舰船转子—支承—隔振器—浮筏系统动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船对安静性要求严格,主动力机械引起的振动是舰船噪声的主要来源。因此降低或者消除主动力机械的振动噪声对舰船的隐蔽性和安全性等均具有极其重要的意义。目前控制舰船主动力机械产生的结构噪声的有效手段是对主动力机械采用减振隔振措施。随着对舰船主动力机械功率的和对舰船隐蔽性要求的提高,对主动力机械的减振隔振性能也提出了更严格的要求。本文系统推导了橡胶和干摩擦隔振器的力学模型,从理论和实验两方面验证了隔振器对转子和浮筏之间的隔振效果,为实际舰船主动力机械的减振隔振提供了理论和实验基础。本文主要研究内容和结论如下:
     1.基于实验、广义胡克定律和应变能密度函数对橡胶隔振器进行了模型推导,对干摩擦隔振器进行了原理分析及模型建立,并对以上两类隔振器的模型进行仿真,获得了其隔振特性。
     2.通过有限元法建立了包含以上两种隔振器的舰船转子-支承-隔振器-浮筏系统动力学模型,为获得系统的动力学特性提供了理论基础。
     3.通过对Newmark法、Runge-kutta法、精细时程积分方法进行比较,确立了Newmark逐步积分方法在转子-支承-隔振器-浮筏系统动态响应分析中的优越性。并进行了系统不平衡响应数值模拟,证明了隔振器对浮筏的隔振效果,通过对比分析获得了两种隔振器不同的隔振特点。
     4.进行了橡胶隔振器静态压缩和动态激振实验,转子-支承-浮筏系统动力学响应实验和转子-支承-橡胶隔振器-浮筏系统动力学特性实验,实验结果很好的验证了理论计算和结果的正确性。
Vibration arose from dynamical mechanics is the main source of ship noise. Recently the effective way to control this kind of vibration is adopting isolation methods. With the development of power rise of dynamical mechanics and the demand of ship performance, the higher and stricter requests on the capability of the vibration isolation system are brought forward. So it makes us cry for more research on isolation theory. This dissertation research systematically on the model of rubber and dry friction isolator and verifies the activity of isolator through measurement and numerical calculations, it offers reference for further research. The main contents and conclusions are as follows:
     1. The model of single freedom vibration isolation system is founded. By the dynamics emulating and theoretic analysis some important results are got. Based on measurement, generalized Hooke law and strain energy density function, the model of rubber isolator and dry friction isolator are founded and applied to do simulations and analysis the dynamical characteristics.
     2. The two models are applied in practical rotor-bearing-isolator-raft system utilizing the finite element method and that give the model basis of numerical simulations and experiments.
     3. Comparing with Newmark method, Runge-kutta method and precise time-integration method, the superiority and advantage of Newmark step integration method was proved when it’s used in analyzing the rotor-bearing-isolator-raft system. And this method is used to evaluate the influence of isolators to rotor systems and the differences between the two kinds of isolators.
     4. Experiments of static compression and dynamic excitation of rubber isolator and experiments of rotor-bearing-isolator-raft system are made to get the dynamical characteristics of isolator. Compare with the theoretical calculation, the numerical simulations are proved.
引文
1严济宽,沈密群.中低速船用主机隔振问题.噪声与振动控制. 1998,(2):2~3
    2杨铁军.舰船动力装置振动主动控制技术研究.船舶科学技术. 2006,28:46 ~47
    3张洪田,刘志刚.动力吸振技术的现状与发展.噪声与振动控制. 1996,3:22~26
    4 Kefu Liu, Jie Liu. The damped dynamic vibration absorbers: revisited and new result. Journal of Sound and Vibration. 2005,(284):1181~1189
    5刘耀宗,郁殿龙.被动式动力吸振技术研究进展.机械工程学报. 2007,43(3):85-92
    6 Den Hartog. J P. Forced Vibration with combined and viscous Friction. APM. 1931, 53(9):107~115
    7王勖成.有限单元法.清华大学出版社, 2003:160~175.
    8杨义顺.双层隔振系统结构参数改变对结构振动的影响.船舶工程. 2004, (6):43~44
    9程广利.船舶的不同基础状态对隔振效率的影响.船舶科学技术. 2005, 1:21~23
    10俞孟萨.潜艇机械噪声控制技术的现状与发展概述.船舶力学. 2003, 7(4):110~112
    11孔建益.潜艇振动噪声的控制研究.噪声与振动控制. 2006, (5):101~104
    12姜荣俊.有源振动噪声控制技术在潜艇中的应用研究.噪声与振动控制. 2005,(2):7~8
    13朱锡清,吴武生.螺旋桨负荷噪声研究.船舶力学. 1998, (3):259~260
    14 Vasant A, Matsagar, R.S.Jangid. Influence of Isolator Characteristics on the Response of Base-Isolated Structures. Engineering Structures. 2004, (26):1375~1348
    15 A lessandro Baratta, Ileana Corbi. Optimal Design of Base-Isolator in multi-storey Buildings. Computers and Structures. 2007,(82):2199~2208
    16 G..Falsone, G.Ferro. Best performing Parameters of linear and non-linear Seismic Base-Isolator Systems obtained by the Power Flow Analysis. Computers and Structures. 2006,(84):79~85
    17林立.减振浮筏振动响应研究.噪声与振动控制. 1996, (5):2291~2305
    18 Junchuan Niu, Kongjie Song, C.W.Lim. On active Vibration Isolation of Floating Raft Systems. Jounal of Sound and Vibration. 2007, (285):391~394
    19张春良.双层主动隔振系统的动力学研究.中国机械工程. 2003, 14(14):1232~1234
    20 Iwan W D. The Dynamic Response of Bilinear Hysteretic Systems. PhD dissertation of California Institute of Technology. 1961:10~16
    21丁文镜,樊世超.摩擦力的若干数学模型.第六届全国一般力学学术会议论文集.湖南, 1998:133~137
    22 Ferri A. Friction Damping and Isolation System. Journal of Vibration and Acoustics. 1996, 117 (B) :196~206.
    23 Liang J W, Feeny B F. Dynamical Friction Behavior in a Forced Oscillator with a Compliant Contact. Journal of Applied Mechanics. 1998,(65) :250~257
    24 Griffin J H, Meng C H. Friction Damper of Circular Motion and Its Implication to Vibration Control. Journal of Vibration and Acoustics. 1991,(113):225~229
    25 Menq C H, Yang B D. Nonlinear Spring Resistance and Friction Damping of Frictional Constraint Having Two-Dimensional Motion. Journal of Sound and Vibration. 1998,217 (1) :127~143
    26 Yang B D, Menq C H. Characterization of 3D contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint. Journal of Sound and Vibration. 1998, 217(5) :909~925
    27 Jeong-Hoi Koo, Amit Shukla, Mehdi Ahmadian. Dynamic performance analysis of non-linear tuned vibration absorbers. Communications in Nonlinear Science and Numerical Simulation. 2008,(241):179~188
    28 Y.Ketema. A visco-elastic Dynamic Vibration Absorber with Adaptable Suppression Band: A Feasibility study.Journal of Sound and Vibration. 1998, 216(1):132~145
    29孙志卓,王全娟,王付山.一种主动电磁式动力吸振器的研究与设计.振动与冲击. 2006,25(3):198~201
    30 Seon J. Jang, Yong J. Choi. Geometrical design method of multi-degree-of-freedom dynamic vibration absorbers. Journal of Sound and Vibration. 2007,(303):343~356
    31王元璞.在非线性主系统上应用非线性动力吸振器.北方工业大学学报.1991,3(1):9~16
    32于尧治,陶杰.有阻尼主系统的动力吸振器及其实船应用.振动与冲击. 2001,18(4):172~278
    33陶爵,周海亭.双层隔振系统冲击响应数值模拟方法的研究.噪声与振动控制. 2008,(3):1~4
    34郑明军.橡胶Mooney-Rivlin模型力学性能常数的确定.橡胶工业. 2003,(50):462~465
    35特雷劳尔.L.R.G.橡胶弹性物理力学.化学工业出版, 1982:179~196
    36朱艳峰.橡胶材料的本构模型.橡胶工业. 2006, (53):206~209
    37王锐.隔振橡胶本构建模研究.振动与冲击. 2007, 26(1):11~17
    38 C.M.Richards, R.Singh. Characterization of Rubber Isolator Nonlinearities in the Context of Single-and Multi-Degree-of-Freedom experimental Systems. Journal of Sound and Vibration. 2001, 247(5):901~917
    39 Chen-Ron lin. Effects of Viscoelasticity on Rubber Vibration Isolator Design. Journal of applied Physics. 1998, (83):66~79
    40 Leif Kari. Stiffness scaling Laws and Vibration Isolators. applied Acoustics. 2002,(63):717~729
    41 Tian Ran Lin, Nabil H. Farag. Evaluation of Frequency Rubber Mount Stiffness and Damping by Impact Test. applied Acoustics. 2008, (16):99~107
    42 M. Sjo¨berg, L. Kari. Testing of nonlinear interaction effects of sinusoidal and noise excitation on rubber isolator stiffness. Polymer Testing. 2003(22):343~351
    43 A.I. Medalia, G. Kraus, Reinforcement of elastomers by particulate fillers. Science and Technology of Rubber. San Diego, 1994:387~418.
    44 Mustafa E. Characterization of vibration isolator using vibration test data. Tenth international congress on sound and vibration.2003:101~108
    45黄映云,何琳.橡胶隔振器冲击刚度特性实验研究.振动与冲击. 2006,25(1):77~79
    46 G. D. Dean, J.C. Duncan, A.F. Johnson. Determination of non-linear dynamic properties of carbon-filled rubbers. Polymer Test. 1984, 4(2):225~249.
    47 J.G. Sommer, D.A. Meyer. Factors controlling the dynamic properties of elastomeric products. SAE. 1973:1792~1803.
    48 M.J. Wang. Effect of polymer–filler and filler–filler interactions on dynamic properties of filled vulcanizates. Rubber Chemical Tech. 1998,71 (3):520~589.
    49 M.J. Wang, W.J. Pattersson, G.B. Ouyang. Dynamic stress-softening of filled vulcanizates. Kautsch Gummi Kunstst. 1998,51 (2):106~121.
    50陈艳秋,郭宝亭,朱梓根.金属橡胶减振垫刚度特性及本构关系研究.航空动力学报. 2002, 17(4):417~420
    51朱若燕,谢一魁,李厚民.汽车传动轴减振器静动刚度测试分析.实验室研究与探索. 2007, 26(11): 243~250
    52 J.A. Harris. Dynamic testing under non-sinusiodal conditions and the consequences of nonlinearity for service performance, Rubber Chemical Tech. 1987,60 (5):870~887.
    53 D.M. Turner, D. Boast, M. Marfell. Changes in the behavior of rubber components as a consequence of real road conditions, IMechE Conference Transactions-Vehicle Noise and Vibration. Berlin, 2000:33~41.
    54 V.A. Coveney, D.E. Johnson, D.M. Turner. A tribo-elastic model for the cyclic mechanical behavior of filled vulcanizates. Rubber Chemical Tech. 1995,(68):660~670.
    55 P. Kooijman, J. Verheij. Dynamic stiffness and damping variation in elastic rail pads during wheel passages and its influence on track noise. Proceedings of the 6th International Conference of Sound and Vibration. Copenhagen, 1999: 2653~2660.
    56束力红.钢丝绳隔振器在大型机械设备的振动冲击隔离设计中的应用.振动与冲击. 2006, 25(4):61~66
    57潘东,赵玫.钢丝绳弹性组合元件中滞后力的数学建模.上海交通大学学报. 1996, 30(8):61~69
    58杨建春.钢丝绳隔振器在履带车辆座椅上的应用.火炮发射与控制学报. 2003, (4):77~82
    59朱海潮.钢丝绳隔振器用于船舶主机隔振.中国造船. 2003, 44(2):91~95
    60 Newmark N.M. A method of computation for structural dynamics. Journal of Engineering Mechanics Division. 1959,85(3):67~94
    61刘晓俭.基于Newmark积分格式的单步预测-校正算法的无条件稳定性.计算力学学报. 1994,(03):294~300
    62曹登庆,杨翊仁.单步Newmark预测-校正算法无条件稳定的充分必要条件的论证.计算结构力学及其应用. 1996,13(1):95~98
    63冯领香,魏建国,王森林.一种可自调步长的改进Newmark算法.河北农业大学学报. 2004,27(3):111~114
    64林兰华.求解结构动力响应的算法比较.东北林业大学学报. 2000,2(2):85~87
    65 T. C. Fung. Unconditionally stable higher-order Newmark methods by sub-stepping procedure. Computer methods in applied mechanics and engineering. 1997,(147):61~84
    66翟婉明.大型结构动力分析的Newmark显式算法.重庆交通学院学报, 1991,10(2):33-41.
    67 D. Roy, M.K. Dash .Explorations of a family of stochastic Newmark methods in engineering dynamics. Computer methods in applied mechanics and engineering. 2005: 4758~4796
    68 Zhang L, Zu J W, Zheng Z. The stochastic Newmark algorithm for random analysis of multi-degree-of-freedom nonlinear systems.Computer and Structures. 1999, (70): 557~568
    69 Bernard P, Fleury G. Stochastic Newmark scheme. Probabilistic Engineering Mechanics. 2002,(17): 45~61
    70 Miles S B,C L Ho. Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation. Soil Dynamics and Earthquake Engineering. 1999,18(4):305~ 323.
    71 Shuenn-Yih Chang. A technique for overcoming load discontinuity in using Newmark method. Journal of Sound and Vibration. 2007 ,(304):556~569
    72 M.A. Bradford, N. Abdoli Yazdi. A Newmark-based method for the stability of columns. Computers and Structures. 1999,(71) :689~700
    73郭泽英,李青宁.基于Newmark法的一种新精细直接积分法.陕西理工学院学报. 2007,23(2):65~68
    74 Gu Z, Zhi X, Meng G. Transient response analysis of large-scale rotor-bearing system with strong non-linear elements by a transfer matrix-newmark formulation integration method. Journal of Sound and Vibration. 2003,259(3):559~570
    75顾致平,陈松淇.传递矩阵-Newmark差分公式积分法.振动工程学报. 1990,3(3):82~91
    76 Q.V.Bui. Modified Newmark family for non-linear dynamic analysis. International Journal for numerical methods in Engineering. 2004,(61):390~420
    77刘占生,崔颖,冷淑香. 200MW汽轮机低压转子-轴承系统的非线性稳定性研究.机械工程学报. 2005,41(2):170~175
    78丁文镜.减振理论.清华大学出版社, 1988:1~5
    79罗文波,徐平.黏弹性理论与应用.科学出版社, 2004:205~220
    80 L. Mullins. Softening of rubber by deformation. Rubber Chemical Tech. 1969,(42): 339~362.
    81 L. Mullins. Mechanical behavior of polymers-Accomplishments and problems. Criteria for engineering design. Hepburn ,1979: 1~18
    82 G. Marckmanna, E. Verrona. A theory of network alteration for the Mullins effect. Journal of the Mechanics and Physics of Solids. 2002,(50):2011~2028
    83 A.R. Payne, R.E. Whittaker. Low strain dynamic properties of filled rubbers. Rubber Chemical Tech. 1971,(44):440~478.
    84 A.I. Medalia. Effects of carbon black on dynamic properties of rubber. Rubber Chemical Tech. 1987,(51):437~523.
    85杨晓翔.非线性橡胶材料的有限单元法.石油工业出版社, 1999:157~186
    86弗雷克利,佩恩.橡胶在工程中应用的理论与实践.化学工业出版社, 1985:201~221
    87王伟.橡胶MR模型中材料常数的确定.特种橡胶制品. 2004,25:72~80
    88张少实.新编材料力学.机械工业出版, 2002:52~58
    89于达仁.动态系统中干摩擦力的数值计算模型.哈尔滨工业大学学报. 1995,27(5):79~88
    90钟一谔,何衍正,王正.转子动力学.清华大学出版社, 1984:176~195
    91王勖成.有限单元法.清华大学出版社, 2003:162~186
    92吴勃英.数值分析原理.科学出版社, 2003:294~303.
    93裘春航,吕和祥,钟万勰.求解非线性动力学方程的分段直接积分法.力学学报. 2002,34 (3):369~377

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700