RNA干扰阻断RANKL信号传导通路抑制破骨细胞前体转化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】细胞核因子κB受体活化因子配基(Ligand of receptor activator of NFκB,RANKL)在破骨细胞增殖、分化、活化和存活等一系列生理过程中起十分重要的作用。RNA干扰(RNA interference,RNAi)是一种序列特异性、转录后基因沉默的机制,目前,RNAi已应用于基因功能、疾病治疗的研究。用RNAi技术来抑制RANKL的表达将为骨质疏松等骨溶解性疾病提供新的治疗思路。本实验研究目的:(1)合成并筛选有效的靶向RANKL基因的小分子干扰RNA(siRNA)。(2)研究siRNA特异性抑制基因表达的时效性,研究RANKL基因沉默对成骨细胞功能的影响及对破骨细胞前体向破骨细胞转化的影响。(3)研究去卵巢大鼠骨组织内RANKL、OPG和骨密度的变化规律,为进一步实验做准备。
     【方法】(1)化学法合成4条siRNA,转染成骨细胞,RT-PCR检测RANKLmRNA,筛选出干扰效果最佳的序列用于下一步实验。(2)最佳siRNA转染成骨细胞,观察RANKL、OPG的mRNA、蛋白水平表达的时间规律,同时观察成骨细胞增殖能力、碱性磷酸酶活性、Ⅰ型胶原表达的变化;将转染的成骨细胞与破骨细胞前体共培养,观察对破骨细胞生成的影响。(3)建立去卵巢大鼠模型,于术后不同时间点取股骨髁,检测骨组织RANKL、OPG的mRNA、蛋白表达情况,测量股骨髁的骨密度,观察RANKL、OPG表达与骨质疏松的关系。
     【结果】(1)合成的4条siRNA均可抑制成骨细胞RANKL的表达,RT-PCR结果显示siRNA4对RANKLmRNA的抑制率为89%,与空白对照组(无siRNA转染组)差异相比具有显著性(P<0.05)。(2)最佳siRNA转染后1、2、3、5、7天,与空白对照组相比成骨细胞RANKLmRNA表达率分别为35.3%、11.1%、25.9%、49.0%、66.9%(P<0.05),转染后2天表达率最低;RANKL蛋白表达率分别为59.1%、39.5%、26.6%、40.0%、57.3%(P<0.05),转染后3天表达率最低。(3)最佳siRNA转染后1、2、3、5、7天,成骨细胞OPGmRNA、蛋白表达率较空白对照组降低,但差异不具有显著性(P>0.05);成骨细胞的增殖能力,碱性磷酸酶活性、Ⅰ型胶原分泌较空白对照组降低,差异也不具有显著性(P>0.05)。(4)最佳siRNA转染后的成骨细胞与骨髓细胞共培养,破骨细胞的生成数量少于空白对照组,差异具有显著性(P<0.05)(5)大鼠去卵巢6周后股骨髁骨密度开始降低,与假手术组相比差异均具有显著性(P<0.05)。(6)大鼠去卵巢后RANKLmRNA水平在第4周达到高峰,蛋白水平在第6周达到高峰,此后均呈持续高表达,与假手术组相比,各时间点表达水平差异具有显著性(P<0.05);OPG mRNA水平在第4周达到高峰,蛋白水平在第2周达到高峰,此后均迅速下降,与假手术组相比,各时间点表达水平差异具有显著性(P<0.05)。
     【结论】
     (1)4条化学合成的靶向RANKL的siRNA能抑制成骨细胞RANKLmRNA的表达,5′→3′UCC CAU CGG GUU CCC AUA AdTdT是最有效的干扰序列。(2)有效的靶向RANKL的siRNA转染成骨细胞可明显降低RANKLmRNA、蛋白的表达,到转染后第7天仍有部分抑制作用存在。
     (3)有效的靶向RANKL的siRNA转染成骨细胞后对OPGmRNA和蛋白的表达水平均无明显影响;对成骨细胞的增殖能力、ALP活性和Ⅰ型胶原表达也无明显影响。
     (4)siRNA转染后的成骨细胞与骨髓细胞共培养,可显著抑制破骨细胞的生成。
     (5)大鼠去卵巢后最早6周在股骨下端可以观察到骨密度的降低,股骨下端是检测骨密度敏感部位。
     (6)RANKL表达持续增高,OPG表达短期内升高,迅速降低是绝经后骨质疏松的直接原因,为绝经后骨质疏松的基因治疗研究提供了理论依据。
【Objective】Ligand of receptor activator of NFκB(RANKL) plays a important role in proliferation, differentiation, activation, survival of osteoclast. RNA interference(RNAi) is a sequence-specific, post-transcriptional gene silencing mechanism. Now RNAi has been adopted as a functional genomics tool and a gene therapy approach. Suppression of the expression of RANKL by RNAi is likely to have great impact as a therapeutic tool in osteolysis such as osteoporosis. The objective of this experiment include:(1) to synthesize and screen effective siRNA targeting RANKL.(2) To explore time-course changes of siRNA down regulation of RANKL mRNA and protein, and to observe the effect of RANKL gene silencing on the function of osteoblast and transformation of pre-osteoclast.(3) To investigate the rhythm of rankl and opg expression in bone and BMD of ovariectomized(OVX) S-D rat for the further experiment.
     【Method】(1) Osteoblasts were transfected with 4 chemically synthesized siRNA. RANKL mRNA levels were analyzed by real time reverse transcription-polymerase chain reaction(RT-PCR). The optimal siRNA were selected for next experiment.(2) The optimal siRNA were transfected into osteoblasts, and the levels of mRNA and protein of RANKL and OPG were detected at different times. Proliferation, ALP activity and I type collagen expression of osteoblasts were observed at the same time. Osteoblasts transfected with siRNA and pre-osteoclasts were co-cultured, and the influence of osteoclastogenesis was investigated.(3) OVX model of S-D rats was established. Bone mineral density(BMD) and the levels of mRNA and protein of RANKL and OPG in condyles of femur were detected at different times. The relationship between the expression of RANKL and OPG and osteoporosis was investigated.
     【Result】(1) 4 chemically synthesized siRNA can suppress the expression of RANKL mRNA in osteoblasts. The inhibitory rates of siRNA4 was 89%, and compared with the blank control group(no transfected group), significant statistical difference existed(P<0.05).(2) Compared with the blank control group, the expression rate of RANKL mRNA was 35.3%、11.1%、25.9%、49.0%、66.9%(P<0.05) respectively at 1st, 2nd, 3rd, 5th, 7th day after the optimal siRNA transfection, and the expression rate of RANKL protein was 59.1%、39.5%、26.6%、40.0%、57.3%(P<0.05) respectively at the sane time. The optimal silencing effect at mRNA and protein level was at 2nd and 3rd day post-transfection, respectively.(3) The expression rate of OPG mRNA and protein is lower than the blank control group at 1st, 2nd, 3rd, 5th, 7th day after the optimal siRNA transfection, however no statistical difference existed(p>0.05). Proliferation, ALP activity and I type collagen expression of osteoblasts were similar to the expression profile of OPG(P>0.05).(4) After transfected osteoblasts and bone marrow cells were co-cultured 7 days, the number of osteoclasts was less than the blank control group(P<0.05).(5) The femoral condyles BMD in OVX was significantly lower than that in sham control since 6 weeks after OVX(P<0.05).(6) The expression level of RANKL mRNA peaked at 4 weeks after OVX, and that of RANKL protein peaked at 6 weeks after OVX, then both maintain at a high level. Compared with sham control, statistical difference existed in the expression level at each time point after OVX(P<0.05). The expression level of OPG mRNA peaked at 4 weeks after OVX, and that of OPG protein peaked at 2 weeks after OVX, then both decreased rapidly. Compared with sham control, statistical difference existed in the expression level at each time point after OVX(P<0.05).
     【Conclusion】
     (1) 4 chemically synthesized siRNA targeting RANKL can suppress the expression of RANKL mRNA in osteoblasts, and 5'→3' UCC CAU CGG GUU CCC AUA is the most effective sequence.
     (2) Effective siRNA targeting RANKL can suppress the expression of RANKL mRNA and protein in osteoblasts, and the suppression is up to 7 days.
     (3) Effective siRNA targeting RANKL doesn't influence the expression of OPG mRNA and protein, and has no significant effect on proliferation, ALP activity and I type collagen expression of osteoblasts.
     (4) Transfected osteoblasts are co-cultured with bone marrow cells, which can inhibit transformation of pre-osteoclast.
     (5) The femoral condyles BMD in OVX is significantly lower than that in sham control since 6 weeks after OVX, and the femoral condyles BMD is sensitive to OVX.
     (6) The expression level of RANKL maintains at a high level and that of OPG increases transiently and decreases rapidly, which is the direct reason of postmenopausal osteoporosis.
引文
1. Sayda M. Elbashir, Jens Harborth, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002, 26:199-213.
    2. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol. 2004; 22(3):326-30.
    3. Masquelier DC, Krummel TA. Morphological characterization of osteoblast-like cell culture isolated from new bone rat calvaria. Calcify Tissue Int, 1990,47:92-97
    4. Siggelkow H, Schmidt E, Hennies B, et al. Evidence of downregulation of matrix extracellular phosphoglycoprotem during terminal differentiation in human osteoblasts. Bone, 2004,35(2): 570-576.
    5. Udagawa N, Takahashi N, Jimi E, et al. Osteoblasts/stromal cells stimulatosteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand [J]. Bone, 1999; 25(S): 517-523
    6. Saika M,Inoue D,KidoS,et al.l713-Estradiol stimulates expression of osteoprotegerei by a mouse stromal cell line,ST 2,via estrogen receptor-a[J].Endocrinology,2001; 142:2205-2212
    7. Lee SK, Lorenzo JA .Parathyroid hormone stimulates TRANCE and inhibits osteoprot-egerin messenger ribonucleic murine bone marrow cultures : correlation with acid expression in osteoclast-like cell formation [J]. Endocrinology.l999;140:3552-3561
    8. Shiotani A, Takami M,Itoh K,et al. Regulation of osteoclast differe ntiation and function by receptor activator of NF B ligand and osteoprotegerin [J].
    2002,268(2): 137-146
    9. Lacey D L, Timms E, Tan H L, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998, 93(2): 165-176.
    10. Kong Y-Y, Yoshida H, Sarosi I,et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis[J].Nature1999,397(6717):315-323
    11. Bass BL.Double-stranded RNA as a template for gene silencing [J], Cell 2000,101(3):235.
    12. Tabara H, Grishok A, Mello CC. RNAi in C. elegans: soaking in the genome sequence [J]. Science, 1998,282(5388): 430-431.
    13. Lipardi C,Wei Q ,Paterson BM ,et al.RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs [J] .Cell, 2001,107:297.
    14. Ernstein E, Caudy AA, Hammond SM ,et al .Role for a bidentate ribonuclease in the initiation step of RNA inter- ference [J].Nature, 2001, 409(6818):363.
    15. Matzke M, Matzke AJ, Kooter JM.RNA guiding gene silencing [J]. Science, 2001,293(5532): 1080.
    16. .Kumiko Ui-Tei,Yuki Naito,Fumitaka Takahashi,et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference [J]. Nucleic Acids Research, 2004, 32(3):936-948.
    17. Hirohiko Hohjoh. Enhancement of RNAi activity by improved siRNA duplexes [J]. FEBS Letters, 2004, 557 (1-3):193-198.
    1 Lorenz C Hofbauer; Michael Schoppet. Clinical Implications of the Osteoprotegerin/RANKL/RANK System for Bone and Vascular Diseases. JAMA, 2004; 292(4); 490-495
    2 Fire AZ, Xu MK, Montgomery SA, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 1998, 391, 806-811.
    3 Kennerdell JR, Carthew .RW. Usc of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway Cell 1998,95,1017-1026
    4 Bantounas I, Phylactou LA, Uney JB. RNA interference and the use of small interfering RNA to study gene function in mammalian system, J Mol Endocrinol 2004, 33, 545-557.
    
    5 Si jen T, Fleenor J, Simmer F, et al On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001, 107, 465-476
    
    6 Patrick J, Paddison M, Amy A, et al. Stable suppression of gene expression by RNAi in mammalianc ells. Proc Natl Acad Sci USA, 2002, 99:1443-448.
    
    7 Capjen NJ. RNAi as a gene therapy approach. Expert Opin Biol Ther. 2003, 3( 4):575-586
    8 Holen T, Amarzguiui M, Wiiger M, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. [J] Nucleic Acids Reserch, 2002 30(8): 1757-1766.
    9 Elbashir SM, Lendechel W, Tuschl T . RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev,2001,15:188-200.
    10 Scherr M, Battmer K, W inkier T, et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003, 101(4): 1566-1569
    11 Ritter U, Damm-Welk C Fuchs U, et al. Design and evaluation of chemically synthesized siRNA targeting the NPM-ALK fusion sit in anaplastic large cell lymphoma(ALCL). Oligonucleotides 2003, 13(5): 365-373
    12 Wang D, Luo M, Kelley MR. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther, 2004; 3(6): 679-86.
    13 Steeve KT, Marc P, Sandrine T, et al. OPG/membranous - RANKL complex is internalized via the clathrin pathway before a lysosomal and a proteasomal degradation. Bone, 2006 , 39, 706 - 715
    14 Zhang L, Yang N, Mohamedhadley A, et al. Vector-based RNAi a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 2003, 303(4): 1169-1178.
    15 Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature, 2003, 9(3): 347-351
    16 Miller VM, Gouvion CM, Davidson BL, et al. Alzheimer's disease genes with RNA interference : an efficient strategy for silencing mutant alleles. Nucleic Acids Res 2004, 32( 2): 661-668
    17 Elmen J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. [J]. Nucleic Acids Res, 2005, 33(1): 439-447.
    18 Rayk M, Paul A. RNA interference: from gene silencing to gene specific therapeutics. [J] Pharmacology Therapeutics, 2005, 107(2): 222-239.
    19 Udagawa N, Horwood N J, Elliott J, et al. Interleukin-18 (Interferong - inducing Factor) Is Produced by Osteoblasts and Acts Via Granulocyte/Macrophage Colony-stimulating Factor and Not Via Interferong to Inhibit Osteoclast Formation [J]. J Exp Med, 1997, 185(6): 1005-1012.
    20 Hayman AR, Bune AJ, Bradley JR, et al. Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse marine tissues. J Histochem Cytochem, 2000, 48(2):219-228.
    1. Thompson DD, Simmons HA, Pirie CM, et al. FDA guidelines and animal models for osteoporosis, [J]. Bone, 1995,17(4 Suppl); 125-133
    
    2. Eghbali FG, Khosla S, Sanyal A, et al. Role of rank ligand in mediating increased bone resorption in early post menopausal women[J].J Clinic Invest, 2003,111(8):1120-1122.
    3. Mitlak BH, Schoenfeld P, Neer RM. Accurancy, precision, and utility of spine and whole skeleton mineral measurements by DXA in rats. ,J Bone Miner Res, 1994, 9:119-126.
    4. Fuse H, Fukumoto S, Sone H, el al. A new svnthetic: steroid, osaterone acetate(TZP-4238) increases cortical bone mass and strength by enhancing bone formation in ovariectomized rats. J Bone Miner Res, 1997, 12:590-597
    5. Xu J. Tan JW. Huang L. et al. Cloning, sequencing, and functional characterization of the rat homologue of receptor activator of NF-kappaB ligand. [Journal Article] J Bone Miner Res. 2000,15(11): 2178-86.
    6. Hofbauer, L C. Khosla, S. Dunstan, C R. et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology. 1999,140(9): 4367-70,.
    7. Saika, M. Inoue, D. Kido, S. et al. 17beta-estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-alpha. Endocrinology. 2001,142(6): 2205-12.
    8. Khosla, Sundeep. Atkinson, Elizabeth J. Dunstan, Colin R. et al. Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J Clin Endocrinol Metab. 2002, 87(4): 1550-4.
    9. Bord S, Beavan SR, Compston JE, et al. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone, 2003, 32,136-141.
    10. Bonnelye E, Kung V, Laplace C,et al. Estrogen receptor-related receptor alpha impinges on the estrogen axis in bone: potential function in osteoporosis. Endocrinology. 2002;143(9):3658-70.
    11. Pfeilschifter J, Koditz R, Pfohl M, et al. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23(1):90-119. Review.
    12. Takashi M, Toshiyuki M, Shuichi M, et al. Changes in Receptor Activator of Nuclear Factor-kappaB, and Its Ligand, Osteoprotegerin, Bone-type Alkaline Phosphatase, and Tartrate-Resistant Acid Phosphatase in Ovariectomized Rats. Journal of Cellular Biochemistry, 2004, 93:503-512
    13. Shimizu-Ishiura M, Kawana F,Sasaki T. Osteoprotegerin administration reduces femoral bone loss in ovariectomized mice via impairment of osteoclast structure and function. [J]. J Electron Microsc(Tokyo), 2002, 51(5):315-325
    14 Bekker PJ. Holloway D. Nakanishi A. et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001,16(2):348-60.
    15 Body JJ. Greipp P. Coleman RE. et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer. 2003, 97(3 Suppl):
    1 Min H, Morony S, Sarosi I, et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med. 2000; 192(4): 463-74
    2 Lacey D L, Timms E, Tan H L, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998,93(2): 165-176.
    3 Wittrant Y, Theoleyre S, Couillaud S, et al. Relevance of an in vitro osteoclastogenesis system to study receptor activator of NF-kB ligand and osteoproteger in biological activities. Exp Cell Res, 2004, 293 : 292-301
    4 Lorenz C Hofbauer; Michael Schoppet. Clinical Implications of the Osteoprotegerin/RANKL/RANK System for Bone and Vascular Diseases. JAMA, 2004; 292,4; 490-495
    5 Takayanagi H. Ogasawara K. Hida S. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000,408(6812):600-5
    6 Fakruddin JM. Laurence J. HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk. Journal of Biological Chemistry. 2003, 278(48):48251-8.
    7 Takayanagi H. Kim S. Matsuo K. et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature. 2002, 416(6882):744-9.
    8 Xu J. Tan JW. Huang L. et al. Cloning, sequencing, and functional characterization of the rat homologue of receptor activator of NF-kappaB ligand. [Journal Article] J Bone Miner Res. 2000,15(11): 2178-86.
    9 Hofbauer, L C. Khosla, S. Dunstan, C R. et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology. 1999,140(9): 4367-70,.
    10 Saika, M. Inoue, D. Kido, S. et al. 17beta-estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-alpha. Endocrinology. 2001,142(6): 2205-12.
    11 Khosla, Sundeep. Atkinson, Elizabeth J. Dunstan, Colin R. et al. Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J Clin Endocrinol Metab. 2002, 87(4): 1550-4.
    12 Eghbali-Fatourechi G Khosla S. Sanyal A. et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 2003,111(8): 1221-30.
    13 Bromley, M. Woolley, D E. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum. 1984, 27(9): 968-75.
    14 Fujikawa, Y. Sabokbar, A. Neale, S. et al. Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis. Ann Rheum Dis. 1996, 55(11): 816-22.
    15 Takayanagi H. Iizuka H. Juji T. et al. Tanaka S. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2000, 43(2): 259-69.
    16 Wittrant Y. Theoleyre S. Chipoy C. et al. RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta. 2004,1704(2): 49-57.
    17 Sezer O. Heider U. Zavrski I. et al. RANK ligand and osteoprotegerin in myeloma bone disease. Blood. 2003,101(6): 2094-8.
    18 Giuliani N. Bataille R. Mancini C. et al. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood. 2001,98(13): 3527-33.
    19 Kitazawa S. Kitazawa R. RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol. 2002,198(2): 228-36.
    20 Park HR. Min SK. Cho HD. et al. Expression of osteoprotegerin and RANK ligand in breast cancer bone metastasis. J Korean Med Sci. 2003, 18(4): 541-6.
    21 Zhang J. Dai J. I Y. Lin DL. et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. 2001,107(10): 1235-44.
    22 Lynch CC. Hikosaka A. Acuff HB. et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell. 2005, 7(5): 485-96.
    23 Ikeda T. Kasai M. Utsuyama M. et al. Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology. 2001,142(4): 1419-26.
    24 Schlondorff J. Lum L. Blobel CP. Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that is distinct from the tumor necrosis factor alpha convertase. J Biol Chem. 2001, 276(18): 14665-74.
    25 Chesneau, V. Becherer, J D. Zheng, Y. et al. Catalytic properties of ADAM19. Journal of Biological Chemistry. 2003, 278(25):22331-40,.
    26 Santavirta, S. Hoikka, V. Eskola, A. et al. Aggressive granulomatous lesions in cementless total hip arthroplasty. Journal of Bone & Joint Surgery -British Volume. 1990, 72(6):980-4.
    27 Santavirta S. Konttinen YT. Bergroth V. et al. Aggressive granulomatous lesions associated with hip arthroplasty. Immunopathological studies. [Case Reports. Journal Article] Journal of Bone & Joint Surgery -American Volume. 1990, 72(2):252-8.
    28 Sabokbar A. Itonaga I. Sun SG. et al. Arthroplasty membrane-derived fibroblasts directly induce osteoclast formation and osteolysis in aseptic loosening. [Journal Article] Journal of Orthopaedic Research. 2005, 23(3):511-9.
    29 Menaa C. Reddy SV. Kurihara N.et al. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget's disease of bone. [J] Journal of Clinical Investigation. 2000,105(12):1833-8.
    30 Neale SD. Smith R. Wass JA. et al. Osteoclast differentiation from circulating mononuclear precursors in Paget's disease is hypersensitive to 1,25-dihydroxyvitamin D (3) and RANKL. Bone. 2000,27(3): 409-16.
    31 Hughes AE. Ralston SH. Marken J. et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nature Genetics. 2000, 24(1): 45-8.
    32 Browner WS. Lui LY. Cummings SR. Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J Clin Endocrinol Metab. 2001,86(2): 631-7.
    33 Yano K. Tsuda E. Washida N. et al. Immunological characterization of circulating osteoprotegerin/osteoclastogenesis inhibitory factor: increased serum concentrations in postmenopausal women with osteoporosis. J Bone Miner Res. 1999,14(4): 518-27.
    34 Mezquita-Raya P, de la Higuera M, Garcia DF, et al. The contribution of serum osteoprotegerin to bone mass and vertebral fractures in postmenopausal women. Osteoporos Int. 2005,16(11):1368-74.
    35 Lipton, Allan. Ali, Suhail M. Leitzel, Kim. et al. Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res. 2002, 8(7): 2306-10.
    36 Terpos E. Szydlo R. Apperley JF. et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood. 2003,102(3): 1064-9.
    37 Simonet, W S. Lacey, D L. Dunstan, C R. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997, 89(2):309-19.
    38 Bolon B. Carter C. Daris M. et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis. Mol Then 2001,3(2): 197-205.
    39 Kong YY. Feige U. Sarosi I. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999, 402(6759): 304-9.
    40 Honore P. Luger NM. Sabino MA. et al. Ramnaraine ML. Clohisy DR. Mantyh PW. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med. 2000, 6(5): 521-8.
    41 Goater JJ. O'Keefe RJ. Rosier RN. et al. Efficacy of ex vivo OPG gene therapy in preventing wear debris induced osteolysis. J Orthop Res. 2002,20(2): 169-73.
    42 Li P. Schwarz EM. O'Keefe RJ. et al. RANK signaling is not required for TNFalpha-mediated increase in CD11 (hi) osteoclast precursors but is essential for mature osteoclast formation in TNFalpha-mediated inflammatory arthritis. J Bone Miner Res. 2004,19(2): 207-13.
    43 Childs LM. Paschalis EP. Xing L. et al. In vivo RANK signaling blockade using the receptor activator of NF-kappaB: Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J Bone Miner Res. 2002,17(2): 192-9.
    44 Sordillo EM. Pearse RN. RANK-Fc: a therapeutic antagonist for RANK-Lin myeloma. Cancer. 2003, 97(3 Suppl):802-12.
    45 Bekker PJ. Holloway D. Nakanishi A. et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001,16(2):348-60.
    46 Body JJ. Greipp P. Coleman RE. et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer. 2003, 97(3 Suppl): 887-92
    47 Bekker PJ. Holloway DL. Rasmussen AS. et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004,19(7): 1059-66.
    48 Dalum, I. Jensen, M R. Hindersson, P. et al. Breaking of B cell tolerance toward a highly conserved self protein. J Immunol. 1996,157(11): 4796-804.
    49 Juji T. Hertz M. Aoki K. et al. A novel therapeutic vaccine approach, targeting RANKL, prevents bone destruction in bone-related disorders. J Bone Miner Metab. 2002,20(5): 266-8.
    50 Nishikawa M. Myoui A. Tomita T. et al. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum. 2003,48(9): 2670-81.
    51 Ikeda F. Nishimura R. Matsubara T. et al. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest. 2004,114(4): 475-84.
    52 Ishida N. Hayashi K. Hoshijima M. et al. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem. 2002,277(43): 41147-56.
    53 Takayanagi H. Kim S. Koga T. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002,3(6): 889-901.
    54 Tomita, T. Takeuchi, E. Tomita, N. et al. Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor kappaB decoy oligodeoxynucleotides as a gene therapy. Arthritis Rheum. 1999,42(12): 2532-42.
    55 Kostenuik PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol. 2005, 5(6): 618-25.
    56 Yoshida H. Naito A. Inoue J. et al. Different cytokines induce surface lymphotoxin-alphabeta on IL-7 receptor-alpha cells that differentially engender lymph nodes and Peyer's patches. Immunity. 2002,17(6): 823-33.
    57 Emery JG. McDonnell P. Burke MB. et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998,273(23): 14363-7.
    58 Cretney E. Takeda K. Yagita H. et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol. 2002,168(3): 1356-61.
    1. Guo S, Komphuea KJ. Par-1, a gene required for eatablishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. J Cell ,1995,81:611-620.
    2. Fire A ,Xu S ,Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. [J].Nature, 1998, 391(6669):806.
    3. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet, 2003; 33:401-406
    4. Ui-Tei K, Zenno S, Miyata Y, et al. Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett, 2000; 479:79-82
    5. Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Boil, 2000; 2:70-75
    6. Bass BL. Double-stranded RNA as a template for gene silencing [J]. Cell, 2000,101(3):235.
    7 .Lipardi C, Wei Q, Paterson BM, et al. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs[J] .Cell, 2001,107(3):297-307.
    
    8. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA inter- ference [J] .Nature, 2001, 409(6818):363-366.
    
    9 .Matzke M, Matzke AJ, Kooter JM. RNA: guiding gene silencing [J]. Science, 2001, 293(5532): 1080-3.
    10 Nykanen A, H aley B, Zamore P. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001, 107, 309-321.
    11 Yin JQ, Gao J, Shao R, et al.siRNA agents inhibit oncogene expression and attenuate human tumor cell growth [J]. J Exp Ther Oncol, 2003, 3(4):194-204.
    12 .Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing [J].Cell, 2001,107(4):465-476.
    13 Bantounas I, Phylaetou LA, Uney JB. RNA interference and the use of small interfering RNA to study gene function in mammalian system、 J Mol Endoerinol 2004, 33 545-557.
    14. Gil J, Esteban M. Induction of apoptosis by the dsRNA dependent protein kinase: mechanism of action. Apoptosis, 2000; 5:107-114
    15. Grunweller A, Wyszko E, Bieber B,et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2V-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res, 2003; 31: 3185-3193
    16 Milhavet O, Gary DS, Mattson MP. RNA interference in biology and medicine. Pharmacol Rev, 2003, 55, 629-648
    17 Elbashir SM. Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001, 411, 494-498
    18. Schiitze N. siRNA technology. Mol Cell Endocrinol, 2004; 213:115-119
    19. Caplen NJ, Taylor JP, Statham VS, et al. Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum Mol Genet, 2002; 11:175-184
    20 Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev, 2001b; 15:188-200
    21 Elbashir SM, Martinez J, Patkaniowska A, et al.Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J, 2001 c; 20:6877-6888
    22. Paddison PJ, Caudy AA, Bernstein E, et al .Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev, 2002, 16:948-958.
    23. Bass BL. RNA interference. The short answer [J] .Nature, 2001, 411(6836):428.
    24.孙建国,廖荣霞,陈正堂.RNA干涉分子机制研究进展[J].生物化学与生物物理进展,2002,29(5):678.
    25. Timmons L, Fire A. Specific interference by ingested dsRNA. Nature. 1998, 395, 854
    26 Winston WM, Molodowitch C. Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-L. Science, 2002,295(5564), 2456-2459
    27 Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics[J].Nat Rev Drug Discov, 2004, 3(4): 318-329.
    28 Sui G, Soohoo C, Affar E B, et al. A DNA vector-base RNAi technology to suppress gene expression in mammalian cells[J]. Genetics, 2002,99(8):5515- 5520.
    29. Holen T, Amarzguioui M, Babaie E, et al. Similar behaviour of single-strand and double-straml siRNAs suggests they act through a common RNAi pathway[J].Nucleic Acids Res, 2003, 31(9):2401-2407.
    30. Sayda M. Elbashir, Jens Harborth, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002, 26:199-213.
    31. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol. 2004; 22(3):326-30.
    32. .Kumiko Ui-Tei,Yuki Naito,Fumitaka Takahashi,et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference [J]. Nucleic Acids Research, 2004, 32(3):936-948.
    33. Hirohiko Hohjoh. Enhancement of RNAi activity by improved siRNA duplexes[J].FEBS Utters, 2004, 557 (1-3):193-198.
    34. Ray KM, PAUL A. RNA interference: from gene silencing to gene specific therapeutics[J].Pharmacology Therapeutics, 2005,107( 2): 222-239
    35. Gong H, Liu CM, Liu DP, et al. The role of small RNAs in human diseases: potential troublemaker and therapeutic tools [J]. 2005, 25( 3):361-381.
    36. Druker BJ, Tamura S, Buohdunger E, et al.Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells[J].Nail Med, 1996,2(5):561-566.
    37. Wilda M, Fuchs U, W ossmann W, et al. Kiling of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi) [J]. Oncogene, 2002, 21(37): 5716-5624.
    38 .Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive humane cervical carcinoma cells trested with siRNA ,a primer of RNA interference. Oncogene, 2002, 21 (39):6041-6048.
    39. van Noesel MM,Versteeg R. Pediatric neuroblastomas: genetic and epigenetic danse macabre[J]. Gene,2004, 325:1-15.
    40. Filleur S. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth[J].Cancer Res,2003,63(14):3919-3922.
    
    41.Verma UN,Surabhi RM,Schmaltieg A,et al.Small interfering RNAs directed against beta-catenin inhibit the in vitro an d in vivo growth of colon cancer cells[J].Clin Cancer Res,2003,9(4):1291-1300.
    
    42. Nieth C, Priebsch A, Stege A, et al.Modulation of the classica muhidrug resistance (MDR) phenotype by RNA interferenc(RNAi). FEBS Lett,2003,545(223):144-150.
    
    43 Hamasaki K, Nakao K, Matsumoto K, et al. Short interfering RNA-directed inhibition of hepatitis B virus replication. FBES Lett, 2003, 543(1-3):51-4
    
    44 Novinac D, Murrav ME, Dykxhoom D, et al. siRNA-directed inhibition of HIV-1 infection[J]. Nat Med, 2002, 8(7): 681.
    
    45 Paul CP, Good PD, Winer I, Engelke DR. Effective expression of small interfering RNA in human cells[J]. Nat Biotechnol, 2002, 20( 5): 505.
    
    46 Chen Z J, Kren B T, Wong PY, et al. Sleeping beauty-mediated down regulation of huntingtin expression by RNA interference [J]. Biochem Biophys Res Commun, 2005, 329( 2):646-652.
    
    47. Dohjima T, Lee NS, Li H, et al. Small interfering RNAs expressed from a Pol III promoter suppress the EWS/Fli-1 transcript in an Ewing sarcoma cell line. Mol Ther, 2003; 7(6):811-6.
    
    48 Trougakos IP, So A, Jansen B, et al. Silencing expression of the clusterin/apolipoprotein j gene in human cancer cells using small interfering RNA spontaneous apoptosis, reduced growth ability, and cell sensitization to genotoxic and oxidative.Cancer Res, 2004; 64(5):1834-1842.
    
    49 Wang D, Luo M, Kelley MR. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther, 2004; 3(6):679-86.
    50 Lin C, McGough R, Aswad B, et al. Hypoxia induces HIF-1 alpha and VEGF expression in chondrosarcoma cells and chondrocytes. J Orthop Res, 2004;22(6):1175-1181.
    51 Jiang X, Dutton CM, Qi WN, et al. siRNA mediated inhibition of MMP-1 reduces invasive potential of a human chondrosarcoma cell line. J Cell Physiol, 2005;202(3):723-730.
    52 Kato C, Kojima T, Komaki M, et al. S100A4 inhibition by RNAi up-regulates osteoblast related genes in periodontal ligament cells. Biochem Biophys Res Commun 2005,326(1): 147-53
    53 Sladjana G, Stefanie H, Ingrid K, et al. Inhibition of oncogenic transformation by mammalian Lin-9, a pRB-associated proteinala. EMBO J, 2004, 23(23): 4627-4638
    54 Zhang L, Yang N, Mohamedhadley A, et al. Vector-based RNAi a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 2003, 303(4): 1169-1178.
    55 Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature, 2003, 9(3): 347-351
    56 Elmen J,Thonberg H,Ljungberg K,et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. [J]. Nucleic Acids Res, 2005, 33(1): 439-447.
    57 Zhang Y, Boado RJ, Pa rd ridge WM. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats[J]. J Gene Med, 2003, 5(12): 1039-1045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700