大型稀疏代数系统的数值求解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学与工程计算的很多领域,诸如计算流体力学、约束优化、计算电磁学、PDEs的混合有限元近似、非线性规划、中子输运理论等问题的求解,最终都可归结为大型稀疏代数系统的求解.因此,对大型稀疏代数系统的求解研究就具有非常重要的理论意义和实际应用价值.由于许多实际问题产生的大型稀疏代数系统往往具有某种特殊结构,对具有这些特殊结构的大型稀疏代数系统的数值求解研究引起了国内外众多专家和学者的关注.本文对几类特殊的大型稀疏代数系统的数值求解方法进行了深入系统地研究.特别研究了求解线性鞍点问题的迭代法和预处理技术,求解非线性鞍点问题的迭代法以及求解代数黎卡提方程的迭代法.本文共六章,分四个部分:
     研究求解线性鞍点问题的Uzawa类迭代法.首先,提出了一个修正的非线性Uzawa迭代法,讨论了算法的收敛性,并给出了理论和数值比较,数值实验也验证了修正方法的有效性.其次,给出了求解(2,2)块不为零的非对称广义鞍点问题的GMLHSS迭代方法,并探讨了算法的收敛条件.最后,给出了非精确Uzawa方法、GSSOR方法和MLHSS方法求解奇异鞍点系统时的半收敛性分析.
     研究求解非对称鞍点问题的预处理技术.首先,给出了含参数的广义非精确块三角预条件子,对预处理矩阵的特征对性质给出了分析,并给出了预处理矩阵的特征值扰动分析.其次,基于系数矩阵的部分HS分裂和PS分裂,提出了PHSS预条件子和PPSS预条件子,并详细研究了预处理矩阵的谱性质,指出对于一个充分小的正参数,预处理矩阵特征值聚集在两个点附近:一个是(0,0)点,另一个是(2,0)点,并且通过大量的数值实验验证了理论分析和此两类预条件子的有效性.最后,给出了SIMPLE预条件子,利用特征值理论,研究了预处理矩阵两种不同表达形式的谱之间的联系.
     研究求解非线性鞍点问题的迭代法.在求解线性鞍点问题的迭代解法基础上,给出了几个求解非线性鞍点问题的迭代法,并对方法进行了收敛性分析,数值实验验证了所提算法的有效性.
     研究求解代数黎卡提方程的迭代法.事实上,输运理论中的代数黎卡提方程可以写成与之等价的向量方程.首先,基于松弛思想和牛顿方法,提出了求解向量方程的松弛Newton-like方法,并给出了算法的收敛性分析.其次,利用拟牛顿思想,结合已有的牛顿类型方法,给出了两个修正牛顿方法求解向量方程,并得到了算法的收敛结果.数值实验也表明所给出的三个算法能有效改进和提高已有算法的收敛性.
Large-scale sparse algebraic systems arise in a wide variety of applications through-out computational science and engineering fields, such as computational ?uid dynam-ics、constrained optimization、computational electromagnetics、mixed finite elementapproximations of PDEs、nonlinear optimization、transport theory and so on. Hence, ithas important theoretic and practical significance to study on the numerical methods forsolving this type of algebraic systems. Many large-scale sparse algebraic systems arisingfrom practical problems often have special structures. Therefore, the experts and schol-ars from home and abroad have been attracted on the research of numerical methods forsolving large sparse algebraic systems with special structure. This thesis represents deepand systematic research on the numerical methods for solving large-scale sparse algebraicsystems which have special structures, especially on the iterative methods and precondi-tioning techniques for linear saddle point problems, iterative methods for nonlinear saddleproblems and algebraic Riccati equation. This thesis is divided into four parts, includingsix chapters.
     Uzawa type iterative methods are studied for solving linear saddle point problems.First, a modified nonlinear Uzawa iterative method is proposed and convergence of themodified method is discussed, and also theoretical and numerical comparison are given.Numerical experiments are provided to show the efficiency of the modified method. Sec-ond, a generalized modified local Hermitian and Skew-Hermitian splitting method is pre-sented for the generalized saddle point problems with nonzero (2, 2) block and conver-gence of the algorithm is discussed. Last, the inexact Uzawa method, the GSSOR methodand the MLHSS method are applied to solve singular saddle point systems and the semi-convergence analysis of these three methods are provided, respectively.
     Preconditioning techniques are investigated for nonsymmetric saddle point prob-lems. Firstly, inexact block triangular preconditioners which contain a parameter arepresented, and eigenpair properties of the preconditioned matrix are analyzed. Further-more, eigenvalue perturbation analysis of the preconditioned matrix is shown. Secondly,on the basis of partial HS and PS splitting of coefficient matrix, PHSS preconditioner andPPSS preconditioner are presented and analyzed for nonsymmetric saddle point prob- lems, and also the spectral properties of the preconditioned matrix are studied in detail.Moreover, it can be concluded that the eigenvalue of the preconditioned matrix will gatherinto two clusters: one is near (0, 0) and the other is near (2, 0) when the iteration param-eter becomes small enough. In addition, the theoretical results and effectiveness of thetwo preconditioners are proved by a lot of numerical experiments. Finally, SIMPLE pre-conditioner is given. Using eigenvalue theory, the relation of two different expression ofspectrum of preconditioned matrix is investigated.
     Iterative methods are considered for solving nonlinear saddle point problems. Basedon the iterative methods for solving linear saddle point problems, several iterative methodsare proposed for solving nonlinear saddle point problems, and their convergence analysisare given, respectively. Numerical experiments are provided to reveal the performance ofthose proposed iterative methods.
     Iterative methods are investigated for the algebraic Riccati equation. In fact, alge-braic Riccati equation arising in transport theory can be rewritten as a vector equation.Firstly, based on the relaxation technique and Newton method, a relaxed Newton-likemethod containing a relaxation parameter is proposed for solving the vector equation,and some convergence results are given. Secondly, using quasi-Newton idea and combin-ing the existing Newton type methods, two modified Newton type methods are presentedfor solving vector equation and some convergence results are obtained. The results of ex-periments show that our methods can effectively improve the convergence of the existingalgorithms.
引文
[1] K. Arrow, L. Hurwicz, H. Uzawa. Studies in nonlinear programming. Stanford University Press,Stanford, CA, 1958
    [2] O. Axelsson, M. Neytcheva. Preconditioning methods for linear systems arising in constrainedoptimization problems, Numer. Linear Algebra Appl., 2003, 10:3-31
    [3] O. Axelsson, M. Neytcheva. Robust preconditioners for saddle point problems. Springer LectureNotes in Computer Science., 2003, 2542:158-166
    [4] O. Axelsson, M. Neytcheva. Eigenvalue estimates for preconditioned saddle point matrices. Nu-mer. Linear Algebra Appl., 2006, 13:339-360
    [5] C. Bacuta. A unified approach for Uzawa algorithms. SIAM J. Numer. Anal., 2006, 44:2633-2649
    [6] C. Bacuta. Schur complements on Hilbert spaces and saddle point systems. J. Comput. Appl.Math., 2009, 225:581-593
    [7] Z.Z. Bai, Y.H. Gao, L.Z. Lu. Fast iterative schemes for nonsymmetric algebraic raccati equationsarising from transport theory. SIAM J.Sci.Comput., (2008), 30:804-818
    [8] Z.Z. Bai, G.H. Golub. Accelerated Hermitian and skew-Hermitian splitting iteration methods forsaddle-point problems. IMA J. Numer. Anal., 2007, 27:1-23
    [9] Z.Z. Bai, G.H. Golub, C.K. Li. Optimal parameter in Hermitian and skew-Hermitian splittingmethod for certain two-by-two block matrices. SIAM J. Sci. Comput., 2006, 28:583-603
    [10] Z.Z. Bai, G.H. Golub, C.K. Li. Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Herimitan positive semidefinite matrices. Math. Comput.,2007, 76:287-298
    [11] Z.Z. Bai, G.H. Golub, L.Z. Lu, J.F. Yin. Block triangular and skew-Hermitian splitting methodsfor positive-definite linear systems. SIAM J. Sci. Comput., 2005, 26:844-863
    [12] Z.Z. Bai, G.H. Golub, M.K. Ng. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl., 2003, 24:603-626
    [13] Z.Z. Bai, G.H. Golub, M.K. Ng. On successive-overrelaxation acceleration of the Hermitian andskew-Hermitian iterations. Numer. Linear Algebra Appl., 2007, 14:319-335
    [14] Z.Z. Bai, G.H. Golub, M.K. Ng. On inexact Hermitian and skew-Hermitian splitting methods fornon-Herimitan positive definite linear systems. Linear Algebra Appl., 2008, 428:413-440
    [15] Z.Z. Bai, G.H. Golub, J. Y. Pan. Preconditioned Hermitian and skew-Hermitian splitting methodsfor non-Hermitian positive semidefinite linear systems. Numer. Math., 2004, 98:1-32
    [16] Z.Z. Bai, X.X. Guo, S.F. Xu. Alternately linearized implicit iteration methods for the minimalnonnegative solutions of the nonsymmetric algebraic Riccati equations. Numer. Linear AlgebraAppl., 2006, 13:655-674
    [17] Z.Z. Bai, M.K. Ng. On inexact preconditioners for nonsymmetric matrices., SIAM J. Sci. Com-put., 2005, 26:1710-1724
    [18] Z.Z. Bai, B.N. Parlett, Z.Q. Wang. On generalized successive overrelaxation methods for aug-mented linear systems. Numer. Math., 2005, 102:1-38
    [19] Z.Z. Bai, L. Wang, J.Y. Yuan. Weak convergence theory of quasi-nonnegative splittings for sin-gular matrices. Appl. Numer. Math., 2003, 47:75-89
    [20] Z.Z. Bai, Z.Q. Wang. On parameterized inexact Uzawa methods for generalized saddle pointproblems. Linear Algebra Appl., 2008, 428:2900-2932
    [21] R.E. Bank, B.D. Welfert, H. Yserentant. A class of iterative methods for solving saddle pointproblems. Numer. Math., 1990, 56:645-666
    [22] L. Bao, Y.Q. Lin, Y.M. Wei. A modified simple iterative method for nonsymmetric algebraicRiccati equations arising in transport theory. Appl. Math. Comput., 2006, 181:1499-1504
    [23] M. Benzi. A generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM J.Matrix Anal. Appl., 2009, 31:360-374
    [24] M. Benzi, M.J. Gander, G.H. Golub. Optimization of the Hermitian and skew-Hermitian splittingiteration for saddle-point problems. BIT., 2003, 43:881-900
    [25] M. Benzi, G.H. Golub. A preconditioner for generalized saddle point problems. SIAM J. MatrixAnal. Appl., 2004, 26:20-41
    [26] M. Benzi, G.H. Golub, J. Liesen. Numerical solution of saddle point problems. Acta. Numer.,2005, 14:1-137
    [27] M. Benzi, J. Liu. Block preconditioning for saddle point systems with indefinite (1,1) block.Inter. J. Comput. Math., 2008, 84:1117-1129
    [28] M. Benzi, M.K. Ng. Preconditioned iterative methods for weighted Toeplitz least squares prob-lems. SIAM J. Matrix Anal. Appl., 2006, 27:1106-1124
    [29] M. Benzi, M.A. Olshanskii. An augmented lagrangian-based approach to the Oseen problem.SIAM J. Sci. Comput., 2006, 28:2095-2113
    [30] M. Benzi, V. Simoncini. On the eigenvalues of a class of saddle point problems. Numer. Math.,2006, 103:173-196
    [31] M. Benzi, D.B. Szyld. Existence and uniqueness of splittings for stationary iterative methodswith applications to altering methods. Numer. Math., 1997, 76:309-321
    [32] A. Berman, R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. AcademicPress, New York, third edition, 1979, Reprinted by SIAM, Philadelphia, 1994
    [33] D.A. Bini, B. Iannazzo, F. Poloni. A fast Newton’s method for a nonsymmetric algebraic Riccatiequations. SIAM J. Matrix Anal. Appl., 2008, 30:276-290
    [34] J.H. Bramble, J.E. Pasciak. A preconditioning technique for indefinite systems resulting frommixed approximations of elliptic problems. Math. Comput., 1988, 50:1-17
    [35] J.H. Bramble, J.E. Pasciak. Iterative techniques for time dependent Stokes problems. Comput.Math. Appl., 1997, 33:13-30
    [36] J.H. Bramble, J.E. Pasciak, A.T. Vassilev. Analysis of the inexact Uzawa algorithm for saddlepoint problems. SIAM J. Numer. Anal., 1997, 34:1072-1092
    [37] J.H. Bramble, J.E. Pasciak, A.T. Vassilev. Uzawa type algorithms for nonsymmetric saddle pointproblems. Math. Comput., 1999, 69:667-689
    [38] F. Brezzi, M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag, New York, 1991
    [39] G.X. Cao, Y.Z. Song. On the semiconvergence of additive and multiplicative splitting iterationsfor singular linear systems. Appl. Math. Comput., 2008, 204:794-801
    [40] Z. H. Cao. A convergence theorem on an extrapolated iterative method and its applications. Appl.Numer. Math., 1998, 27:203-209
    [41] Z.H. Cao. On the convergence of nonstationary iterative methods for symmetric positive(semi)definite systems. Appl. Numer. Math., 2001, 37:319-330
    [42] Z.H. Cao. On the convergence of iterative methods for solving singular linear systems. J. Com-put. Appl. Math., 2002, 145:1-9
    [43] Z.H. Cao. A note on constraint preconditioning for nonsymmetric indefinite matrices. SIAM J.Matrix Anal. Appl., 2002, 24:121-125
    [44] Z.H. Cao. Fast Uzawa algorithm for generalized saddle point problems. Appl. Numer. Math.,2003, 46:157-171
    [45] Z.H. Cao. Fast Uzawa algorithms for solving non-symmetric stabilized saddle point problems.Numer. Linear Algebra Appl., 2004, 11:1-24
    [46] Z.H. Cao. Semiconvergence of extrapolated iterative methods for singular linear systems. Appl.Math. Comput., 2004, 156:131-136
    [47] Z.H. Cao. A class of constraint precondtioners for nonsymmetric saddle point matrices. Numer.Math., 2006, 103:47-61
    [48] Z.H. Cao, A note on block diagonal and constraint preconditioners for non-symmetric indefinitelinear systems, Intern J. Computer. Math, 2006, 83:383-395
    [49] Z.H. Cao. Positive stable block triangular preconditioners for symmetric saddle point problems.Appl. Numer. Math., 2007, 57:899-910
    [50] Z.H. Cao, Augmentation block preconditioners for saddle point-type matrices with singular (1,1)blocks. Numer. Linear Algebra Appl., 2008, 15:515-533
    [51] Z.H. Cao. On the convergence of general stationary linear iterative methods for singular linearsystems. SIAM J. Matrix. Anal. Appl., 2008, 29:1382-1388
    [52] Z.H. Cao. Block triangular Schur complement preconditioners for saddle point problems andapplication to the Oseen equations. Appl. Numer. Math., 2010, 60:193-207
    [53] Z.H. Cao, D.J. Evans, M. Qin. Convergence of iterative methods for stablized saddle-point prob-lems. Intern. J. Computer. Math., 2005, 82:987-999
    [54] Y.H. Cao, Y.Q. Lin, Y.M. Wei. Nonlinear Uzawa methods for solving nonsymmetric saddle pointproblems. J. Appl. Math. Comput., 2006, 21:1-21
    [55] L.C. Chan, M.K. Ng, N.K. Tsing. Spectral analysis for HSS preconditioners. Numer. Math.Theor. Meth. Appl., 2008, 1:57-77
    [56] K.H. Chan, K. Zhang, J. Zou, G. Schubert. A non-linear, 3-D sphericalα2 dynamo using a finiteelement method, Phys. Earth Planetary Int., 2001, 128:35-50
    [57] F. Chen, Y.L. Jiang. A generalization of the inexact parameterized Uzawa methods for saddlepoint problems. Appl. Math. Comput., 2008, 206:765-771
    [58] X.J. Chen. On preconditioned Uzawa methods for saddle-point problems. J. Comput. Appl.Math., 1998, 100:207-224
    [59] X.J. Chen. Global and superlinear convergence of inexact Uzawa methods for saddle point prob-lems with nondifferentiable mappings. SIAM J. Numer. Anal., 1998, 35:1130-1148
    [60] Y.L. Chen, X.Y. Tan. Semiconvergence criteria of iterations and extrapolated iterations and con-structive methods of semiconvergent iteration matrices. Appl. Math. Comput., 2005, 167:930-956
    [61] Z. Chen, Q. Du, J. Zou. Finite element methods with matching and nonmatching meshes forMaxwell equations with discontinuous coefficients. SIAM J. Numer. Anal., 2000, 37:1542-1570
    [62] X.L. Cheng. The inexact Uzawa algorithm for saddle-point problem. Appl. Math. Lett., 2000,13:1-3
    [63] X.L. Cheng. On the nonlinear inexact Uzawa algorithm for saddle-point problems. SIAM J.Numer. Anal., 2000, 37:1930-1934
    [64] X.L Cheng, J. Zou. An inexact Uzawa-type iterative method for solving saddle point problems.Intern. J. Computer. Math., 2003, 80:55-64
    [65] P.G. Ciarlet. Introduction to Numerical Linear Algebra and Optimization. Cambridge UniversityPress, Cambridge, 1989
    [66] F.H. Clarke. Optimization and Nonsmooth Analysis. John Wiley, New York, 1983
    [67] M.R. Cui. A sufficient condition for the convergence of the inexact Uzawa algorithm for saddlepoint problems. J. Comput. Appl. Math., 2002, 139:189-196
    [68] M.R. Cui. Analysis of iterative algorithms of Uzawa type for saddle point problems. Appl. Nu-mer. Math., 2004, 50:133-146
    [69] M.T. Darvishi, P. Hessari. Symmetric SOR method for augmented systems. Appl. Math. Com-put., 2006, 183:409-415
    [70] A. C. de Niet, F. W. Wubs. Two preconditioners for saddle point problems in ?uid ?ows. Int. J.Numer. Meth. Fluids., 2007, 54:355–377
    [71] J. Ding, W. Hang. New perturbation results for equality-constrained least squares problems. Lin-ear Algebra Appl., 1998, 272:181-192
    [72] H.S. Dollar. Iterative Linear Algebra for Constrained Optimization, Ph.D. thesis, University ofOxford, 2005. http://web.comlab.ox.ac.uk/oucl/research/na/thesis/thesisdollar.pdf
    [73] H.C. Elman, G.H. Golub. Inexact and preconditioned Uzawa algorithms for saddle point prob-lems. SIAM J. Numer. Anal., 1994, 31:1645-1661
    [74] H.C. Elman, A. Ramage, D.J. Silvester, IFISS: a Matlab toolbox for modelling incompressible?ow, http://www.cs.umd.edu/ ?elman/ifiss.html
    [75] H.C. Elman, D. Silvester. Fast nonsymmetric iterations and preconditioning for Navier-Stokesequations. SIAM J. Sci. Comput., 1996, 17:33-46
    [76] H.C. Elman, D.J. Silvester, A.J. Wathen. Finite Elements and Fast Iterative Solvers: with appli-cations in incompressible ?uid dynamics. Oxford: Oxford University Press, 2005
    [77] B. Fischer, A. Ramage, D.J. Silvester, A.J. Wathen. Minmum residual methods for augmentedsystems. BIT., 1998, 38:527-543
    [78] R. Fletcher. Practical Methods of Optimization, 2nd ed., John Wiley, Chichester, 1987
    [79] B.D. Ganapol. An investigating of a simple transport model. Transport Theory Statist. Phys.,1992, 21:1-37
    [80] V. Girault, P.A. Raviart. Finite Element Methods for Navier-Stokes Equations, Springer-Verlag,Berlin, Heidelberg, 1986
    [81] G.H. Golub, A.J. Wathen. An iteration for indefinite system and its application to the Navier-Stokes equations. SIAM J. Sci. Comput., 1998, 19:530-539
    [82] G.H. Golub, C. Greif. On solving block-structured indefinite linear systems. SIAM J. Sci. Com-put., 2003, 24:2076-2092
    [83] G.H. Golub, C. Greif, J.M. Varah. An algebraic analysis of a block diagonal preconditioner forsaddle point systems. SIAM J. Matrix Anal. Appl., 2006, 27:779-792
    [84] G.H. Golub, X. Wu, J.Y. Yuan. SOR-like methods for augmented systems. BIT., 2001, 41:71-85
    [85] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997
    [86] C. Greif, D. Scho¨tzau. Preconditioners for the discretized time-harmonic Maxwell equaitons inmixed form. Numer. Linear Algebra Appl., 2007, 14:281-297
    [87] C.H. Guo. Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices. SIAM J. Matrix Anal. Appl., 2001, 23:225-242
    [88] C.H.Guo, B. Iannazzo, B. Meini. On the doubling algorithm for a (shifted) nonsymmetric alge-braic Riccati equation. SIAM J. Matrix Anal. Appl., 2007, 29:1083-1100
    [89] C.H. Guo, A.J. Laub. On the iterative solution of a class of nonsymmetric algebraicRiccati equa-tions. SIAM J. Matrix Anal. Appl., 2000, 22:376-391
    [90] C.H. Guo, W.W. Lin. Convergence rates of some iterative methods for nonsymmetric algebraicRiccati equations arising in transport theory. Linear Algebra Appl., 2010, 432:283-291
    [91] X.X. Guo, Z. Z. Bai. On the minimal nonnegative solution of nonsymmetric algebraic Riccatiequation. J. Comput. Math., 2005, 23:305-320
    [92] A. Hadjidimos, A. Yeyios. The principle of extrapolation in connection with the acceleratedoverrelaxation method. Linear Algebra Appl., 1980, 30:115-128
    [93] R.A. Horn, C.R.Johnson. Matrix analysis, Vol 1, Cambridge University Press, 1986
    [94] Q.Y. Hu, J. Zou. An iterative method with variable relaxation parameters for saddle-point prob-lems. SIAM J. Matrix Anal. Appl., 2001, 23:317-338
    [95] Q.Y. Hu, J. Zou. Two new variants of nonlinear inexact Uzawa algorithms for saddle-point prob-lems. Numer. Math., 2002, 93:333-359
    [96] Q.Y. Hu, J. Zou. Nonlinear inexact Uzawa algorithms for linear and nonlinear saddle-point prob-lems. SIAM J. Optim., 2006, 16:798-825
    [97] T.Z. Huang, S.L. Wu, C.X. Li. The spectral properties of the Hermitian and skew-Hermitiansplitting preconditioner for generalized saddle point problems. J. Comput. Appl. Math., 2009,229:37-46
    [98] I.C.F. Ipsen. A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput., 2001,23:1050-1051
    [99] H. Jiang, L. Qi. Local uniqueness and Newton-type methods for nonsmooth variational inequal-ities. J. Math. Anal. Appl., 1996, 196:314-331
    [100] M.Q. Jiang, Y. Cao. On local Hermitian and Skew-Hermitian splitting iteration methods forgrneralized saddle point problems. J. Comput. Appl. Math., 2009, 231:973-982
    [101] J. Juang. Existence of algebraic matrix Riccati equations arising in transport theory. LinearAlgebra Appl., 1995, 230:89-100
    [102] J. Juang, I.D. Chen. Iterative solution for a certain class of algebraic matrix Riccati equationsarising in transport theory. Transport Theory Statist. Phys., 1993, 22:65-80
    [103] J. Juang, W.W. Lin. Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices.SIAM J. Matrix Anal. Appl., 1999, 20:228-243
    [104] J. Juang, Z.T. Lin. Convergence of an iterative technique for algebraic matrix Riccati equationsand applications to transport theory. Transport Theory Statist. Phys., 1992, 21:87-100
    [105] H.B. Keller. On the solution of singular and semidefinite linear systems by iteration. SIAM J.Numer. Anal., 1965, 2:281-290
    [106] C. Keller, N.I.M. Gould, A.J. Wathen. Constraint preconditioning for indefinite linear systems.SIAM J. Matrix Anal. Appl., 2000, 21:1300-1317
    [107] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia, 1995
    [108] A. Klawonn. Block-triangular preconditioners for saddle point problems with a penalty term.SIAM J. Sci. Comput., 1998, 19:172-184
    [109] A. Klawonn. An optimal preconditioner for a class of saddle point problems with a penaltyterm. SIAM J. Sci. Comput., 1998, 19:540-542
    [110] A. Klawonn, G. Starke. Block triangular preconditioners for nonsymmetric saddle point prob-lems: fields-of-values. Numer. Math., 1999, 81:577-594
    [111] J.S. Kou, Y.T. Li, X. H. Wang. A modification of Newton method with third-order convergence.Appl. Math. Comput., 2006, 181:1106-1111
    [112] P. Lancaster, L. Rodman. Algebraic Riccati Equations. Llarendon Press, Oxford, 2002
    [113] A.J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Transactions on au-tomatic control., 1979, 24:913-921
    [114] J.C. Li, X. Kong. Optimal parameters of GSOR-like methods for solving the augmented linearsystems. Appl. Math. Comput., 2008, 204:150-161
    [115] Z. Li, C.J. Li, D. J. Evans, T. Zhang. Two-parameter GSOR method for the augmented system.Intern J. Computer. Math., 2005, 82:1033-1042
    [116] C.G. Li, C. Vuik. Eigenvalue analysis of the SIMPLE preconditioning for incompressible ?ow.Numer. Linear Algebra Appl., 2004, 11:511-523
    [117] C.G. Li, C. Vuik. Some results on the eigenvalue analysis of a SIMPLER preconditioned matrix.Report 03-08, Department of Applied Mathematical Analysis, Delft University of Technology,Delft, 2003
    [118] C.J. Li, Z. Li, X.Y. Nie, D. J. Evans. Generalized AOR method for the augmented system. InternJ. Computer. Math., 2004, 81:495-504
    [119] J. Liesen, B.N. Parlet. On nonsymmetric saddle point matrices that allow conjugate gradientiterations. Numer. Math., 2008, 108:605-624
    [120] Y.Q. Lin. A class of iterative methods for solving nonsymmetric algebraic Raccati equationsarising in transport theory. Comput. Math. Appl., 2008, 56:3046-3051
    [121] Y.Q. Lin, L. Bao. Convergence analysis of the Newton-Shamanskii method for a nonsymmetricalgebraic Riccati equations. Numer. Linear Algebra Appl., 2008, 15:535-546
    [122] Y.Q. Lin, L. Bao, Y.M. Wei. A modified Newton method for solving non-symmetric algebraicRaccati equations arising in transport theory. IMA J. Numer. Anal., 2008, 28:215-224
    [123] Y.Q. Lin, Y.H. Cao. A new nonlinear Uzawa algorithm for generalized saddle point problems.Appl. Math. Comput., 2006, 175:1432-1454
    [124] Y.Q. Lin, Y. Duan. A corrected nonlinear Uzawa method for solving stabilized saddle pointproblems. Appl. Math. Comput., 2006, 183:1262-1269
    [125] Y.Q. Lin, Y.M. Wei. Fast corrected Uzawa methods for solving symmetric saddle point prob-lems. CALCOLO., 2006, 43:65-82
    [126] Y.Q. Lin, Y.M. Wei. Corrected Uzawa methods for solving large nonsymmetric saddle pointproblems. Appl. Math. Comput., 2006, 183:1108-1120
    [127] Y.Q. Lin, Y.M. Wei. A convergence analysis of the nonlinear Uzawa algorithm for saddle pointproblems. Appl. Math. Lett., 2007, 20:1094-1098
    [128] Y.Q. Lin, Y.M. Wei. A note on constraint preconditioners for nonsymmetric saddle pointprobmes. Numer. Linear Algebra Appl., 2007, 14:659-664
    [129] L. Little, Y. Saad. Block preconditioners for saddle point problems. Numer. Algorithm., 2003,33:367-379
    [130] J. Liu. Preconditioned Krylov Subspace Methods for Incompressible Flow Problems, Ph.D.thesis, Department of Mathematics and Computer Science, Emory University, 2006
    [131] L.Z. Lu. Solution form and simple iteration of a nonsymmetric algebraic Riccati equation aris-ing in transport theory. SIAM J. Matrix Anal. Appl., 2005, 26:679-685
    [132] L.Z. Lu. Newton iterations for a non-symmetric algebraic Riccati equation. Numer. Linear Al-gebra Appl., 2005, 12:191-200
    [133] L.Z. Lu, M.K. Ng. Effects of a parameter on a nonsymmetric algebraic Riccati equation. Appl.Math. Comput., 2006, 172:753-761
    [134] L.Z. Lu, C.E.M. Pearce. On the mstrix-sign-function method for solving algebraic Riccati equa-tions. Appl. Math. Comput., 1997, 86:157-170
    [135] S. McCormick. Multigrid methods for variational problems: General theory for the V-cycle.SIAM J. Numer. Anal., 1985, 22:634-643
    [136] V. Mehrmann, H.G. Xu. Explicit solutions for a Riccati equation from transport theory. SIAMJ. Matrix Anal. Appl., 2008, 30:1339-1357
    [137] M.F. Murphy, G.H. Golub, A.J. Wathen. A note on preconditioning for indefinite linear systems.SIAM J. Sci. Comput., 2000, 21:1969-1972
    [138] N.J. Nigham, C.H. Guo. Iterative solution of a nonsymmetric algebraic Riccati equation. SIAMJ. Matrix Anal. Appl., 2007, 29:396-412
    [139] C. Paige, C.V. Loan. A Schur decomposition for Hamitonian matrices. Linear Algebra Appl.,1981, 41:11-32
    [140] J.Y. Pan, M.K. Ng, Z.Z. Bai. New preconditioners for saddle point problems. Appl. Math. Com-put., 2006, 172:762-771
    [141] S.V. Patankar. Numerical heat transfer and ?uid ?ow, McGraw-Hill, New York, 1980
    [142] X.F. Peng, W. Li. On unsymmetric block overrelaxation-type methods for saddle point prob-lems. Appl. Math. Comput., 2008, 203:660-671
    [143] K. K. Phoon, K. C. Toh, S. H. Chan, F. H. Lee. An efficient diagonal preconditioner for finiteelement solution of Biot’s consolidation equations. Int. J. Numer. Meth. Engng., 2002, 55:377-400
    [144] L. Qi, J. Sun. A nonsmooth version of Newton’s method. Math. Programming., 1993, 58:353-368
    [145] W. Queck. The convergence factor of preconditioned algorithms of the Arrow-Hurwicz type.SIAM J. Numer. Anal., 1989, 26:1016-1030
    [146] T. Rees, C. Greif. A preconditioner for linear systems arising from interior point optimizationmethods. SIAM J. Sci. Comput., 2007, 29:1992-2007
    [147] L.C.G. Rogers. Fluid models in queueing theory and Wiener-Hopf factorization of MarkovChains. Ann. Appl. Probab., 1994, 4:390-413
    [148] T. Rusten, R. Winther. A preconditioned iterative method for saddle point problems. SIAM J.Matrix Anal. Appl., 1992, 13:887-904
    [149] Y. Saad. Iterative Methods for Sparse Linear Systems (Second edition). SIAM, Philadelphia,PA, 2003
    [150] Y. Saad, M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsym-metric linear systems. SIAM J. Sci. Comput., 1986, 7:856-869
    [151] V.E. Shamanskii. A modification of Newton’s method. Ukrainian Mathematical Journal.,1967, 19:133-138
    [152] X.H. Shao, Z. Li, C.J. Li. Modified SOR-like method for the augmented system. Intern J. Com-puter. Math., 2007, 84:1653-1662
    [153] C. Siefert, E.D. Sturler. Preconditioners for generalized saddle point problems. SIAM J. Numer.Anal., 2006, 44:1275-1296
    [154] D.J. Silvester, A.J. Wathen. Fast iterative solution of stabilized Stokes systems part II: Usinggeneral block preconditioners. SIAM J. Numer. Anal., 1994, 31:1352-1367
    [155] V. Simoncini. Block triangular preconditioners for symmetric saddle-point problems. Appl. Nu-mer. Math., 2004, 49:63-80
    [156] V. Simoncini, M. Benzi. Spectral properties of the Hermitian and skew-Hermitian splitting pre-conditioner for saddle point problems. SIAM J. Matirx Anal. Appl., 2004, 26:377-389
    [157] Y.Z. Song. Semiconvergence of extrapolated iterative methods for singular linear system. J.Comput. Appl. Math., 1999, 106:117-129
    [158] Y.Z. Song. Semiconvergence of nonnegative splittings for singular matrices. Numer. Math.,2000, 85:109-127
    [159] Y.Z. Song, L. Wang. On the semiconvergence of extrapolated iterative methods for singularlinear system. Appl. Numer. Math., 2003, 44:401-403
    [160] Y.Z. Song, L. Wang. Semiconvergence of P-regular for solving singular linear systems. CAL-COLO., 2008, 45:247-261
    [161] G.W. Stewart, J.G. Sun. Matrix Perturbation Theory, Academic Press, Boston, 1990
    [162] G.W. Stewart. Afternotes on Numerical Analysis. SIAM, Philadelphia, 1996
    [163] M. Stoll and A. Wathen, Combination preconditioning and the Bramble-Pasciak+ precondi-tioner, SIAM J. Matrix Anal. Appl., 2008, 30:582-608
    [164] E.D. Sturler, J. Liesen. Block-diagonal and constraint preconditioners for nonsymmetric indef-inite linear systems, Part I: Theory. SIAM J. Sci. Comput., 2005, 26:1598-1619
    [165] UF Sparse Matrix Collection: Szczerba group.http://www.cise.u?.edu/research/sparse/matrices/Szczerba/Ill Stokes.html
    [166] R. Temam. Navier-Stokes Equations. North-Holland publishing co, New York, 1977
    [167] K.C. Toh, K.K. Phoon, S.H. Chan. Block preconditioners for symmetric indefinite linear sys-tems. Int. J. Numer. Meth. Engng., 2004, 60:1361–1381
    [168] Z.Y. Tong, A. Sameh. On an iterative method for saddle point problems. Numer. Math., 1998,79:643-646
    [169] P. Tseng. Applications of a splitting algorithm to decomposition in convex programming andvariational inequalities. SIAM J. Control Optim., 1991, 29:119-138
    [170] M. ur Rehman, C. Vuik, G. Segal. Preconditioners for the incompressible Navier-Stokes equa-tions. Report 07-15, Delft University of Technology, Department of Applied Mathematical Anal-ysis, Delft, 2007
    [171] M. ur Rehman, C. Vuik, G. Segal. SIMPLE-type preconditioners for the Oseen problem. Int. J.Numer. Meth. Fluids., 2009, 61:432-452
    [172] R.S. Varga. Matrix Iterative Analysis. Springer Verlag, New York, 2000
    [173] C. Vuik, A. Saghirb, G.P. Boerstoelb. The Krylov accelerated SIMPLE(R) method for ?owproblems in industrial furnaces. Int. J. Numer. Meth. Fluids., 2000, 33:1027-1040
    [174] C. Vuik, A. Saghirb. The Krylov accelerated SIMPLE(R) method for incompressible ?ow. Re-port 02-01, Delft University of Technology, Department of Applied Mathematical Analysis,Delft, 2002
    [175] L. Wang. Semi-convergence of of two-stage iterative methods for singular linear systems. Lin-ear Algebra Appl., 2007, 422:824-838
    [176] Z.Q. Wang. Optimization of the parameterized Uzawa preconditioners for saddle point matrices.J. Comput. Appl. Math., 2009, 226:136-154
    [177] A.J. Wathen, D.J. Silvester. Fast iterative solution of stabilized Stokes systems part I: usingsimple diagonal preconditioners. SIAM J. Numer. Anal., 1993, 30:630-649
    [178] Y.M. Wei, N.M. Zhang. Further note on constraint preconditioning for nonsymmetric indefinitematrices. Appl. Math. Comput., 2004, 152:43-46
    [179] J.H. Wilkinson. The Algebraic Eigenvalue Problem, Oxford, Oxford University Press, 1965
    [180] S.L. Wu, T.Z. Huang, C.X. Li. Gereralized block triangular preconditioner for symmetric saddlepoint problems. Computing., 2009, 84:183-208
    [181] H.F. Ye, X.L Cheng. Some remarks on the nonlinear inexact Uzawa algorithm for saddle pointproblem. Intern. J. Computer. Math., 2005, 82:89-96
    [182] D.M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971
    [183] G.F. Zhang, Q.H. Lu. On generalized symmetric SOR method for augmented systems. J. Com-put. Appl. Math., 2008, 219:51-58
    [184] B. Zheng, Z.Z. Bai, X. Yang. On semi-convergence of parameterized Uzawa methods for sin-gular saddle point problems. Linear Algebra Appl., 2009, 431:808-817
    [185] B. Zheng, K. Wang, Y.J. Wu. SSOR-like methods for saddle point problems. Intern. J. Com-puter. Math., 2009, 86:1405-1423
    [186] Y.Y. Zhou, G.F. Zhang. A generalization of parameterized inexact Uzawa method for general-ized saddle point problems. Appl. Math. Comput., 2009, 215:599-607
    [187] W. Zulehner. Analysis of iterative methods for saddle point problems: A unified approach.Math. Comput., 2001, 71:479-505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700