clinical researchs have already confirmed that white matter damage was an important cause of the decline of recognitive function.It was often seen that the white matter change resulted the decline of recognitive function in clinic.The essential component of white matter are gliacyte,myelin sheath and axon. Protein Lipid Protein(PLP)is an important component of myelin sheath.Adhesion molecule,Contactin-associated protein(Caspr),in paranode of Ranvier node,is the important molecule that maintains the function of myelin sheath and axon.Their Changes may result in structural and functional changes of myelin and axon.Furthermore,they affect white matter function.This thesis studied changes of learning and memory function, the structural and functional change of white matter in aged rats in four aspects.(1) In behavioral aspect,the changes of recognitive function was studied in aged rats;(2) the change of central conductive function during brain aging;(3) PLP expressive changes; (4)The expressive and functional change of Caspr2 between myelin and axon and its relationship with the damage of axon and myelin sheath.The purpose is to reveal the effect of aging on recognitive function and the significance of axon and myelin sheath changes.
     Methods:
     The wistar rats were divided into two groups:young group(6-7 months) and aged group(18-24 months).Morris water maze was adopted to evaluate learning and memory function of rats.The conductive latency time of perforant pathway was recorded by Electrophysiological methods to evaluate central conductive function of forebrain regions in rats.Transmission electron microscope(TEM) was used to observe the ultramicrostructural changes of white matter in rats,such as myelin sheath and axon. Immunohistochemistry techniques was applied to detect expressive changes of PLP and adhesion molecule Caspr2 in brain aging.LEICA QWIN image analytical system was used to analyze integrated optical density(IOD) of PLP immunostaining.
     Results:
     1.The escape latency increased significantly in aged group rats than young group(P<0.01).The mean percentage(%)of path in the 95%central zone were significantly lower in the aged group(P<0.01),the first time passing hidden platform prolonged significantly in the aged group(P<0.05).In the obvious platform experiment,escape latency significantly delayed in aged group than young group(P<0.05).
     2.The central conductive time increased significantly in aged group than young group(P<0.01).
     3.In the ultramicrostructural changes of white matter,axon diameter increased,which contained megamitochondrion.The structure of mitochondrion was vague,ridge was disaggregated.The dense granule was observed in aged groups.The gaps around enlarged. In myelin sheath,the compact layer separated and some layers structure of myelin were confused,destructed.It can be seen that electron density increased and lipofuscin deposited in cytoplasm of gliacyte.
     4.In PLP Immunohistochemistry,it had been seen positive staining in striatum, callosum,anterior commissure,subcortex regions in two groups.But the PLP expressive capacity decreased obviously and IOD value(optical density value) increased obviously in aged group than young group(P<0.01).
     5.In Caspr2 immunofluorescence staining,positive fluorescent staining were seen in two groups.It showed points and strips in green fluorescence.Fluorescent staining intensity decreased obviously in aged group than young group.
     Conclusions:
     1.In aged group rats,not only the spatial reference learning and memory function but also the memory maintenance function significantly decreased than young group rats.
     2.The conductive latency time of perforant pathway prolonged in brain aging,which showed that central conductive function decreased.It was probably relevant to the decline of learning and memory function in aged group rats.
     3.There were significant changes of ultramicrostructure in oligodendrocyte,myelin sheath and axon,which may be an important reason of the decline of white matter function during brain aging.
     4.The expression of PLP decreased,that is relevant to the morphological and structural changes of myelin sheath.This change probably have some relation with the decline of conductive function and the damage of recognitive function during brain aging.
     5.Expression of Caspr2,an adhesion molecule between myelin and axon,decreased in brain aging.It resulted in separation between myelin sheath and axon.Furthermore,it affected structure and function of white matter.It has an important rank in the damage of white matter during brain aging.
引文
1. Serpa RFB, de Jesus EFO, Anjos MJ,et al. Cognitive impairment related changes in the elemental concentration in the brain of old rat[M] Brazil. Corrected Proof Press. 2006;P5-10.
    2. Morrison JH, Hof PR. Life and death of neurons in the aging brain [J].Science 1997;278: 412.
    3. Wong T P, Marchese G, Casu MA,et al.Imbalance towards inhibition as a substrate of aging-associated cognitive impairment [J] .Neuroscience Letters, 2006;397, 64-68.
    4. Peters A. The effects of normal aging on myelin and nerve fibers: a review[J]. Neurocytol. 2002;31(8-9):581-593.
    5. Peters A. Structural changes that occur during normal aging of primate cerebral hemispheres[J]. Neuroscienee and Biobehavioral Reviews,2002;26:733-741.
    6. Salthouse TA. Aging and measures of processing speed[J].Biol Psychol,2000; 54:35-54.
    7. de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study [see comments] [J]. Ann Neurol 2000 ; 47: 145-151.
    8. Pasquier F, Leya D. Why are stroke patients prone to develop dementia? [J]. Neurol.1997;244; 135.
    9. Barnett HJM, Mohr JP, Stein BM, et al. Stroke pathophysiology, diagnosis, and management[M].2nd ed, New York: Churchill livingstone. 1992; P805.
    10. Hachinski VC, Potter P, Merakey et al. Leukoaraiosis [J]. Arch Neurol, 1987;44:21-26.
    11. Yuan LL, Ganetzky B. Searching for molecules mediating glial-neuronal communication [J]. Mol Psychiatry. 1999 ; 4: 408-409.
    12. Collinson JM, Marshall D, Gillespie CS, et al. Transient expression of neurofascin by oligodendrocytes at the onset of Myelinogenesis: implications for mechanisms of axon-glial interaction [J]. Glia. 1998; 23: 11-23.
    13. Yuan LL, Barry Ganetzky A Glial-Neuronal Signaling Pathway Revealed by Mutations in a Neurexin-Related Protein [J]. Science 1999; 283: 1343.
    14. Peters A, Sethares C. Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey[J]. Comp Neurol,2002;442:277—291.
    15.赵士福,成戎川,刘磊等.老年大鼠脑白质损害在学习记忆降低中的意义[J].中国老年学杂志,2006;5(26):638-640.
    16.Van Engelen BG,Lamers KJB,Gabreels FJM,et al.Age-related changes of neuron-specific enolase,S-100 protein,and myelin basic protein concentrations incerebrospinal fluid[J].ClinChem,1992;38(6):813-816.
    17.Peles E,Salzer JL.Molecular domains ofmyelinated axons[J].Curr Opin Neurobiol,2000;10(5):558-565.
    18.DL,Colman DR,Brophy PJ.An oligodendrocyte cell adhesion molecule at the site of assembly of the Paranodal axo-glial junction[J].Cell Biol.2000;150:657-666.
    19.Perrine C,Steven T,et al;Neurofascin Is a Glial Receptor for the Paranodin/Caspr-Contactin Axonal Complex at the Axoglial Junction[J].Current Biology.2002;12;217-220.
    20.20 Paxinos G,Watson C.The rat brain in stereotaxic coordinates[M].1st ed.Sydney,Australia:Academic Press,1986,P 29-52.
    21.Almli CR,Levy TJ,Han BH,et al.BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia[J].Exp Neuro,2000;166:99-114.
    22.Shukitt-Hale B,McEwen J,Szprengiel A,et al.Effect of age on the radial arm water maze-a test of spatial learning and memory[J].Neurobiol Aging.2004;25(2):223-229.
    23.Magnusson KR,Scruggs B,Aniya J,et al.Age-related deficits in mice performing working memory tasks in a water maze[J].Behav Neurosci.2003;117(3):485-495.
    24.柯尊记,姚志彬,陈以慈.老年学习记忆减退大鼠空间参考记忆和工作记忆能力的改变[J].中国行为医学科学,1999;8(4):245-248.
    25.李凌江.老年鼠空间记忆功能特征研究[J].中国行为医学科学,1999,8(1)5-8.
    26.Rowe WB,Kar S,Meaney MJ,et al.Neurotensin receptor levels as a function of brain aging and cognitive performance in the Morris water maze task in the rat[J].Peptides,2006,27,2415-2423.
    27.Rourke BP,Ahmad SA,Collins DW,et al.Child clinical/pediatric neuropsychology:some recent advances[J].Annu Rev Psychol.2002;53:309-339.
    28.Hermann B,Hansen R,Seidenberg M,et al.Neurodevelopmental vulnerability of the corpus callosum to childhood onset localization-related epilepsy[J].Neuroimage.2003;18(2):284-292.
    29.Kates WR,Burnette CP,Jabs EW,et al.Regional cortical white matter reductions in velocardiofacial syndrome:a volumetric MRI analysis[J].Biol Psychiatry.2001;49(8):677-684.
    30.Mulhern RK,Palmer SL,Reddick WE,et al.Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter loss[J].Clin Oncol.2001;19(2):472-479.
    31.Whitaker AH,Feldman JF,Van Rossem R,et al.Neonatal cranial ultrasound abnormalities in low birth weight infants:relation to cognitive outcomes at six years of age[J].Pediatrics.1996;98(4):719-729.
    32.Schatz J,Craft S,Koby M,et al.Associative learning in children with perinatal brain injury[J].Int Neuropsychol Soc.1997;3(6):521-527.
    33.Kumar A,Cook IA.White matter injury,neural connectivity and the pathophysiology of psychiatric disorders[J].Dev Neurosci,2002;24(4):255-261.
    34.Morris RGM,Moser EI,Riedel G,et al.Elements ofa neurobiologieal theory of the hippocampus:the role of activity-dependent synaptic plasticity in memory[J].Philos Trans Biol Sci,2002;358:773 - 786.
    35.Wen HM,Nok VC,Fan YH,et al.Effect of white matter changes on cognitive impairment in patients with lacunar infarcts[J].Stroke,2004;35(8):1826-1830.
    36.赵士福,肖道宏,刘立杰等.脑白质损害的认知功能研究[J].脑与神经疾病杂志,2002;10(1):24-26.
    37.Imai T,Shizukawa H,Imaizumi H,Matsumoto H.Transient phrenic nerve palsy after cardiac operation in infants[J].Clin Neurophysiol 2004;115:1469-1472.
    38.Imai T,Yuasa H,Kato Y,et al 。 Aging of phrenic nerve conduction in the elderly[J].Clinical Neurophysiology,2005,116,2560-2564.
    39.Wang DS,David A,Bennett B,et al.Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline[J].Neuroscience Res,2004;48:93-100.
    40.Matrner L,Nyengaard JR,Tang Y,et al.Marked loss of myelinated nerve fibers in the human brain with age[J].Comp Neurol,2003;462(2):139-143.
    41.胥维勇,杨群,范小莉.神经髓鞘染色及其应用[J].中国组织化学与细胞化学杂志.2004,13(4)546-547.
    42.李琳,姜远虹.老龄大鼠脑皮质超微病理学特征性变化[J].中国老年学杂志.2005.25(10)1215-1216.
    43.徐晓虹,王良斌,杨少伟等.小鼠学习记忆行为与脑内脂褐素含量的关系[J].中华老年医学杂志,1998,17(2):80-82.
    44.Sandell JH,Peters A.Disrupted myelin and axon loss in the anterior commissure of the aged rhesus monkey[J].Comp Neurol.2003 466(1):14-30.
    45.Lees,MB,Brostoff,SW.Proteins of myelin[M],In:Morell,P.(Ed.),Myelin,New York,Plenum Press.1984;P 196-224.
    46.Michael E.Schwann cell expressions of PLP1 but not DW20 is necessary to prevent neuropathy[J].Ann Neurol,2003,53:354-365.
    47.Battini R,Bianchi MC,Boespflug-Tanguy O,et al.Unusual clinical and magnetic resonance imaging findings in a family with proteolipid protein gene mutation[J].Arch Neurol,2003,60(2):268.
    48.Wang PJ.Duplication of proteolipid protein gene:a possible major cause of Pelizaeus -Merzbacher disease[J].Pediatric Neurology,1997,17(2):125-128.
    49.Yool DA,Klugmann M,McLaughlin M,et al.Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons.[J]Neurosci Res.2001;63(2):151-164.
    50.Yin X,Baek RC,Kirschner DA,et al.Evolution of a neuroprotective function of central nervous system myelin[J].Cell Biol.2006;172(3):469-478.
    51.Sim FJ,Zhao C,Penderis J,et al.The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation[J].Neurosci.2002;22(7):2451-2459.
    52.Levison SW,Rothstein RP,Romanko MJ,et al.Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells[J].Dev Neurosci,2001;23(3):234-247.
    53.Back SA,Han BH,Luo NL,et al.Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia[J].J Neurosci,2002;22(2):455-463.
    54.Ness JK,Romanko MJ,Rothstein RP,et al.Perinatal Hypoxia-Ischemia Induces Apoptotic and Excitotoxic Death of Periventricular White Matter Oligodendrocyte Progenitors[J].Dev Neurosci,2001;23(3):203-208.
    55.Cai Z,Pang Y,Xiao F,et al.Chronic ischemia preferentially causes white matter injury in the neonatal rat brain[J].Brain Res,2001;898(1):126-135.
    56.魏佳军,章军建,熊丽等.血管性认知损害患者白质损伤与髓鞘碱性蛋白的关系[J]中华神经科杂志,2005;38(7):463-464.
    57.韩雪梅,屈秋民,乔晋等.白质疏松患者三种神经组织相关生化标志物的测定及意义,[J]中国现代医学杂志,2002;12(24):11-13.
    58.Blomgren K,Hallin U,Andersson AL,et al.Calpastatin is up-regulated in response to hypoxia and is a suicide substrate to calpain after neonatal cerebral hypoxia-ischemia.[J].Biol Chem 1999,274:14046-14052.
    59.Stephen A.Back,Byung Hee Han,Ning Ling Luo,et al.Selective vulnerability of late oligodendrocyte progenitors to hyposia-ischemia[J].Neurosci,2002,22(2):455-463
    60.Matute C,Alberdi E,Domercq M,et al.The link between excitotoxic oligodendroglial death and demyelinating diseases[J].Trends Neurosci 2001,24(4):224-229.
    61.Follett PL,Rosenberg PA,Volpe JJ,et al.NBQX attenuates excitotoxic injury in developing white matter.[J]Neurosci 2000;20(24):9235-9241.
    62.Skoff RP,Bessert DA,Barks JD,et al.Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice[J].Int Dev Neurosci,2001,19(2):197-208.
    63.Liu HN,.Giasson BI,Mushynski WE,et al.AMPA receptor-mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK,calpain and caspase 3[J].Neurochem,2002,82(2):398-409.
    64.Bhat MA,Rios JC,Lu Y,et al.Axon-glia interactions and the domain organization of myelinated axons requires neurexin Ⅳ /Caspr/ Paranodin[J].Neuron,2001,30(2):369-383.
    65.Tsigelny I,Shindyalov IN,Bourne PE,et al.Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ Binding in cell surface associations[J].Protein Sci.2000;9:180-185.
    66.Hsueh YP,Wang TF,Yang FC,et al.Nuclear translocation and transcription regulation by the membrane-associated Guanylate kinase CASK/LIN-2[J].Nature.2000;404:298- 302.
    1.de Groot JC,de Leeuw FE,Oudkerk M,et al.Cerebral white matter lesions and cognitive function:the Rotterdam Scan Study[see comments][J].Ann Neurol 2000;47:145-151.
    2.Pasquier F,Leya D.Why are stroke patients prone to develop dementia?[J].Neurol.1997;244;135.
    3.Peters A.Structural changes that occur during normal aging of primate cerebral hemispheres[J].Neuroscienee and Biobehavioral Reviews,2002;26:733-741.
    4.Salthouse TA.Aging and measures of processing speed[J].Biol Psychol,2000;54:35-54.
    5.Wang DS,David A,Bennett B,et al.Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline[J].Neuroscience Res,2004;48:93-100.
    6.Peters A,Sethares C.Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey[J].Comp Neurol,2002;442:277-291.
    7.Matrner L,Nyengaard JR,Tang Y,et al.Marked loss of myelinated nerve fibers in the human brain with age[J].Comp Neurol,2003;462(2):139-143.
    8.Pantoni L,Garcia JH.Pathogenesis of leukoaraiosis:a review[J].Stroke.1997;28:652- 659.
    9.胥维勇,杨群,范小莉.神经髓鞘染色及其应用[J].中国组织化学与细胞化学杂志.2004,13(4)546-547.
    10.Peters A.The effects of normal aging on myelin and nerve fibers:a review[J].Neurocytol.2002;31(8-9):581-593.
    11.李琳,姜远虹.老龄大鼠脑皮质超微病理学特征性变化[J].中国老年学杂志.2005;25(10)1215-1216
    12.徐晓虹,王良斌,杨少伟等.小鼠学习记忆行为与脑内脂褐素含量的关系[J].中华老年医学杂志,1998;17(2):80-82.
    13.Morrison JH,Hof PR.Life and death of neurons in the aging brain[J].Science 1997;278:412.
    14.Yuan LL,Ganetzky B.Searching for molecules mediating glial-neuronal communication[J].Mol Psychiatry.1999;4:408-409.
    15.Sandell JH,Peters A.Disrupted myelin and axon loss in the anterior commissure of the aged rhesus monkey[J].Comp Neurol.2003;466(1):14-30.
    16.Wen HM,Nok VC,Fan YH,et al.Effect of white matter changes on cognitive impairment in patients with lacunar infarcts[J].Stroke,2004;35(8):1826-1830.
    17.赵士福,肖道宏,刘立杰等.脑白质损害的认知功能研究[J].脑与神经疾病杂志,2002;10(1):24-26.
    18.Murray AD,Staff RT,Shenkin SD,et al.Brain white matter hyperintensities:relative importance of vascular risk factors in nondemented elderly people.[J].Radiology.2005;237:251-257.
    19.O'Sullivan M,Lythgoe DJ,Pereira AC,et al.Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis[J].Neurology.2002;59(3):321-326.
    20.CotoK,IshiN,TukasawH.Diffuse white-matter disease in the geriatric population.[J].Radiology,1984;141:687.
    21.赵欣春,黄岚.老年性血管性疾呆与脑白质疏松的相关研究[J].临床神经病学杂志,2003;16(4):208-209.
    22.王国艳,郭洪志,屈传强.脑白质疏松症的血流动力学及局部脑血流变化的研究[J].临床神经病学杂志,2004;17(2):92-94。
    23.Wardlaw JM,Sandercock PA,Dennis MS,et al.Is breakdown of the blood-brain barrier responsible for lacunar stroke,leukoaraiosis,and dementia?[J].Stroke.2003;34:806-812.
    24.Sierra,Cristina a;de la Sierra,Alejandro a;et al,Silent cerebral white matter lesions in middle-aged essential hypertensive patients[J].Journal of Hypertension.2002(3):519-524.
    25.Levison SW,Rothstein RP,Romanko MJ,et al.Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells[J].Dev Neurosci,2001;23(3):234-247.
    26.Back SA,Han BH,Luo NL,et al.Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia[J].Neurosci,2002;22(2):455-463.
    27.Ness JK,Romanko MJ,Rothstein RP,et al.Perinatal Hypoxia-Ischemia Induces Apoptotic and Excitotoxic Death of Periventricular White Matter.Oligodendrocyte Progenitors[J].Dev Neurosci,200;23(3):203-208.
    28.Cai Z,Pang Y,Xiao F,et al.Chronic ischemia preferentially causes white matter injury in the neonatal rat brain[J].Brain Res,2001;898(1):126-135.
    29.Sim FJ,Zhao C,Penderis J,et al.The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation[J].Neurosci.2002;22(7):2451-2459.
    30.Fern R and Moller T.Rapid Ischemic Cell Death in Immature Oligodendrocytes:A Fatal Glutamate Release Feedback Loop[J].J Neurosci,2000;20(1):34-42,
    31.Liu HN,Giasson BI,Mushynski WE,et al.AMPA receptor-mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK,calpain and caspase 3[J].Neurochem,2002;82(2):398-409.
    32.Tekkok SB,Goldberg MP.Ampa/kainite receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter.[J]Neurosci,2001;21:4237-4248.
    33.Back SA,Luo NL,Borenstein NS,et al.Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury[J].Neurosci,2001;21:1302-1312.
    34.Juurlink BH.Response of glial cells to ischemia:roles of reactive oxygen species and glutathione[J].Neurosci Biobehav Rev,1997;21(2):151-166.
    35.Juurlink BH,Thorburne SK,Hertz L.Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress[J].Glia 1998;22(4):371-378.
    36.Hollensworth SB,Shen C,Sim JE,et al.Glial cell type-specific responses to menadione-induced oxidative stress[J].Free Radic Biol Med 2000;28(8):1161-1174.
    37.Jamin N,Junier MP,Grannec G,et al.Two temporal stages of oligodendroglial response to excitotoxic lesion in the gray matter of the adult rat brain[J].Exp.Neurol,2001;172(1):17-28
    38.Trotter JL,Damico CA,Cross AH,etal.HPRT mutant T-cell lines from MS patients recognize myelin proteolipid protein peptides[J].JNeuroimmunol,1997,75:95.
    39.陈宜张.分子神经生物学[M].北京:人民军医出版社,1995:247.
    40.赵士福,成戎川,刘磊等.老年大鼠脑白质损害在学习记忆降低中的意义[J],中国老年学杂志,2006;5(26):638-640.
    41.Van Engelen BG,Lamers KJB,Gabreels FJM,et al.Age-related changes of neuron-specific enolase,S-100 protein,and myelin basic protein concentrations incerebrospinal fluid[J].ClinChem,1992;38(6):813-816.
    42.魏佳军,章军建,熊丽等.血管性认知损害患者白质损伤与髓鞘碱性蛋白的关系[J].中华神经科杂志,2005;38(7)463-464.
    43.Hsueh YP,Wang TF,Yang FC,et al.Nuclear translocation and transcription regulation by the membrane-associated Guanylate kinase CASK/LIN-2[J].Nature.2000;404:298- 302.
    44.韩雪梅,屈秋民,乔晋等.白质疏松患者三种神经组织相关生化标志物的测定及意义[J].中国现代医学杂志,2002;12(24):11-13.
    45.Stephen A.Back,Byung Hee Han,Ning Ling Luo,et al.Selective vulnerability of late oligodendrocyte progenitors to hyposia-ischemia[J].Neurosci,2002,22(2):455-463.
    46.Matute C,Alberdi E,Domercq M,et al.The link between excitotoxic oligodendroglial death and demyelinating diseases[J].Trends Neurosci 2001,24(4):224-229.
    47.Follett PL,Rosenberg PA,Volpe JJ,et al.NBQX attenuates excitotoxic injury in developing white matter[J].Neurosci 2000;20(24):9235-9241.
    48.Skoff RP,Bessert DA,Barks JD,et al.Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice[J].Int Dev Neurosci,2001;19(2):197-208.
    49.Liu HN,.Giasson BI,Mushynski WE,et al.AMPA receptor-mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK,calpain and caspase 3[J].Neurochem,2002;82(2):398-469.
    50.Blomgren K,Hallin U,Andersson AL,et al.Calpastatin is up-regulated in response to hypoxia and is a suicide substrate to calpain after neonatal cerebral hypoxia-ischemia.[J].Biol Chem 1999;274:14046-14052
    51.Lees,M.B.,Brostoff,S.W.,Proteins of myelin[M],New York,Plenum Press1984;P 196-224.
    52.Michael E.Schwann cell expressions of PLP1 but not DW20 is necessary to prevent neuropathy[J].Ann Neurol,2003;53:354 - 365.
    53.Battini R,Bianchi MC,Boespflug-Tanguy O,et al.Unusual clinical and magnetic resonance imaging findings in a family with proteolipid protein gene mutation[J]. Arch Neurol. 2003,60(2):268.
    54. Wang PJ. Duplication of proteolipid protein gene: a possible major cause of Pelizaeus — Merzbacher disease[J]. Pediatric Neurology. 1997;17(2):125-128.
    55. Yool DA, Klugmann M, McLaughlin M, et al. Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons [J]. Neurosci Res. 2001 ;63(2): 151-164.
    56. Yin X, Baek RC, Kirschner DA,et al. Evolution of a neuroprotective function of central nervous system myelin [J]. Cell Biol. 2006;172(3):469-478.
    57. Collinson JM, Marshall D, Gillespie CS, et al. Transient expression of neurofascin by oligodendrocytes at the onset of Myelinogenesis: implications for mechanisms of axon-glial interaction [J]. Glia. 1998; 23: 11-23.
    58. Yuan LL, Barry Ganetzky. A Glial-Neuronal Signaling Pathway Revealed by Mutations in a Neurexin-Related Protein. [J] Science 1999; 283: 1343.
    59. DL, Colman DR, Brophy PJ. An oligodendrocyte cell adhesion molecule at the site of assembly of the Paranodal axo-glial junction. [J] Cell Biol. 2000; 150: 657-666.
    60. Tsigelny I, Shindyalov IN, Bourne PE, et al. Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ Binding in cell surface associations [J]. Protein Sci. 2000 ; 9: 180-185.
    61. Bhat MA, Rios JC, Lu Y, et al. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV /Caspr/ Paranodin [J]. Neuron. 2001; 30(2):369-383.
    62. Peles E, Salzer JL. Molecular domains of myelinated axons[J]. Curr Opin Neurobiol, 2000; 10(5):558-565.
    63. Perrine C, Steven T,et al; Neurofascin Is a Glial Receptor for the Paranodin/Caspr-Contactin Axonal Complex at the Axoglial Junction [J]. Current Biology.2002;12;217-220.
    64. Poliak S, Gollan L, Martinez R, et al. Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels [J]. Neuron,1999,24(4):1037-1047.
    1.Domenico Inzitari,MD.Leukoaraiosis An Independent Risk Factor for Stroke?[J].Stroke,2003;2067-2071.
    2.Kuller LH,Longstreth WT Jr,Arnold AM,et al.White matter hyperintensity on cranial magnetic resonance imaging:a predictor of stroke[J].Stroke.2004;35:1821-1825.
    3.Murray AD,Staff RT,Shenkin SD,et al.Brain white matter hyperintensities:relative importance of vascular risk factors in nondemented elderly people[J].Radiology.2005;237:251-257.
    4.CotoK,IshiN,TukasawH.Diffuse white-matter disease in the geriatric population.[J].Radiology,1984;141:687.
    5.赵欣春,黄岚.老年性血管性疾呆与脑白质疏松的相关研究[J].临床神经病学杂志,2003;16(4):208-209.
    6.王国艳,郭洪志,屈传强.脑白质疏松症的血流动力学及局部脑血流变化的研究[J].临床神经病学杂志,2004;17(2):92-94.
    7.Wardlaw JM,Sandercock PA,Dennis MS,et al.Is breakdown of the blood-brain barrier responsible for lacunar stroke,leukoaraiosis,and dementia?[J].Stroke.2003;34:806-812.
    8.Sierra,Cristina a;de la Sierra,Alejandro a;et al,Silent cerebral white matter lesions in middle-aged essential hypertensive patients[J].Journal of Hypertension.2002;(3):519-524.
    9.Pantoni L,Garcia JH.Pathogenesis of leukoaraiosis:a review[J].Stroke.1997;28:652-659.
    10.Catafau AM,Lomena FJ,Pavia J,et al.Regional cerebral blood flow pattern in normal young and aged volunteers:a 99mTc-HMPAO SPET study[J].Eur J Nucl Med,1996,23(10):1329-1337.
    11.O'Sullivan M,Lythgoe DJ,Pereira AC,et al.Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis[J].Neurology.2002;59(3):321-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700