电针周围性面瘫患者穴位的功能磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用功能磁共振成像(fMRI)方法研究电针(EA)对周围性面瘫患者不同穴位时脑功能区变化,探讨针灸理论基础,进一步论证“面口合谷收”这一经典理论和针刺镇痛的机制。
     方法:采用电针不同穴位方法,将18例左侧周围性面瘫患者随机分为3组,分别电针左侧周围性面瘫患的左侧仓穴(6例),左侧合谷穴(6例),左侧后溪穴(6例);18例右侧周围性面瘫患者随机分为3组,分别电针右侧周围性面瘫患的右侧地仓穴(6例),右侧合谷穴(6例),右侧后溪穴(6例),同时行全脑fMRI扫描; SPM和AFNI软件进行图像后处理, t检验( P< 0.05)分析得出电针不同穴位的脑功能图像。
     结果:①电针左侧地仓信号降低区:双侧额上回,双侧额中回,左扣带回,左额内侧回,左楔前叶中央旁小叶;信号升高区:右侧中央前回,双侧中央后回,右侧脑岛,左侧角回;
     ②电针左侧合谷信号降低区:左侧扣带回,双侧额中回,右侧枕中回,信号升高区:双侧中央后回,右侧额下回,右侧颞上回,右侧脑岛,右侧中央前回;
     ③电针左侧后溪信号降低区:双侧额下回,左侧额中回,左侧尾状核头,左侧豆状核,右侧颞中回,右侧小脑扁桃体,信号升高区:右侧尾状核头,右侧扣带回,双侧脑干,小脑蚓,右侧海马回;
     ④电针右侧地仓信号降低区:左侧额上回,左侧额中回,左侧脑岛,左侧下丘脑核,左侧扣带回,左侧小脑扁桃体,左侧楔叶,左侧枕中回,信号升高区:右侧额下回,右侧脑岛,右侧中央前回,左侧中央后回,右侧颞上回;
     ⑤电针右侧合谷信号降低区:右侧额内侧回,左侧海马回,左侧下半月小叶,左侧楔叶,信号升高区:右侧额内侧回,左侧扣带回前部,右侧扣带回,左侧额中回,右侧颞上回;
     ⑥电针右侧后溪信号降低区:左侧额上回,右侧额内侧回,左侧小脑扁桃体,信号升高区:左侧额下回,右侧中央前回,右侧扣带回,左侧尾状核,左侧顶下小叶,右侧颞上回,左侧舌回。
     结论:电针治疗周围性面瘫临床常用穴合谷穴和地仓穴可以引起大脑相似的功能区的激活,而电针与合谷位置相近后溪穴未见和前两者有相似的激活区域,由此可以推测穴位与大脑的联系和穴位的解剖位置关系不大,而与其所属的经脉有着密切的联系。本实验结果同时也进一步为“面口合谷收”这一歌诀提供了佐证。电针穴位镇痛的作用可能是通过抑制和兴奋与痛觉调制相关的多个脑功能区而实现的。电针后溪穴既有得气感的产生,也有相关的针感,可能更多的是一种不良的刺激。
Purpose:To compare the brain response changes between different acupoints of peripheral facial paralysis by electroacupuncture(EA) using functional magnetic resonance imaging(fMRI) . To probe the theoretical basis of acupuncture ,to demonstrate the classic theory that the diseases of mouth and face are cured with Hegu further and investigate the analgesic mechanism of acupuncture.
     Methods:In this study different acupoints EA methods were devised, Eighteen patient with peripheral facial paralysis on the left were randomly divided into three groups.six of them received electroacupuncture(EA) at left dicang,6 received electroacupuncture(EA) at left hegu, and 6 received electroacupuncture(EA) at left houxi; Eighteen patient with peripheral facial paralysis on the right were randomly divided into three groups. six of them received electroacupuncture(EA) at right dicang,6 received electroacupuncture(EA) at right hegu, and 6 received electroacupuncture(EA) at right houxi;Functional MRI data were obtained from s canning the whole brain . Acquired functional datawere processed by SPM99 software and functional responses were established by students’group t-test analysis(P<0.05).
     Results: Electroacupuncture(EA)dicang on the left induced signal decreases of bilateral superior frontal gyrus , bilateral middle frontal gyrus, left cingulate gyrus,left medial frontal gyrus,left precuneus or left paracentral lobule,signal increases of right precentral gyrus ,left superior temporal gyrus,bilateral postcentral gyrus,left angular gyrus; Electroacupuncture(EA) hegu on the left induced signal decreases of left cingulate gyrus,bilateral middle frontal gyrus , induced signal increases of bilateral postcentral gyrus ,right inferior frontal gyrus,right superior temporal gyrus,right inferior frontal gyrus,right insula, left precentral gyrus;Electroacupuncture(EA) houxi on the left induced signal decreases of bilateral inferior frontal gyrus ,left middle frontal gyrus,left caudate head,left lentiform nucleus right middle temporal gyrus,right cerebellar tonsil, signal increases of right caudate head,right cingulate gyrus,left brainstem or cerebellar vermis, right parahippocampal gyrus or thalamus,right superior temporal Gyrus or thalamus; Electroacupuncture(EA)dicang on the right induced signal decreases of left superior frontal gyrus,left middle frontal gyrus,left claustrum,left subthalamic nucleus,left cingulate gyrus,left cerebellar Tonsil,left cuneus or left middle occipital gyrus, signal increases of right inferior frontal gyrus,right Insula,right precentral gyrus,left postcentral gyrus,right superior temporal gyrus ; Electroacupuncture(EA) hegu on the right induced signal decreases of right medial frontal gyrus, left parahippocampal gyrus,left inferior semi-lunar lobule, signal increases of left anterior cingulated,right cingulate gyrus,left middle frontal gyrus,right superior temporal gyrus; Electroacupuncture(EA) houxi on the right induced signal decreases of left superior frontal gyrus,right medial frontal gyrus,left cerebellar tonsil, signal increases of left inferior frontal gyrus,right precentral gyrus,right cingulate gyrus,left caudate,left inferior parietal lobule,right superior temporal gyrus,left lingual gyrus.
     Conclusion:Hegu and Dicang are frequently used acupoints on clinic to cure peripheral facial paralysis, Electroacupuncture the two acupoints can cause homoplastic domain activation in cerebrum, while electric needle Houxi acupiont can not stimulate the homoplastic domain with upon, though it located close to Hegu acupoint. We can infer that the association between acupoint and cerebral is intimate to subordinates meridian but little to the anatomical position of the acupoint. Our experimental results provid evidences that the diseases of face and mouth are cured with Hegu acuacupoint. The effect of analgesia with electric acupuncture may implement through suppress and excite many brain domains related to algesthesia concoction. Electroacupuncture Houxi bring about not only acu-feeling, but Deqi sensation, and furthermore, it maybe a sort of infaust stimulation.
引文
1.李定忠,傅松涛,李秀章.经络研究概况及其存在的实证—关于经络的理论与临床应用研究之一.中国针灸,2004,24(11),773-778
    2. Stux G, Poneranz B. Basics of Acupuncture [ M].4thed.Berlin :Springer2Verlag,1998.
    3. Hawkins RD.The hidden determinants of human behavior.Veritas Publishing ,Power Vs Force,1995,1(1) :350
    4.朴彦政,指导:赵吉平.灸论治周围性面瘫体会.中国民间法,2000,14(2):18-19
    5.梁波.综合疗法治疗周围性面瘫浅识.实用中医内科杂志,2 0 0 6, 20 (1) 72-73
    6.张葆樽,等.神经系疾病定位诊断.北京:人民卫生出版社,1975 :112
    7.史玉泉,等.实用神经病学.上海科学技术出版社,1995 :112
    8. Wu MT,Sheen JM.chuang KH.et a1.Neuronal specificity of acupuncture response:a fMRI study with electroacupuncture[J].Neuroimage,2002,16(4):1028-1037
    9. Ogawa S,L ee TM,Kay AR.Brain magnetic resonance imaging with contrast dependent in blood oxygenation [ J ].Proc Natl Acad SciU SA,1990,87:9868
    10.孙学军,刘买利,叶朝辉.脑功能磁共振成像研究进展[J].中国神经学杂志,2001, 17(3):270-272
    11.骆姚星,唐一源,伍建林等.脑功能成像分析软件SPM使用介绍.中国医学影像技术,2003,19(7): 926-928
    12.张海敏,陈盛祖.一种新的脑功能显像分析法——统计参数图(SPM).中国医学影像技术, 2002,18 (7):711-713
    13. SPM www.fil.ion.ucl.ac.uk/spm
    14.倪皖东,罗述谦.脑功能成像技术与针灸研究疗效机制.中国临床康复.2004,8(4),718-719
    15. Pons TP,Garraghty PE,Ommaya AK,Kaas JH, Taub E and Mishkin M. Massive cortical reorganization after sensory deafferentation In adult macaques, Science,1991,252: 1857-60
    16. Lund JP.Sun GD.and Lamarre Y.Cortical reorganization and deafferentation in adult macques.Science,1994,265:546-8
    17. Suzuki T, Shibukawa Y, Kumai T, Shintani M. Face Area Representation of PrimarySomatosensory Cortex in Humans Identified by Whole-Head Magnetoencephalography. Jap J Physiol,2004,54:161-169
    18. Stepniewska I, Fang P-C, Kaas JH. Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos, Proc. Natl. Acad. Sci,USA 2005,102:4878-4883
    19. Yokochi H, Tanaka M, Kumashiro M, Iriki A. Inferior parietal somatosensory neurons coding face-hand coordination in Japanese macaques.Somatosens Mot Res ,2003,20:115-25.
    20. Kwong KK, Belliveau JW, Chesler DA , et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation[J].Proc Natl Acad Sci USA,1992,89(12):56752-5679
    21.刘乡.大脑皮层和皮层下核团对中缝大核的调控及其在针刺镇痛中的作用(综述).针刺研究,1996,21(1):4-10
    22. Zanakis MF.Differential effects of various electrical parameters on peripheral and central nerve regeneration ( Review).Acupunct Electrother Res,1990,15(3,4):185
    23.缪鸿石.中枢神经损伤后功能恢复的理论.中国康复,1998,13(2):97
    24.张玲,胡献国.合谷水针注射麻醉施行颈部手术87例[J].浙江中医杂志.1988, 23(7):310
    25.邴德凤.生理盐水合谷注射用于分娩镇痛50例疗效观察[J].河北医学,1998, 4(12):57
    26. Melzack R,Casey KI Sensory,motiwational and central control determinants of pain.In:Charles C.the skin sense, springfield,IL.Thomas:1968,423-439
    27. Peyron R,Laurent B,Garcia-Larrea L.Functional imaging of brain responses to pain.A review and meta-analysis.Neurophysial Clin,2000,30(5):362-288
    28. Burton H,Fabri M.Ipsilateral intracortical connections of physiologically defined cutaneous representations in areas 3b and I of macaque monkeys; projections in the vicinity of the central sulcus.J Comp Neurol,1995,355(4);508-538
    29. Ferretti A,Babiloni C,Gratta D,et al.Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli:an fMRI study.Neuroimage,2003,20(3):1625-1638
    30. Niddam DM,Yeh TC,Wu YT,et al.Event-related functional MRI study on central representation of acute muscle pain induced by electrical stimulation. Neuroimage, 2002,17(3):1437-1450
    31. Greenspan JD,Winfield JA.Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum.Pain, 1992,50(1):29-39
    32. Friedman DP,Murray EA.Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. J Comp Neurol,1986,252(3):348-373
    33. Gabriel M. Discriminative avoidance learning:a model system,neurobiology of cingulate cortex and limbic thalamus:a comprehensive treatise.Vogt BA,Gabriel M:Boston,Birkhauser,1993,478-523
    34. Geschwind N. Disconnexion syndromes in animals and man:Ⅱ.Brain,1965,88(3):585-644
    35. Berthier M,Starlstein S,Leiguarda R.Asymbolia for pain:A sensorylimbic disconnection syndrome.Ann Neurol,1988,24(1):41-49
    36. Casey KL,Minoshima S,Morrow TJ,et al.Imaging the brain in pain: potentials, limitations,and implications.In :Bromm B,Desmedt J E.Pain and the brain ( series : advances in pain research and therapy n°22) [M].Basel:Karger,1995.201-211.
    37. Mandeville JB,Marota JJ,Kosofky BE,et al.Dynamic functional imaging of relative CBV during rat fore paw stimulation. Magn Res Med ,1998,39:615-624.
    38. Baciu MV,Bonaz BL,Papillon E,et al.Central processing of rectal pain : a functional MR imaging study.AJNR,1999,20 :1920-1924.
    39. Davis KD,Taylor SJ,Crawley AP,et al.Functional MRI of pain and attention related activations in the human cingulate cortex.J Neurophysiol,1997,77 :3370-3380
    40. Hurt RW,Ballantine HT.Stereotactic anterior cingulated lesions for persistent pain:a report on 68cases.Clin Neurosurg,1974,21(2):334-351
    41. Rainville P,Duncan GH,Price DD,et al.Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science,1997,277(5328):968-971
    42. Tolle TR,Kaufmann T,et al.Region-specific encoding of sensory and affective components of pain in the human brain:apositron enission tomography correlation analysis.Ann Neurol,1999,45(1):40-47
    43. Kwan CL,Crawley AP,Mikulis DJ,et al.An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli.Pain,2000,85(3):359-374
    44. Peyron R,Garcia-Larrea L,Gregoire MC,et al.Haemodynamic brain responses to acute pain in humans:Sensory and attentional networks.Brain,1999,122(9):1765-1780
    45. Valet M,Sprenger T,Boecker H,et al.Distraction modulates comectivity of the cingulo-frontal cortex and the midbrain during pain an fMRI analysis. Pain,2004,109(3):399-408
    46. Casey KL ,Minoshima S ,Morrow TJ ,et al. Comparison ofhuman cerebral activation patterns during cutaneouswarmth , heat pain , and deep cold pain. J Neurophysiol , 1996,76(1):571
    47. Vogt BA ,Derbyshire S ,Jones AK. Pain processing in fourregions of human cingulated cortex localized with coregistered PET and MR imaging. Eur J Neurosci ,1996,8(7):1461
    48.张淑倩,刘连祥,吴杰等.人脑视皮质功能MRI的初步研究及临床应用.中华放射学杂志,2001,35 (7) :524
    49. Lang PJ ,Bradley MM , Fitzsimmons J R , et al. Emotional arousal and activation of the visual cortex :an fMRI analysis.Psychophysiology,1998,35(2):199
    50. Lane RD ,Reimen EM ,Bradley MM ,et al. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia ,1997,35 (11) :1437
    51. Barrios M. Guardia J.Relation of the cerebellum with cognitive function: neuroanatomical, clinical and neuroimaging evidence[J].Rev Neurol,2001,33(6): 582-591
    52. Hui KK,Liu J,Makris N,et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain :evidence from fMRI studies in normal subjects. Hum Brain Mapp ,2000,9(1):13
    53. Loher TJ , Hasdemir MG, Burgunder JM, et al . Long2term follow upstudy of chronic globus pllidus internus stimulation for posttramatic hemidystonia. J Neurosurg, 2000, 92:457-460
    1 Leao AAP. Spreading depression of activity in the cerebral cortex. J. Neurophysiol, 1944, 7:359—390.
    2 Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A, 2001, 98(8):4687-4692.
    3 Somjen GG.. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev, 2001, 81(3):1065-1096.
    4 Jander S, Schroeter M, Peters O, et al. Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. J Cereb Blood Flow Metab, 2001, 21(3):218-225.
    5 Choudhuri R, Cui L, Yong C, et al. Cortical spreading depression and gene regulation: relevance to migraine. Ann Neurol, 2002, 51(4):499-506.
    6 Gursoy-Ozdemir Y, Qiu J, Matsuoka N, et al. Cortical spreading depression activates and upregulates MMP-9. J Clin Invest, 2004, 113(10):1447-1455.
    7 Ebersberger A, Schaible HG, Averbeck B, et al. Is there a correlation between spreading depression, neurogenic inflammation, and nociception that might cause migraine headache? Ann Neurol, 2001, 49(1):7-13.
    8 Bolay H, Moskowitz MA. The emerging importance of cortical spreading depression in migraine headache. Rev Neurol (Paris), 2005, 161(6-7):655-657.
    9 Bramanti P, Grugno R, Vitetta A, et al. Migraine with and without aura: electrophysiological and functional neuroimaging evidence.Funct Neurol, 2005 ,20(1):29-32
    10Akerman S, Goadsby PJ. Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport, 2005, 16(12):1383-1387.
    11 Witte OW, Bidmon HJ, Schiene K, et al. Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb Blood Flow Metab, 2000, 20(8):1149-1165.
    12 Selman WR, Lust WD, Pundik S, et al. Compromised metabolic recovery following spontaneous spreading depression in the penumbra. Brain Res, 2004, 999(2):167-174.
    13 Yanamoto H, Xue JH, Miyamoto S, et al. Spreading depression induces long-lasting brain protection against infarcted lesion development via BDNF gene-dependent mechanism. Brain Res, 2004, 1019(1-2):178-188.
    14 Wiggins AK, Shen PJ, Gundlach AL. Neuronal-NOS adaptor protein expression after spreading depression: implications for NO production and ischemic tolerance. J Neurochem, 2003, 87(6):1368-1380.
    15 Lambert GA, Michalicek J, Storer RJ, et al. Effect of cortical spreading depression on activity of trigeminovascular sensory neurons. Cephalalgia, 1999, 19(7):631-638.
    16 Bradley DP, Smith JM, Smith MI, et al. Cortical spreading depression in the feline brain following sustained and transient stimuli studied using diffusion-weighted imaging. J Physiol, 2002, 544(1):39-56.
    17 Yuan LL, Ganetzky B. A glial-neuronal signaling pathway revealed by mutations in a neurexin-related protein. Science, 1999, 283(5460):1343-1345.
    18 Kager H, Wadman WJ, Somjen GG. Conditions for the triggering of spreading depression studied with computer simulations. J Neurophysiol, 2002, 88(5):2700-2712.
    19 Bradley DP, Smith MI, Netsiri C, et al. Diffusion-weighted MRI used to detect in vivo modulation of cortical spreading depression: comparison of sumatriptan and tonabersat. Exp Neurol, 2001, 172(2):342-353.
    20 Back T, Hirsch JG, Szabo K, et al. Failure to demonstrate peri-infarct depolarizations by repetitive MR diffusion imaging in acute human stroke. Stroke, 2000, 31(12):2901-2906.
    21 Guiou M, Sheth S, Nemoto M, et al. Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling. J Biomed Opt, 2005, 10(1):11004.
    22 Tomita M, Schiszler I, Tomita Y, et al. Initial oligemia with capillary flow stop followed by hyperemia during K+-induced cortical spreading depression in rats. J Cereb Blood Flow Metab, 2005, 25(6):742-747.
    23 Netsiri C, Bradley DP, Takeda T, et al. A delayed class of BOLD waveforms associated with spreading depression in the feline cerebral cortex can be detected and characterised using independent component analysis (ICA). Magn Reson Imaging, 2003,21(9):1097-1110.
    24 James MF, Smith MI, Bockhorst KH, et al. Cortical spreading depression in the gyrencephalic feline brain studied by magnetic resonance imaging. J Physiol, 1999, 519(2):415-425.
    25 Yenari MA, Onley D, Hedehus M, et al. Diffusion- and perfusion-weighted magnetic resonance imaging of focal cerebral ischemia and cortical spreading depression under conditions of mild hypothermia. Brain Res, 2000, 885(2):208-219.
    26 Smith JM, James MF, Bockhorst KH, et al. Investigation of feline brain anatomy for the detection of cortical spreading depression with magnetic resonance imaging. J Anat, 2001, 198(5):537-554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700