菲立磁标记骨髓基质细胞移植治疗帕金森病的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson`s disease PD)是一种常见的中枢神经系统变性疾病,其病理改变的最大特点是病变只侵犯中脑的多巴胺(DA)能神经元,导致纹状体内DA的减少从而引起运动迟缓,静止性震颤,肌强直等锥体外系症状。目前药物治疗和手术治疗可使患者的症状在一定时间内获得不同程度的好转,但无法阻止本病的自然进展。随着神经生物学,分子生物学及移植免疫学等相关学科的发展,脑移植和基因治疗成为理论上治疗帕金森病最好的方法,其中通过移植干细胞替代受损的细胞,重建神经功能区和传导通路是近年研究的重点。
     干细胞根据其来源可分为胚胎干细胞和成体干细胞。骨髓基质细胞(Bone Marrow Stromal Cells,BMSCs)是一种位于成年动物骨髓的成体干细胞。在体外,BMSCs在一定的环境和条件下可分化为神经元样细胞,表达多种神经元特异性标志物。在体内, BMSCs可以穿越血脑屏障,与局部的组织整合,迁移到脑组织中的不同位置分化为不同类型的神经细胞。除此之外,BMSCs还具有自我更新和高度增殖等干细胞的特点。而且具有材料容易获得,分离培养较为容易,为同种同体细胞来源,无抗原性等优点,是神经系统疾病细胞替代治疗理想的靶细胞。
     本研究应用骨髓基质细胞体外培养、分离和扩增,用超顺磁性氧化铁微粒(Superparamagnetic iron oxide,SPIO)(商品名:菲立磁Feridex)标记后,定向注入大鼠纹状体、颈动脉、尾静脉移植治疗帕金森病大鼠模型,应用磁共振对移植的细胞进行活体示踪,结合病理学,观察骨髓基质干细胞体内迁移、脑内存活和神经分化以及帕金森病大鼠症状的改善情况。
     第一部分大鼠骨髓基质细胞的体外培养及诱导分化的研究
     目的:探索大鼠骨髓基质细胞(bone marrow stromal cells,BMSCs)的体外培养和诱导分化方法。方法:体外分离SD大鼠骨髓,贴壁法扩增培养大鼠BMSCs,相差显微镜观察其生长特性及形态变化,传代至第4代后用神经营养因子诱导分化,在诱导后第3天和第7天分别行神经元特异性烯醇化酶(NSE)、巢蛋白(nestin)、酪氨酸羟化酶(TH)、胶质原纤维酸性蛋白(GFAP)免疫细胞化学进行鉴定。结果:培养的BMSCs在第4代纯度在95%以上,大鼠BMSCs经表皮生长因子(EGF)、碱性成纤维细胞生长因子(bFGF)、脑源性神经营养因子(BDNF)、全反式维甲酸(TRA)等诱导后能表达nestin、NSE、GFAP等特异性标记物,未出现TH染色阳性细胞。结论: BMSCs在体外扩增迅速,易纯化,联合应用细胞因子可诱导BMSCs形成神经干细胞,并向神经元分化。
     第二部分应用6-羟基多巴胺建立帕金森病大鼠模型研究
     目的:建立简单、易行、成功率高的偏侧帕金森病大鼠模型。方法:SD大鼠80只,注射同等剂量的6-羟基多巴胺(6-OHDA)于内侧前脑束不同部位。位点1:前囟后1.8mm、右侧2mm、硬膜下8.5mm;位点2:前囟后1.8mm、右侧2mm、硬膜下7.5mm,制作黑质完全损伤型PD大鼠模型,运用阿朴吗啡诱发旋转试验及免疫组化检验模型是否成功。磁共振活体检测PD大鼠黑质、纹状体的毁损情况。结果:注射6-OHDA后第4周内有54只大鼠诱发明显的旋转行为,且旋转次数>7转/min,模型成功率为75%。MRI显示模型大鼠第1周后毁损侧黑质较对侧出现了明显的MRI低信号区,且随着时间的延长低信号区逐渐减小,至第3周已基本消失。结论:应用6-OHDA小剂量两点毁损内侧前脑束制备的偏侧帕金森病大鼠模型具有较高的成功率,是帕金森病研究较为理想的模型。MRI扫描可以活体连续观察帕金森病大鼠模型的毁损情况,是客观评价和检测帕金森病大鼠模型的一种有效工具。
     第三部分菲立磁标记骨髓基质细胞治疗帕金森病大鼠及磁共振示踪
     目的:探讨应用骨髓基质细胞治疗帕金森病大鼠的机制及疗效,以及菲立磁(Feridex)标记的BMSCs移植入PD大鼠体内后,磁共振示踪观察的可行性。方法:将45只帕金森病SD大鼠分为尾静脉移植组、颈动脉移植组和脑内移植组,移植Feridex和5-溴脱氧尿核苷(BrdU)双标记的BMSCs。另5只帕金森病SD大鼠为未治疗对照组。移植后2、4、6、8周进行阿朴吗啡诱发旋转试验和MRI示踪观察,成像后相应时间点每组处死2只大鼠,取脑组织冰冻切片后进行普鲁士蓝染色及免疫组化染色。结果:尾静脉移植组、颈动脉移植组和脑内移植组第4周阿朴吗啡诱发旋转试验较未治疗对照组有明显减少;其中,脑内移植组减少最明显,优于颈动脉移植组和尾静脉移植组。组织学和MRI示踪发现移植的BMSCs在帕金森大鼠脑内存活、迁移,免疫组化染色提示移植的BMSCs在脑内能向神经细胞方向分化。结论:应用BMSCs治疗帕金森病大鼠疗效显著,菲立磁可以用来体外标记骨髓基质细胞,利用MRI技术可以对脑内移植后的标记细胞进行初步的活体追踪。
Parkinson's disease (PD) is a progressive neurodegenerative disorder, which is primarily characterized by degeneration of the dopaminergic neurons of the nigrostriatal pathway. Although levodopa is still considered as the gold standard of antiparkinsonian drug therapy, chronic levodopa treatment is associated with the development of adverse events in the majority of patients, such as motor fluctuations, dyskinesias, and neuropsychiatric problems. Nowadays, most of the PD research has been focused on cell transplantation, which could be a potential therapeutics.
     Bone Marrow Stromal Cells (BMSCs) are stem cells with the characteristics of self-renewing, multi-potency and easily expanding in vitro. Therefore, BMSCs are ideal target cells for cell transplantation. Under specific conditions, BMSCs are capable to differentiate into other cell types, such as neural stem cells, neural cells and glial cells. A study has shown that there was a functional recovery with BMSCs transplantation in a PD animal model. BMSCs are able to differentiate into neural stem cells, neural cells and glial cells and dopamine cells when they are transplanted into caudate putamen of PD rats. Our research was focused on: (1) Cultivation,differentiation and identification of BMSCs from SD rats.(2) Establishing 6-HODA PD model with simple method. (3) Transplanting BMSCs labeled with Feridex and bromodeoxyuridine (BrdU) to treat Parkinson’s disease in SD rats. (4) To examine the effect of treatment with BMSCs in Parkinson’s disease rat model, and explore the methods of labeling bone marrow stromal cells with Feridex and to monitor the labeled cells after transplantation into the PD rats with MRI scanning.
     Part I Cultivation and Differentiation of BMSCs in Vitro
     Objective:To explore the cultivation,differentiation and identification of BMSCs from SD rats.Methods:BMSCs were isolated from SD rats by anchoring culture.The proliferative characteristics were observed in primary and passage cultures. High purified BMSCs were selected and induced into neurons through the neurotrophic factors.The number of different immunoreactive cells was detected by nestin,NSE,GFAP and tyrosine hydroxylase (TH) immunocytochemistry.Results:The fourth generation cells were highly purified BMSCs. EGF, bFGF, BDNF and TRA might induce BMSCs into nestin,NSE and GFAP-positive cells, but no TH-positive cell was found. Conclusion:BMSCs can be amplified and purified in short time.Combination of cytokines may have synergic effects on proliferation and differentiation of BMSCs.
     PartⅡStudy on Injection 6-OHDA into Medial Fore Brain Bundles and Establish the Rat Model with Parkinson’s Disease
     Objective:To establish a simple and effective rat model in Parkinson`s disease. Methods:80 SD rats were selected. 6-OHDA was injected into two points of medial forebrain bundles on the right sides. One burr hole was made, two injection points are–1.8mm antero-posterio to and–2mm lateral to the bregma, -8.5mm ventral to the dura mater and–1.8mm antero-posterio to and–2mm lateral to the bregma, -7.5mm ventral to the dura mater. In 6 weeks, apomorphine-induced rotation test was performed to examine the disease progress in this rat model.Further examined the lesions of substantia nigra and striatum of PD rats in vivo under MRI. Results:54 rats were induced to show obviously rolling behavior at the fourth week after lesion of substantia nigra (>7 rolls/min).The Success ratio of PD model was 75%.The lesioned substantia nigra of PD rats showed obviously low MRI signal.The low signal regions shrank in correspondence with the time extended, and disappeared at the end of the third week. Conclusions:The PD rat model gotten from bi-point lesions of medial forebrain bundles by small dose of 6-OHDA is effective with a high success rate. It’s a perfect model to study PD.MRI scanning can be used to observe the lesions of PD rat model in vivo continually, which is an available means to evaluate and examine the PD rat model objectively.
     Part III Transplanted Bone Marrow Stromal Cells labeled with Feridex In Rat Parkinson’s Disease Models by MRI measurement
     Objective: To examine the effect of treatment with BMSCs in Parkinson’s disease rat model, and explore the methods of labeling bone marrow stromal cells with Feridex and to monitor the labeled cells after transplantation into the PD rats with MRI scanning. Methods: 45 PD rats were randomly divided into three groups: intravenous group、intra-arterial group and intracerebral group.They were transplanted with BMSCs labeled with Feridex and bromodeoxyuridine (BrdU). Another 5 PD rats were untreated group. Functional outcome measurements were performed using the apomorphine induced rotation test at 2,4,6 and 8 weeks after treatment. At the same time MRI scanning was performed to monitor the transplanted cells. After MR imaging,two rats of each group were killed and Prussian blue staining and immunofluorescent staining of the histological sections were performed. Results: A decrease of per minute numbers of apomorphine induced rotation test was noted in rats of intravenous group、intra-arterial group and intracerebral group.The decrease was more significant in intracerebral group. BMSCs colabeled with Feridex and BrdU could migrate into the lesions and differentiate after transplanted into PD rats. MRI scanning is a useful and noninvasive tool to track the location and distribution of the labeled BMSCs. Conclusions: Treatment with BMSCs may improve neurological outcome in PD rat model. Fefidex can be used to label BMSCs in vitro and MRI opens up the possibility of in vivo tracking of Fefidex-labeled BMSCs after transplantation.
引文
1. Bemheimer H,Birkmayer W,Hornykiewicz O,et al.Brain dopamine and the syndromes of Parkinson and Huntington.Clinical,morphological and neurochemical correlations[J].J Neurol Sci,1973,20(4):415-455.
    2. Hornykiewicz 0.Parkinson’s disease and its chemotherapy[J].Biochem Pharmacol,1975,24(10):1061-1065.
    3. Riederer P,Wuketich S.Time course of nigrostriatal degeneration in Parkinson’s disease.A detailed study of influential factors in human brain amine analysis [J].J Neural Transm,1976,38(34):277-301.
    4. Holthoff VA,Vieregge P,Kessler J,et al.Discordant twins with Parkinson’s disease:positron emission tomography and early signs of impaired cognitive circuits[J].Ann Neurol,1994,36(2):176-182.
    5. Betarbet R,Sherer TB,Mackenzie G,et a1.Chronic systemic pesticide exposure reproduces features of Parkinsons disease [J].Nature Neurosci,2000,3:1301-1306.
    6. Iacopino AM,Christakos S.Specific reduction of calcium-binding protein(28一kilodalton calbindin-D)gene expression in aging and neurodegenerative diseases[J].Proc Natl Acad Sci USA,1990,87(11):4078-4082.
    7. Zhang P,Land W,Lee S,et al.Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism[J].J Struct Biol,2005,150(2):144-153.
    8. Defazio G , Dal Toso R , Benvegnu D , et al . Parkinsonian serum carriescomplement-dependent toxicity for rat mesencephalic dopaminergic neurons in culture[J].Brain Res,1994,633(1/2):206-212.
    9. McGeer PL,Itagaki S,Boyes BE.Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains[J].Neurology,1988,38(8):1285-1291.
    10. Vitek JL, Bakay RA,Hashimoto T,et a1.Microelectrode guided pallidotomg:technical approach and its application in medically intractable Parkinson’s disease[J] . J Neurosurg,1998,88:1027-1043
    11. Asbby P, Rothewell JC . Neurophysiologic aspccts of deep brain stimulation[J].Neurology,2000,55:17-20.
    12. Lenn NJ ,Seeley PJ ,Field PM, et al. Fetal medial habenula transplants: innervation of the rat interpeduncular nucleus[J]. J Neural Transplant, 1989,1(2):57-62.
    13. Emmett CJ, Jaques-Berg W, Seeley PJ, et al. Microtransplantation of neural cells into adult rat brain[J]. Neuroscience, 1990, 38(1): 213-222.
    14. NiWallace RB ,Das GD. Neurol Tissue Transplantation Ressearch[M].1st ed, New York Berlin Heidelberg Tokyo:Springer Verlag,1983.39.
    15. Nikkhah G,Olsson M, Eberhard J,et al. A microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology[J]. Neuroscience, 1994,63(1):57-72.
    16. Bjorklund LM,Sanehez-Pernaute R,Chung S,et al.Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model [J]. Proc Natl Acad Sci USA,2002,99:2344-2349.
    17. Kim TE,Lee HS,Lee YB,et a1.Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotypes in the Nurrl-overexpressing neural stem cell[J].Biochem Biophys Res Commun,2003,305:l040-lO48.
    18. Takagi Y,Takahashi J,Saiki H,et a1.Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model[J].J Clin Invest,2005,115:102-109.
    19. Stroch A,Sabolek M,Milosevic J,et a1.Midbrain-derived neural stem cells:from basic science to therapeutic approaches[J].Cell Tissue Res,2004,318:15-22.
    20. Lie DC,Dziewczapolski G,Willhoite1 AR,eta1.The adult substantia nigra contains progenitor cells with neurogenic potential[J].J Neurosci, 2002,22:6639-6649.
    21. Zhao M ,Momma S,Delfani K,et a1.Evidence for neurogenesis in the adult mamallian substantia nigra [J].Proc Natl Aead Sci USA ,2003,lOO:7925-7930.
    22. Richardson RM,Broaddus WC,Holloway KL,et al.Crafts 0f adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline[J].Brain Res,20O5,25,1032:11-22.
    23. Akerud P,Canals JM,Snyder EY,et al. Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease[J].J Neurosci, 2001, 21(20): 8108-8118.
    24. Ostenfeld T,Tai YT,Martin P,et al. Neurospheres modified to produce glial cell line-derived neurotrophic factor increase the survival of transplanted dopamine neurons [J]. J Neurosci Res, 2002,69(6): 955-965.
    25. Rodriguez-Pallares J,Caruncho H J,Guerra M J,et al. Dipyridamole-induced increase in production of rat dopaminergic neurons from mesencephalic precursors[J].Neurosci Lett,2002,320(1-2):65-68.
    26. Sanehez-Ramos JR,song S,Kamat SG,et al.Expression 0f neural markers in human umbilical cord blood[J].Exp Neurol,2001,171:109-l15.
    27. Buzauska L,Mach EK,Zablocka B,et a1.Human cord blood-derived cells attain neuronal and glial features in vitro[J].Cell Sci,2OO2,115(10):2131-2138.
    28. Medicetty S,Bledsoe AR,Fahrenholtz CB,et a1.Transplantation of pig stem cells into ran brain:proliferation during the first 8 weeks[J]. Exp Neurol,2004,190:32-41.
    29. Friedenstein AJ,Gorskaja JF,Kulagina NN,et a1. Fibroblast precursors in normal and irradiated mouse hematopoitic organs[J].Exp Hematol,1976,4:267-274.
    30. Pittengnre MF. Mackay AM, Beck SC, el a1.Multilineage potential of adults human mesenchymal stem cells[J].Science,1999,284:143-147.
    31. Prockop DJ.Marrow stromal cells as stem cells for momhematopoietic tissue[J]. Science,1997,276:71-74.
    32. Woodbury D,Sehwarz EJ,Prockop DJ,et a1.Adult rat and human bone marrowstromal cells differnetiate into neurons[J].J Neurosci Res,2000, 61:364.
    33. Sanchez-Raroos J,Song S,Cardozo-Pelaez F,et a1.Adult bone marrow stromal cells differnetiate into neural cells in vitro[J].Exp Neurology,2000,164:247.
    34. Weissleder R. Molecular imaging: exploring the next frontier [J]. Radiology, 1999 ,212(3):609-614.
    35. Jendelova P, Herynek V, Urdzikova L, etal. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord[J]. J Neurosci Res, 2004, 76:232-243.
    36. Arbab AS,Bashaw LA,Miller BR,et a1.Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging [J]. Radiology,2003,229(3):838-846
    1. Conget PA,Minguell JJ.Phemotypical and functional properties of human bone marrow mesenchymal progenitor cells[J].J Cell Physiol,1999,181(1):67-73.
    2. Campagnoli C,Roberts LA,Kumar S,el al.Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood , liver , and bone marrow[J].Blood,2001,98(8):2396-2402.
    3. Fridenshten Ala. Stromal bone marrow cells and the hematopoietic microenvironment[J].Arkh Patol,1982,44:3-11.
    4. Lennon DP,Edmison JM,Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen osteochondrogenosis[J]. J Cell Physiol,2001, 187(3):345-355
    5. Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells.Science,1999,284(5411):143-147.
    6. Colter DC,Class R,Digirolamo CM,et al.Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow[J].Proc Natl Acad Sci USA.2000,97(7):3213-3218.
    7. Woodbury D,Schwarz EJ,Prockop DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons[J].J Neurosci Res,2000,61:364-370.
    8. Sanchez-Ramos J,Song S,Cardozo-Pelaez F,et al.Adult bone marrow stromal cells differentiate into neural cells in vitro[J].Exp Neurol,2000 ,164:247-256.
    9. Seshi B,Kumar S,King D.Multilineage gene expression in human bone marrow stromal cells as evidenced by single-cell microarray analysis[J].Blood Cells Mol Dis,2003;31(2);268~285
    10. Pincus DW ,Keyoung HM ,Harrison-Restelli C,et al. Fibroblast growth factor-2/ brain-derivered neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells[J].Ann Neurol,1998,43(5):576-585.
    11. Azizi SA,Stokes D,Augelli BJ,et al.Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts[J].Proc Natl Acad Sci USA, 1998,95(7):3908-3913.
    12. Kurozumi K,Nakamura K,Tamiya T,et al.BDNF gene-modified nesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model[J]. Mol Ther.2004 ,9(2):189-197.
    13. Neuhubera B,Timothy Himesa B,Shumskya JS,et al.Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations[J].Brain Res.2005,1035(1):73-85.
    14. Li Y,Chen J,Wang L.et al.Intracerebral transplantation of bene marrow stromal cells in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease[J].Neurosci Lett,2001,316(2):67-70.
    1. Glinka YK, Youdim MB. Mechanism of inhibition of mitochondrial respiratory complexⅠby 6-hydroxydopamine and its prevention by desferrioxamine[J]. J Pharmacol, 1998, 351:121-129.
    2. David B,Sakina T,Nathalie L,et a1.Molecular pathway involved in the neurotoxicity of 6-OHDA,dopamine and MPTP:contribution to the apoptotic theory in Parkinson’s disease[J]. Prog Neurobiol,2001,65:135-172.
    3. Paxinos G and Watson C. The rat brain in stereotaxic coordinates.Academic,New York,1986.
    4. Perese DA,Ulman J,Viola J,et al.A 6-OHDA induced selective parkinsonian rat model[J].Brain Res,1989,494(2):285-293.
    5. Ben-Shachar,Youdim MBH. Intranigral iron injection induces behavioral and biochemical“Parkinsonism”in rats[J].J Neurochem,l99l,57:2l33-2135.
    6. Lapchak PA,Beck KD,Araujo DM, et a1. Chronic intranigral administration of brain-derived neurotropic factor produces striatal dopaminergic hypodunction in unlesioned adult rats and fails to attenuate the decline of striatal dopaminergic function following medial forebrain bundle transection[J].Neuroscience,1993,53:639-650.
    7. Hamaue N,Minami M,Terado M,et a1.Comparative study of the effects of isatin,an endogenous MAO-inhibitor,and selegiline on bradykinesia and dopamine levels in a rat model of Parkinson’s disease induced by the Japanese encephalitis virus [J].Neurotoxicology,2004,250(1-2):205-213.
    8. Scherzer CR,Jensen RV,Gullans SR,et al. Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson’s disease[J].Hum Mol Genet,2003,12(19):2457-2466.
    9. Chen SD,Le WD,Xie WJ,et a1.Experimental destruction of suhstantia nigra initiated by Parkinson disease immunoglobulins[J].Arch Neuro1.1998,55(8):1075-1080.
    10. Jakowec MW,Petzinger GM. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- lesioned model of parkinson’s disease,with emphasis on mice and nonhuman primates[J]. Comp Med,2004,54(5):497-5l3.
    11. Ungerstedt U. 6-Hydroxydopamine induced degeneration of central monoamine neurons[J]. Eur J Pharmcol,1968,5(1):1O7-11O.
    12. Raj K, Ashok KA , Parhlad K . Free radica1-generated neurotoxicity of 6-hydroxydopamine[J].J Neurochem,1995;64:1703-1707
    13. Zaleska MM, Wilson DF. Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes[J].J Neurochem,1989;52:255-260
    14. Sandri G, Panfili E, Ernster L. Hydrogen peroxide production by monoamine oxidase in isolated rat-brain mitochondria:its effect on glutathione levels and Ca2+ efflux[J].Biochim Biophys Acta,1990,14:1034:300-305
    15. Glinka Y,Tipton KF,Youdim MB.Nature of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine[J].J Neurochem,1996,66:2OO4-2010
    16. Hefi F,Melamed E,Wurtman RJ.Partial lesions of the dopaminergic nigrostriatal system in rat brain:biochemical characterization [J].Brain Res,l980,l95:l23-l37.
    17. Przedvorski S,Le vieier M,iang H,et a1.Dose-dependent lesion of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-OHDA[J].Neuroscience,l995,67:63l-647.
    18. Kirik D , Rosenblad C , Bjorklund A . Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat[J].Exp Neurol,1998,l52(2):259-277.
    19. Carmen LS, Gage FH, Shults CW. Partial lesion of the substantia nigra:relation between extent of lesion and rotational behavior[J].Brain Res,l99l,553:275-278.
    20. Barneoud P,Parmentier S,Mazadier M,et a1.Effects of complete and partial lesions ofthe dopaminergic mesotelencephalic system on skilled forelimb use in the rat[J].Neuroscience,1995,67(4):837-848.
    21. Lee CS, Sauer H,Bjorklund A,et a1. Dopaminergic neuronal degeneration and motor impairments following lesions by intrastriatal 6-OHDA in the rat[J].Neuroscience,l996,72(3):641-644.
    22. Andringa G,van Osten RV,Unger W,et a1.Systemic administration of thepropargylamine CGP 3466B prevents behavioural and morphological deficits in rats with 6-hydmxydopamine-induced lesions in the substantia nigra[J].European J Neuroseience,2000,12(8):3033-3043.
    23. Whishaw IQ,Li K,Whishaw PA,et a1. Distinct forelimb and hind limb stepping impairments in unilateral dopamine-depleted rats:Use of the rotorod a method for the qualitative analysis of skilled walking[J].J Neuroselence Methods,2003,126(1):13-23.
    24. Deumens R,Blokland A。Prickaerts J.Modeling Parkinson’s disease in rats:an evaluation of 6-0HDA lesions of the nigrostriatal pathway[J] . Experimental Neurology,2002,175(2):303-317.
    25. Hudson JL,Van Horne CG,Stromberg I,et a1.Correlation of apomorphine and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats[J].Brain Res.1993.626:167-174.
    26. Beresford JM , Davenport AP , Sirinathsinghji DJ , et a1 . Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway-Ⅱ,diferential local-ization of dopamine and cholecystokinin receptors[J].Neurosci.1988.27(1):129-143.
    27. Daubner SC,Melendez J,Fitzpatrick PF. Reversing the substrate specificities of phenylalanine and tyrosine hydroxylase:aspartate 425 of tyrosine hydroxylase is essential for L-DOPA formation.Biochemistry.2000;15;39(32):9652-966l.
    28. Przedborski S,Levivier M ,Jiang H,et a1.Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamin[J]. Neuroscience,1995;67:631-647.
    1. Pittengnre MF, Mackay AM, Beck SC, et a1.Multilineage potential of adults human mesenchymal stem cells[J].Science,1999,284:143-147.
    2. Prockop DJ.Marrow stromal cells as stem cells for momhematopoietic tissue[J].Science,1997,276:71-74.
    3. Mahmood A, Lu D,Lu M, et a1.Treatment of traumatic brain jnjury in adult rats with jntravenous administration of human bone marrow stromaI cells.Neurosurgery 2003:53(3):697-702
    4. Azizi SA,Stokes D,Augelli BJ,et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats similarities to astrocyte grafts[J]. Proc Natl Sci USA,1998,95(7):3908-3913.
    5. Kopen GC,Prockop DJ,Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum,and they differentiate into astrocytes after injection into neonatal mouse brains[J].Proc Natl Acad Sci USA,1999,96(19):10711-10716.
    6. Pavon-Fuentes N,Blanco-Lezcano L, Marinez-Martin L, et al.Stromal cell transplant in 6-OHDA lesion model[J]. Rev Neurol,2004;39(4): 326-334.
    7. Hellmann MA, Panet H, Barhurn Y, et al.Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents[J].Neurosci Lett,2006,395:124-128.
    8. Crigler L.Robey RC.Asawachaicharn A,et a1.Human mesenchymal stem cell subpopulations express a vanety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis[J]. Exp Neurol, 2O06:198:54-64
    9. Sanchez Ramos J,Song S,Cardozo pelaez F,et a1.Adult bone marrow stromal cells differentiate into neural cells in Vitro[J].Experimental Neurology,2000, 164 (2):247-256.
    10. Dezawa M,Kanno H,Hoshino M,et a1. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation[J].J Clin Invest,2004,113(12):1701-17l0.
    11. Gratzner HO.Monoclonal antibody to 5-bromo and 5-iodo-deoxyuridine:A new reagent for detection of DNA replication[J].Science,1982,218:474-475.
    12. Nakamura S,Takeda Y,Kanno M,et a1.Application of bromod-eoxyuridine (BrdU) and anti-BrdU monoclonal antibody for the in vivo analysis of proliferative characteristics of human leukemia ce11s in bone marrow [J].Oncology,1991,48(4):285-289.
    13. Sakai T,Li RK,Weisel RD,et a1.Autologous heart cell transplantation improves cardiac function after myocardial injury[J].Ann Thorac Surg,1999,68:2074-2081.
    14. Weissleder R. Molecular imaging: exploring the next frontier [J]. Radiology, 1999 ,212(3):609-614.
    15. Jendelova P, Herynek V, Urdzikova L, etal. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord[J]. J Neurosci Res, 2004, 76:232-243.
    16. Arbab AS,Bashaw LA,Miller BR,et a1.Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging [J]. Radiology,2003,229(3):838-846.
    17. Himes N, Min JY, Lee R, et al. In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction[J]. Magn Reson Med, 2004, 52(5):1214-1219.
    18. Arbab AS, Bashaw LA , Miller BR , et al . Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques[J] . Transplantation, 2003,76(7):1123-1130.
    19. Shen T,Weissleder M,Papisov M,et a1.Monocrystalline iron-oxide nanocompounds (MION):physicochemic properties[J].Magn Reson Med,1993, 29:599-602
    20. Frank JA , Miller BR , Arbab AS , et al . Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents[J]. Radiology,2003,228(4):480-487.
    21. Hill JM , Dick AJ , Raman VK, et al . Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells[J]. Circulation, 2003, 108(8): 1009-1014.
    22. Bulte JW,Duncan ID,Frank JA.In vivo magnetic resonance tracking of magnetically labeled cells after transplantation [J].J Cereb Blood Flow Metab,2O02,22:899-9O7.
    23. Hoehn M,Kustermann E,Blunk J,et a1.Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat[J].Proc Natl Acad Sci USA,2OO2,99,16267-16272.
    24. Billotey C,W ilhelm C,Devaud M,et al. Cell internalization of anionic maghemite nanoparticles:quantitative efect on magnetic resonance imaging.Magn Reson Med,2003,49:646.
    25. Kraitchman DL, Heldman AW , Atalar E, et a1.In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction [J].Circulation,2003,107(18):2290-2293.
    [1] Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders– how to make it work. Nat Med 2004; 10:542–550.
    [2] Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2004; 101:12543–12548.
    [3] Munoz-Sanjuan I, Brivanlou AH. Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 2002; 3:271–280.
    [4] Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002; 99:2344–2349.
    [5] Kim TE, Lee HS, Lee YB, et al. Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotypes in the Nurr1-overexpressing neural stem cell. Biochem Biophys Res Commun 2003; 305:1040–1048.
    [6] Zetterstrom RH, Solomin L, Jansson L, et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science,l997,276:248-250.
    [7] Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2004; 101:12543–12548.
    [8] Takagi Y, Takahashi J, Saiki H, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005; 115 : 102– 109.
    [9] Mekay R.Stem cells in the central nervous system.Science,1997,276:66-7I.
    [10] Ourednik V,Ourednik J,Park KI, et al.Neural stem cells are uniquely suited for cell replacement and gene therapy in the CNS.Novartis Found Symp,2000,231:242-262.
    [11] Yang M, Stull ND, Berk MA, et al.Neural stem cells spontaneously express dopaminergic traits after transplantation into the intact or 6-hydroxydopamine- lesioned rat. Exp Neurol 2002; 177:50–60.
    [12] Liste I, Garcia-Garcia E, Martinez-Serrano A. The generation of dopaminergic neurons by human neural stem cells is enhanced by Bcl-XL, both in vitro and in vivo. J Neurosci 2004; 24:10786–10795.
    [13] Carvey PM, Ling ZD, Sortwell CE, et al.A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells fortransplantation in Parkinson's disease. Exp Neurol 2001; 171:98–108.
    [14] Wang X, Lu Y, Zhang H, et al.Distinct efficacy of pre-differentiated versus intact fetal mesencephalon-derived human neural progenitor cells in alleviating rat model of Parkinson's disease. Int J Dev Neurosci 2004; 22:175–183.
    [15] Burnstein RM, Foltynie T, He X, et al.Differentiation and migration of long term expanded human neural progenitors in a partial lesion model of Parkinson's disease. Int J Biochem Cell Biol 2004; 36:702–713.
    [16] Wang K, Wang JJ, Wang Y, et al.Infusion of epidermal growth factor and basic fibroblast growth factor into the striatum of parkinsonian rats leads to in vitro proliferation and differentiation of adult neural progenitor cells. Neurosci Lett 2004; 364:154–158.
    [17] Kishi Y, Takahashi J, Koyanagi M, et al.Estrogen promotes differentiation and survival of dopaminergic neurons derived from human neural stem cells. J Neurosci Res 2005; 79:279–286.
    [18] Sanchez-Ramos JR, Cardozo-Pelaez F, Song S.Differentiation of neuron-like cells from bone marrow stromal cells.Mov Disord. 1998. 13(Supp1): 122.
    [19] Sanchez-Ramos J.Song S.Cardozo-Pelaez F.et al.Adult bone marrow stromal cells differentiate into neural cells in vitro.Exp Neurol. 2000, 164: 247-256.
    [20] Dezawa M, Kanno H, Hoshino M, et al.Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113:1701–1710.
    [21] Buzanska L, Machaj EK, Zablocka B, et al. Human cord blood-derived cells attain neuronal and glial features in vitro.Cell Sci, 2002, 115(10): 2131-2138.
    [22] Sanchz-Ramos JR. Neural cells derived from adult bone marrow and umbilical cord blood. Neurosci Res, 2002,69(6):880-893.
    [23] Medicetty S, Bledsoe AR, Fahrenholtz CB, et al.Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Exp Neurol 2004; 190:32–41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700