大跨柔性点支式幕墙及采光顶等效风荷载和风致响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨柔性点支式幕墙及采光顶支承体系的抗风设计是玻璃建筑结构设计中一个颇受关注的热点问题。然而由于我国点支式玻璃幕墙及采光顶使用的时间还比较短,开展的研究也不够全面,因此我国用于指导点支式玻璃幕墙设计的规范还需要进一步完善。如:玻璃幕墙工程技术规范(JGJ102-2003)和点支式玻璃幕墙技术规程(CECS 127:2001)在幕墙支承体系抗风设计方面所采用的方法和准则就有所区别;而建筑结构荷载规范(GBS0009)有一定的适用范围,其中有关风荷载的内容主要是针对高层建筑及高耸结构,在指导采光顶、屋盖等大跨空间钢结构工程的抗风设计方面,存在一定程度的局限性。故此,本文在总结前人频域分析理论成果的基础上,提出了更适用于计算大跨空间钢结构风致响应的时域方法和求解相应等效静力风荷载的新体系,通过工程实例的分析得到一些有益结论,具有重要的理论价值和实践指导意义。
     传统的风振研究的方法是基于频域分析的线性方法,即:线性的结构和荷载假说基础上的模态分析方法,如模态叠加法。这样,荷载和结构的非线性特征就无法考虑。这种计算导致的偏差往往不好评价,因为结构极限状态设计方法通常是假设结构不出现这些非线性特征为前提的。时域分析方法为考虑结构非线性性能进行风振分析提供了方便,它主要包括以下两个部分的内容:一是风荷载时程的处理,二是结构的非线性动力分析。
     关于风荷载时程的处理,本文提供了两种方法。第一种方法是采用Davenport风速谱,通过FFT(快速傅立叶变换技术)和Monte-Carlo随机变量模拟技术获得系列离散随机准静态荷载来表达具有空间相关性的风荷载时程。第二种方法利用气动刚性风洞试验的原始数据,将试验测点上的风速时程转化为考虑群体结构影响的风力时程。相对于第一种方法,第二种方法不再采用准定常假设,更符合采光顶及屋盖等大跨空间钢结构的实际情况。同时,由于工程项目的建筑设计完成以后,其基本建筑形式就确定下来,但其结构形式仍然会存在多种方案,这就需要对每个设计方案的动力性能和风致响应进行评价,而通过气动弹性试验来测定每个方案是不现实的;但如采用本文刚性测压试验原
The wind resistance design for large span flexible point supported glass curtain wall and skylight under wind load is a noticeable problem in the structural design area. However, in Chinese Codes and Standards, there are no clear concept and criterion about the supported system of glass curtain wall and skylight; even there are some inconsistent statutes. Therefore, they can't be sufficiently applied to the engineering. Based on the theoretical achievements in frequency domain, the author proposed a new method to analyze the wind buffeting in time domain and new system to calculate equivalent static wind load of the large spatial flexible steel structure, and solve several actual projects to draw some good conclusions.
    The design of wind sensitive structures has most often been based on frequency domain calculations of the buffeting response. The main objection of the classical buffeting frequency theory has been the many inherent linearizations, as a simple mode superposition method demands linear structural behavior as well as a linear loading hypothesis. Thus, well known wind-loading non-linearties are lost, and the effects of deteriorating structural stiffness or increased damping at high wind velocities cannot be included. Time domain dynamic calculations give a convenient approach, which mainly include two aspects: the simulation of the wind load and non-linear finite element method.
    The author puts forward two methods of wind simulation. The first method concerns the simulation of the wind field from Davenport cross-spectra and coherence functions by use fast Fourier transforms and Monte Carlo simulation method; another coherent time series is got by aerorigid modeling wind tunnel testing, which turns the data of the measure points to be the wind load time series. Compare to the first method, the second one is more suitable for large span spatial steel structure. Moreover, after the architecture design of a project has been finished, the style and shape would be confirmed, but the structural style would have more than one kind. So the evaluation of each structural style is necessary; however, it is
引文
[1] 中华人民共和国国家标准,建筑结构荷载规范(GB50009)[S].北京:中国建筑工业出版社,2002.
    [2] 中国工程建设标准化协会标准,点支式玻璃幕墙技术规程(CECS 127:2001)[S].北京:中国工程建设标准化协会,2001.
    [3] 中华人民共和国行业标准,玻璃幕墙工程技术规范(JGJ102-2003)[S].北京:中国建筑工业出版社,2003.
    [4] 殷永伟,张其林,黄庆文.点支式中空和夹层玻璃承载性能的试验研究[J].建筑结构学报,2004(1):93~98.
    [5] Raimund Lehmann. Anslegurg punktgehalterer Glaser [M]. Stahlbau. 1988 (4): 284~287.
    [6] 刘军进,吕志涛.预应力索析架在玻璃幕墙支承体系中的应用[J].建筑结构,2001 31(6):59~62.
    [7] 江勇、王之宏、王肇民.时域分析方法在柔性支承点支玻璃幕墙抗风设计中的应用[C].清华大学第100期博士学术论坛文集,2005,10.
    [8] 江勇、王之宏、王肇民.柔性支承点支式玻璃幕墙的抗风设计与分析[J].建筑结构,2006.
    [9] 吴朋,张良平,董石麟,王吉吉.玻璃建筑柔性支承结构体系的应用与研究[J].空间结构,2002(6).
    [10] 吴朋,蒋凌浩,董石麟.玻璃建筑柔性支承体系的动力特性分析.空间结构[J],2000(12)
    [11] 武岳,郭海山,陈新礼,沈世钊.大跨度点支式幕墙支承结构风振性能分析[J].建筑结构学报,2002,23(5):49~55.
    [12] 邹宇,石永久,王元清,李少甫.玻璃建筑中带金属紧固件玻璃板的承载性能研究[J].工业建筑.2000(10).
    [13] 杨威,王元清,石永久,李少甫.玻璃建筑中带孔点式支承玻璃承载性能研究[J].工业建筑,2000(6).
    [14] 姚裕昌,韩平原,等.点式玻璃幕墙预应力析架的试验研究[J].建筑技术,2000,31(12):824~825.
    [15] 赵西安,韩平原.点支式玻璃幕墙设计[J].建筑结构,1999,29(9).
    [16] 童丽萍,李乐,宋启根.高层建筑玻璃幕墙结构中幕墙玻璃的非线性问题研究[J].工程力学增刊,1996.
    [17] 王元清,石永久,等.点支式玻璃建筑结构体系及其应用技术研究[J].土木工程学报,2001,34(4):6~8.
    [18] 荆军,王元清,石永久,李少甫.点式支承玻璃建筑的轻型与柔性结构体系的研究[J].工业建筑,2000,30(10):6~10.
    [19] 王吉,王元清,等.清华大学游泳馆点式玻璃幕墙柔性支承体系的研究与设计[J].建筑结构,2000,30(12):48~51.
    [20] 唐建民,钱若军,蔡新.索弯项结构非线性有限元分析[J].空间结构,1996,2(1):12~17.
    [21] 李耀庭.点支玻璃幕墙的钢索杆结构内力分析及挠度计算[J].建筑结构,2000,30(12):52~57.
    [22] 董明,夏绍华.张力结构的非线性有限元分析[J].计算力学学报,1997,14(3).
    [1] Hellman G. Uber die Bewegung der Luft in den Untersten SchiChten derAtmosphare[J]. Meteorol Z., 34(1976): 273.
    [2] Tennekes H. The Logarithmic Wind Profile[J]. J. Atimos. Sci. 30 (1973): 234-238.
    [3] Pasquill F. Some Aspects of Boundary Layer Description[J]. J. Royal Meteorol. Soc, 98(1972): 469-494.
    [4] Owen P. R. Building in the Wind[J]. J. Royal Meteorol. Sot., 97(1974): 396-413.
    [5] Simiu E. Logarithmic Profiles and Design Wind Speeds[J]. J. Eng. Mech. Div., ASCE, 1973(10):1073-1083.
    [6] Zhou Ying, Kijewski T, Kareem A. Along-wind load effects on tall buildings: comparative study of major international codes and standards[J]. Journal of Structure and Engineering, 2002,28(6):788-796.
    [7] Architectural Institute of Japan. AIJ Recommendations for loads on Building[S]. 1996.
    [8] Davenport A. G The spectrum of horizontal gustiness near the ground in high winds[J]. J. Royal Meteorol. Soc.,1961,87: 194-211.
    [9] Simiu E.,Scanlan R.H.著,刘尚培,项海帆,等译.风对结构的作用一风工程导论[M].上海:同济大学出版社,1998.
    [10] 中华人民共和国国家标准,建筑结构荷载规范(GB50009)[S].北京:中国建筑工业出版社,2002.
    [11] 黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001.
    [12] Kaimal J. C., et al. Spectral characteristics of surface layer turbulence[J]. J. Royal Meteorol. Soc., 1972, 98: 563-589.
    [13] 陆锋.大跨度平屋面结构的风振响应和风振系数研究[D].浙江大学,2001.
    [14] 张相庭.结构风压和风振计算[M].上海:同济大学出版社,1985.
    [15] DavenPort A.G The relationship of wind structure to wind loading [A]. Proceedings of the Symposium on Wind Effect on Building and Structures[C]. London, 1965: 54-102.
    [16] Davenport A. G The dependence of wind load upon meteoro logical Parameters[A]. Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures [C]. Toronto, 1968: 19-82.
    [17] 加拿大规范.The National Building Code of Canada[S]. 1990.
    [18] Vichery B. J. On the reliability of gust loading factors[A]. Proceedings of the Technical Meeting Concerning Wind Loads on Building and Structures[C]. Washington, 1970: 93-104.
    [19] Kristensen L. On longitudinal spectral coherence[J]. Bound. Layer Meteorol. 1979,16: 145-153.
    [20] Panofsky H. A., et al. two-Point velocity statistics over lake Ontario[J]. Bound. Layer Meteorol. 1974, 7: 309-321.
    [21] Borri C., et al. Numerical simulation of stationary and non-stationary stochastic Processed: A comparative analysis for turbulent wind fields [A]. 9ICWE, 1995.
    [22] 王吉民.薄膜结构的风振响应分析和风洞试验研究[D].浙江大学,2001.
    [23] 黄本才,王国砚,林颖儒,等.体育场屋盖结构静动力荷载实用分析方法[J].空间结构,2000,6(3):33-39.
    [24] Holmes J. D. Hind loading of structures [M]. London: Spon Press, 2001.
    [25] Holmes J. D., Best R. J. An approach to the determination of wind load effects on low-rise buildings [J]. Journal of wind Engineering and Industrial Aerodynamics, 1981(7): 273-287.
    [26] 林家浩,钟万韶.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998,15(2):217-223.
    [27] 陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究与应用[D].浙江大学,2005.
    [28] Nakamura O., Tamura Y., Miyashita K., et al. A case study of wind Pressure and wind-induced vibration of a large span open-type roof [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 52: 237-248.
    [29] Nakayama M., Sasaki Y., Masuda K., et al. An efficient method for Selection of vibration modes contributory to wind response on dome-like roofs [J]. Journal of Hind Engineering and Industrial Aerodynamics, 1998, 73: 31-43.
    [30] 胡继军,黄金枝,董石麟,等.网壳风振随机响应有限元法分析[J].上海交通大学学报,2000,34(8):1053-1056.
    [31] 胡继军,李春祥,黄金枝.网壳风振响应主要贡献模态的识别及模态相关性影响分析[J].振动与冲击,2001,20:22-25.
    [32] 王国砚,黄本才,林颖儒,等.基于CQC方法的大跨度屋盖结构随机风振响应计算[A].第六届全国风工程及工业空气动力学学术会议论文集[C],2002,113-119.
    [33] 何艳丽,董石麟,龚景海.空间网格结构频域风振响应分析模态补偿法[J].工程力学,2002,19(4):1-6.
    [34] 黄明开,倪振华,谢壮宁.里兹向量直接叠加法在圆拱项屋盖风致响应分析中的应用[A].第十一届全国结构风工程学术会议论文集[C],2003,321-326.
    [35] 黄明开,倪振华,谢壮宁.大跨圆拱屋盖结构的风振响应分析[J].振动工程学报,2004,17(3):275-279.
    [36] 星谷胜著,常宝琦译.随机振动分析[M].北京:地震出版社,1977.P127.
    [37] E. L. Wilson, et al. A replacement for the SRSS method in seismic analysis [J]. Earthquake Engineering and Structural Dynamics, 1981, 9: 187-194.
    [38] A. D. Kiureghian, et al. Response spectrum method for multi-support seismic excitations [J]. Earthquake Engineering and Structural Dynamics, 1992, 21: 713-740.
    [39] E Heredia-Zavoni, et al. Seismic random-vibration analysis of multi-support structural systems [J]. Journal of Engineering Mechanics, 1994, 120 (5): 1107-1128.
    [40] 林家浩,等.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998,15 (2):217-223.
    [41] Simiu E.,Scanlan R.H.著,刘尚培,项海帆,等译.风对结构的作用—风工程导论[M].上海:同济大学出版社,1998,138-150.
    [42] 王国砚,黄本才,等.基于COC方法的大跨屋盖结构随机风振响应计算[J].空间结构,2003,12:22-26.
    [43] 徐幼麟,等.高耸结构风振响应的准静态效应[J].建筑结构学报,1991,12(2):61-69.
    [44] Der Kiureghian A and Neuenhofer A. Response spectrum method for multi-support seismic exaltations[J]. Earthquake Engineering and Structure Dynamics, 1992, 21: 713~7401.
    [45] Ernesto H Z and Vanmarcke E H. Seismic random-vibration analysis of multisupport-structural systems[J]. ASCE, Journal of Engineering Mechanics, 1994, 120(5): 1107~1128.
    [46] Der Kiureghian A and Neuenhofer A. Adiscussion on abouve [J]. ASCE, Journal of Engineering Mechanics, 1995, 121(9): 1037.
    [47] Ernesto H Z and Vanmarcke E H. Closure on the discussion[J]. ASCE, Journal of Engineering Mechanics, 1995: 121(9): 1038.
    [48] 沈世钊,等.悬索结构设计[M].北京:中国建筑工业出版社,1997,193-198.
    [49] Edward L.Wilson著,北京金土木软件有限公司、中国建筑标准设计研究院译.结构静力与动力分析—强调地震工程学的物理方法[M],中国建筑工业出版社,2006.
    [1] K. Aas-Jakobsen, E. Str(?)mmen. Time domain buffeting response calculations of slender structures[J]. Journal of Wind Engineering and Industrial Aerodynamics 89 (2001) 341-364.
    [2] K. Aas-Jakobsen, E. Str(?)mmen. Time domain calculations of buffeting response for wind-sensitive structures[J]. Journal of Wind Engineering and Industrial Aerodynamics 74-76 (1998) 687-695.
    [3] 王之宏.风荷载的模拟研究[J].建筑结构学报,1994(2):44~52.
    [4] 李书进,虞晖,李桂青.过黄河渡槽的脉动风荷载模拟[J].武汉测绘科技大学学报,1997(6):177-179.
    [5] 李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制[J].空间结构,2001(9):3-11.
    [6] Shinozuka M. Jan C. M. Digital simulation of random process and its application[J]. J. Sound and Vibration. 25(1), 1772, 111-128.
    [7] Yang. J. N. Simulation of random envelope process[J]. J. Sound and Vibration. 25(1), 1972, 73-85.
    [8] Yang. J. N. On the normality and accuracy of simulated random process[J]. J. Sound and Vibration, 26(3),1973,417-428.
    [9] Deodatis, G. Simulation of ergodie multivariate stochastic processes[J], Journal of Engineering Mechanics, Vol. 122, No. 8, 1996.
    [10] Shinozuka, M. and Deodatis, G., Simulation of stochastic processes by spectral representation[J], Applied Mechanics Reviews, 1991, 44, 191-204.
    [11] Shinozuka, M., Kamata, M. and Yun, C.-B. Simulation of earthquake ground motion as multi-variate stochastic process[J]. Tech. Rep. No. 1989.5, Princeton-Kajima Joint Res.,Dept. of Civ. Engrg. And Operations Res., Princeton University, Princeton, N. J., 1989.
    [12] Solari, G., and Spinelli, P. Time-domain analysis of tall building response to wind action. Proc[C]. 3rd Int. conf. on Tall Buildings, Hong Kong and Guan zhou, China, 1984, 278-284.
    [13] Iwatani, Y. Simulation of multidimensional wind fluctuations having any arbitrary power spectra and cross spectra[J]. J. Wind Engrg., No. 11, Tokio, Japan, 1982, 5~18.
    [14] 王修琼,张相庭.混合回归模型及其在群体结构风响应时域分析中的应用[J].四川建筑科学研究,2000(3)1-3.
    [15] 陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究与应用[D].浙江大学,2005.
    [16] 曹映泓.大跨度桥梁非线性颤振和抖振时程分析[D].同济大学,1999.
    [17] 丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析[D].同济大学,2001.
    [18] 赵林.风场模式数值模拟与大跨桥梁抖振概率评价[D].同济大学.2003.
    [19] Simiu E.,Scanlan R.H.著,刘尚培,项海帆,等译.风对结构的作用一风工程导论[M].上海:同济大学出版社,1998.
    [20] 张相庭.结构风压和风振计算[M].同济大学出版社.1985,5.
    [21] 中华人民共和国国家标准,建筑结构荷载规范(GB50009)[S].北京:中国建筑工业出版社,2002.
    [22] 瞿伟廉.高层建筑和高耸结构的风振控制设计[M].武汉测绘大学出版社.1991,12.
    [23] 江勇、王之宏、王肇民.时域分析方法在柔性支承点支玻璃幕墙抗风设计中的应用[S],清华大学第100期博士学术论坛文集,2005,10.
    [24] K. Suresh Kumar, T. Stathopoulos. Fatigue analysis of roof cladding under simulated wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics 77&78 (1998) 171-183.
    [25] Wolfhard Zahlten, Claudio Borri. Time-domain simulation of the nonlinear response of cooling tower shells subjected to stochastic wind loading[J]. Engineering Structures, Vol. 20, No. 10, pp. 881-889, 1998.
    [26] G. Bartoli, Claudio Borri, W. Zahlten. Nonlinear Dynamic Analysis of Cooling Towers under Stochastic Wind Loading[J]. Journal of Wind Engineering and Industrial Aerodynamics, 41-44(1992) 2187-2198.
    [27] Massimiliano Lazzari, Anna V. Saetta, Renato V. Vitaliani. Non-linear dynamic analysis of cable-suspended structures subjected to wind actions[J]. Computers and Structures 79 (2001): 953-969.
    [28] Massimiliano Lazzari, Renato V. Vitaliani, Massimo Majowiecki, Anna V. Saetta. Dynamic behavior of a tensegrity system subjected to follower wind loading[J]. Computers and Structures 81 (2003): 2199-2217.
    [29] Iannuzzi A. Spinelli Pi. Artificial wind generation and structural response[J]. Journal of Structural Engineering, ASCE, 1987, 113(12).
    [30] Solari G. Analytical estimation of the along wind response of structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, Volume 14, Issues 1-3, December 1983, Pages 467-477.
    [31] G. Ballio and G. Solari. The new italian recommendation for wind loads on structures: Basic assumptions and critical considerations[J]. Journal of Wind Engineering and Industrial Aerodynamics, Volume 30, Issues 1-3, August 1988, Pages 123-132.
    [32] G. Ballio, F. Maberini and G. Solari. A 60 year old, 100 m high steel tower: limit states under wind actions[J]. Journal of Wind Engineering and Industrial Aerodynamics, Volume 43, Issues 1-3, 1992, Pages 2089-2100.
    [33] J. D. Holmes, B. L. Schafer and R. W. Banks. Wind-Induced Vibration of a Large Broadcasting Tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, Volume 43, Issues 1-3, 1992: 2101-2109.
    [34] L. C. Pagnini, G. Solari. Serviceability criteria for wind-induced acceleration and damping uncertainties[J]. Journal of Wind Engineering and Industrial Aerodynamics 74-76 (1998): 1067-1078.
    [35] G. Piccardo, G. Solari. Closed form prediction of 3-D wind-excited response of slender structures[J]. Journal of Wind Engineering and Industrial Aerodynamics 74-76 (1998): 697-708.
    [36] G. Piccardo, G. Solari. A refined model for calculating 3-D equivalent static wind forces on structures[J]. Journal of Wind Engineering and Industrial Aerodynamics 65 (1996): 21-30.
    [37] G. Solari. Evaluation and role of damping and periods for the calculation of structural response under wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics 59 (1996): 191-210.
    [38] G. Solari. Wind-excited response of structures with uncertain parameters[J]. Probabilistic Engineering Mechanics, Vol. 12, 1997(2):75-87.
    [39] G. Solari, L. C. Pagnini. Gust buffeting and aero elastic behavior of poles and MONOTUBULAR towers[J]. Journal of Fluids and Structures, 1999(13): 877-905.
    [40] G. Solari, G. Piccardo. Probabilistic 3-D turbulence modeling for gust buffeting of structures[J]. Probabilistic Engineering Mechanics, 2001(16): 73-86.
    [41] G. Solari, F. Tubino. A turbulence model based on principal components[J]. Probabilistic Engineering Mechanics, 2002(17): 327-335.
    [42] L. Carassale, G. Solari, Wind modes for structural dynamics: a continues approach[M], 2002(17):157-166.
    [43] Maria Pia Repetto, Giovanni Solari. Equivalent static wind actions on vertical structures[J]. Journal of Wind Engineering and Industrial Aerodynamics 92 (2004): 335-357.
    [44] Seung H. Seong, Jon A. Peterka. Computer simulation of non-Gaussian multiple wind pressure time series[J]. Journal of Wind Engineering and Industrial Aerodynamics 72 (1997): 95-105.
    [45] A. G. Davenport, B. F. Sparling. Dynamic gust response factors for guyed towers, Journal of Wind Engineering and Industrial Aerodynamics. 41-44(1992): 2237-2248.
    [46] G. Hirsch, Dipl. -Ing. Sen. Lect., Recent advances in control of wind-induced vibrations of guyed masts[J]. Journal of Wind Engineering and Industrial Aerodynamics, 41-44(1992): 2113-2123.
    [47] Newmark N M.A Method of Computation for Structural Dynamics[J]. Journal of Engineer Mechanics Division 85(1959):67-94.
    [48] 钟万勰.子域精细积分和偏微分方程数值解[J].计算结构力学及其应用,1995, 12(3):253-260.
    [49] Zhong Wanxie. On Precise time-integration method for structural Dynamics [J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136.
    [50] 程绍革,王理等.弹塑性时程分析方法及其应用[J].建筑结构学报.2000.21,(1):52-57.
    [51] Edward L.Wilson著,北京金土木软件有限公司、中国建筑标准设计研究院译.结构静力与动力分析-强调地震工程学的物理方法[M],中国建筑工业出版社,2006.
    [52] R.W.Clough,J.Penzien著,译者不祥(翻印本).结构动力学[M].1979.
    [53] 朱伯芳著.有限单元法原理与应用(第二版)[M].中国水利水电出版社,1998.
    [54] 王勋成编著.有限单元法[M].清华大学出版社,2002.
    [55] Anil K.Chopra著.结构动力学理论及其在地震工程中的应用(第二版;影印版系列)[M].清华大学出版社,2005.
    [56] 有限元软件Rnsys8.1版本帮助文件[CP].
    [57] 黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼问题评述[J].地震工程与工程振动,1996,16(6):95-105.
    [1] 中华人民共和国国家标准,建筑结构荷载规范(GB50009)[S].北京:中国建筑工业出版社,2002.
    [2] 中国工程建设标准化协会标准,点支式玻璃幕墙技术规程(CECS 127:2001)[S].北京:中国工程建设标准化协会,2001.
    [3] 中华人民共和国行业标准,玻璃幕墙工程技术规范(JGJ102-2003)[S].北京:中国建筑工业出版社,2003.
    [4] 江勇、王之宏、王肇民.时域分析方法在柔性支承点支玻璃幕墙抗风设计中的应用[C].清华大学第100期博士学术论坛文集,2005,10.
    [5] 江勇、王之宏、王肇民.柔性支承点支式玻璃幕墙的抗风设计与分析[J].建筑结构,2006.
    [6] 武岳,郭海山,陈新礼,沈世钊.大跨度点支式幕墙支承结构风振性能分析[J].建筑结构学报,2002,23(5):49~55.
    [7] 黄鹏,顾明.风洞中模拟大气边界层流场的方法研究[J].同济大学学报,Vol.27,No.2,1999.
    [8] 张相庭.结构风压和风振计算[J].同济大学出版社.
    [9] 俞载道、曹国敖.随机振动理论及其应用[J].同济大学出版社,1988.
    [10] Simiu E., Scanlan R. H. Wind effects on structures[M]. 3rd Ed., Wiley-Inter science, New York, 1996.
    [11] 李书进,虞晖,李桂青.过黄河渡槽的脉动风荷载模拟[J].武汉测绘科技大学学报,1997(6):177-179.
    [12] 有限元软件Ansys8.1版本帮助文件[CP].
    [1] 中华人民共和国国家标准,建筑结构荷载规范(GB50009)[S].北京:中国建筑工业出版社,2002.
    [2] 中国工程建设标准化协会标准,点支式玻璃幕墙技术规程(CECS 127:2001)[S].北京:中国工程建设标准化协会,2001.
    [3] 中华人民共和国行业标准,玻璃幕墙工程技术规范(JGJ102-2003)[S].北京:中国建筑工业出版社,2003.
    [4] 顾明,黄鹏,等.北京首都机场3号航站楼风荷载和响应研究[J].土木工程学报,2005,38(1):40-44.
    [5] 同济大学土木工程防灾国家重点试验室.世茂北外滩中庭风荷载试验研究[R].2005,7.
    [6] 张相庭.结构风压和风振计算[M].上海:同济大学出版社,1985,5.
    [7] 程志军,楼文娟,孙炳楠,等.屋面风荷载及风致破坏机理[J].建筑结构学报,2000,121 (4).
    [1] Davenport A. G (1967). Gust loading factors[J]. Journal of the Structural Division, ASCE, Vol. 93(ST3): 11-34.
    [2] Simiu E. Revised Procedure for estimating along-wind response[J]. Journal of the Structural Division, 1980, 106(ST3):1-10.
    [3] Solari G. Along-wind response estimation: closed form solution[J]. Journal of the Structural Division, 1982, 108(ST1): 225-244.
    [4] Solari G. A Generalized Definition of Gust Factor[J]. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 36:539-548.
    [5] Solari G. Gust Buffeting. Ⅰ: Peak Wind Velocity and Equivalent Pressure, Journal of Structural Engineering[J]. Vol. 119, No. 2:365-382.
    [6] Solari G. Gust Buffeting. Ⅱ: Dynamic Along wind Response, Journal of. Structural Engineering[J]. Vol. 119, No. 2:383-398.
    [7] Solari G. Towards a Global Model For Calculating 3-D Equivalent Static Wind Forces on Structures[C]. Proceedings pf Seventh United States National wind Engineering Conference, Vol. 2.
    [8] Solari G. Evaluation and role of damping and periods for the calculation of structural response under wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 59: 191-210.
    [9] Solari G. Wind-excited response of structures with uncertain parameters[J]. Engng. Mech, Vol. 12, No. 2:75-87.
    [10] Solari, Kareem. On the formulation of ASCE7-95gust effect factor[J]. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 77&78: 673-684.
    [11] Solari G. Progress and Prospects in Gust-Excited Vibrations of Structures[J]. Engineering Mechanics, Vol. 6, No. 415: 301-322.
    [12] Solari G. Analytical methods for estimating the wind-induced response of structures[J]. Journal of Wind Engineering, No. 89:45-54.
    [13] 黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001.
    [14] 瞿伟廉.高层建筑和高耸结构的风振控制设计[M].武汉测绘科技大学出版社,1991.
    [15] 张相庭.结构风压和风振计算[M].同济大学出版社,1985,5.
    [16] 张相庭.高层建筑抗风抗震设计计算[M].上海:同济大学出版社,1997.
    [17] Zhang Xingting, The current Chinese code on wind loading and comparative study[J]. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 30(1988): 133-142.
    [18] Kasperski M. Extreme wind load distributions for linear and nonlinear design[J]. Engineering Structure, Vol. 14, 1992 (1):27-34.
    [19] Kasperski M. & Niemann H. J. The L. R. C. method-a general method of estimation unfavorable wind load distributions for linear and non-linear structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 41-44(1992): 1753-1763.
    [20] Kasperski M. Aerodynamics of low-rise building and codification[J]. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 50(1993): 253-262.
    [21] 中华人民共和国国家标准,建筑结构荷载规范(GB50009)[S].北京:中国建筑工业出版社,2002.
    [22] 俞载道,曹国敖.随机振动理论及其应用[M].上海:同济大学出版社,1987.
    [23] 沈国辉.大跨度屋盖结构的抗风研究-屋盖结构的表面风压、风致响应和等效风荷载研究[D].浙江大学,2004.
    [24] 周喧毅.大跨度屋盖结构风荷载及风致响应研究[D].同济大学,2004.
    [25] 陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究与应用[D].浙江大学,2005.
    [26] J.D. Holmes. Effective static load distributions in wind engineering[J]. J. Wind Eng. Ind. Aerodyn., 90(2002); 91-109.
    [27] 武岳,郭海山,陈新礼,沈世钊.大跨度点支式幕墙支承结构风振性能分析[J].建筑结构学报,2002,23(5):49-55.
    [28] 江勇,王之宏,王肇民.柔性支承点支式玻璃幕墙的抗风设计与分析[J].建筑结构,2006.
    [29] 程志军,楼文娟,孙炳楠,等.屋面风荷载及风致破坏机理[J].建筑结构学报,2000,121 (4).
    [30] 中国工程建设标准化协会标准,点支式玻璃幕墙技术规程(CECS 127:2001)[S].北京:中国工程建设标准化协会,2001.
    [31] 中华人民共和国行业标准,玻璃幕墙工程技术规范(JGJ102-2003)[S].北京:中国建筑工业出版社,2003.
    [32] 顾明,黄鹏,等.北京首都机场3号航站楼风荷载和响应研究[J].土木工程学报,2005,38(1):40~44.
    [33] 同济大学土木工程防灾国家重点试验室.世茂北外滩中庭风荷载试验研究[R].2005,7.
    [34] 有限元软件Ansys8.1版本帮助文件[CP].
    [35] Simiu E.,Scanlan R.H.著,刘尚培,项海帆,等译.风对结构的作用—风工程导论[M].上海:同济大学出版社,1998.
    [36] 李书进,虞晖,李桂青.过黄河渡槽的脉动风荷载模拟[J].武汉测绘科技大学学报,1997 (6):177-179.
    [37] 王之宏.风荷载的模拟研究[J].建筑结构学报,1994(2):44~52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700