鸡骨保护素(chOPG)基因的克隆、表达及生物学活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨保护素(osteoprotegerin,OPG)最先发现于哺乳动物,是一种能抑制破骨前体细胞分化、抑制成熟破骨细胞活性并诱导其凋亡的分泌型糖蛋白。体内调节骨代谢的许多激素和细胞因子最终通过调节OPG/RANKL的表达而发挥作用。鉴于OPG在骨代谢中的重要调节作用,本文旨在克隆表达蛋鸡OPG蛋白,并对其生物学活性进行研究,有望为蛋鸡骨质疏松症的防治提供新的治疗手段。
     1.建立简便有效的鸡胚破骨细胞体外培养方法,为鸡骨保护素的生物活性研究及笼养蛋鸡骨质疏松症研究提供新的试验手段。主要剔取18日龄鸡胚的长骨,纵向剖开,吹打长骨内表面,获取一定数量细胞悬液接种培养板,2 h后弃去未贴壁细胞,更换新的培养液继续培养。贴壁培养的细胞具有破骨细胞样特点:为多核大细胞,有油煎蛋形、哑铃形、椭圆形;TRAP染色阳性,能在骨片表面形成吸收陷窝。
     2.在体外成功培养鸡胚破骨细胞的基础上,体外直接研究依普拉芬、地塞米松对成熟破骨细胞骨吸收功能的影响。以不同浓度的依普拉芬、地塞米松与原代分离的破骨细胞共培养6天,结果发现,10~(-7)-10~(-9)M的依普拉芬可显著抑制破骨细胞性骨吸收、使骨吸收陷窝数目和面积减少,并呈剂量依赖关系;而10~(-6)-10~(-8)M的地塞米松则促进破骨细胞性骨吸收、增加骨吸收陷窝数目面积,亦呈剂量依赖关系。
     3.应用RT-PCR方法从体外培养鸡胚成骨细胞中扩增出鸡OPG基因(Genbank登录号,DQ098013),然后将特异性片段连接到pMD18-T载体,经酶切、PCR鉴定及DNA序列测定.结果表明,扩增片段包含完整的ORF,与Genbank上登录的鸡OPG(XM_418394)同源性为99.3%;同时对鸡、人、大鼠和小鼠OPG氨基酸序列进行了多序列比对分析,结果显示,鸡OPG和人OPG的一致性为69.65%,与大鼠及小鼠OPG的一致性均为65.51%。OPG基因的成功扩增为接下来该蛋白的重组表达奠定了基础。
     4.设计一对引物用于亚克隆鸡OPG成熟蛋白编码基因(不含信号肽),然后构建鸡OPG原核表达载体pET-32a(+)-chOPGm,通过IPTG诱导表达重组鸡OPG成熟蛋白,经SDS-PAGE电泳分析,原核表达产物为63 kD的重组蛋白,以包涵体形式存在,薄层扫描显示OPG占菌体总蛋白的11.9%,western blotting分析显示,表达的OPG蛋白具有良好的免疫反应性。以经镍离子亲和层析柱纯化的OPG蛋白免疫新西兰白兔,制备抗OPG多克隆抗体,ELISA结果显示抗体效价达到1:10240。Western印迹结果表明,该抗体可以和鸡OPG酵母表达产物特异性结合。
     5.设计另一对引物用于亚克隆鸡OPG成熟蛋白编码基因(不含信号肽),然后构建鸡OPG真核表达载体pPICZa-A-chOPGm’,以电穿孔法转化酵母X-33,用Zeocin平板筛选重组子,经甲醇诱导表达后,SDS-PAGE和免疫印迹分析表达产物,由于糖基化不同,表达产物有两种,其相对分子量分别为43 kD和53 kD,表达量约为200mg/L,经Western印迹验证,有较好的抗原性。表达产物经处理后加入到体外培养的鸡胚破骨细胞上,能显著抑制成熟破骨细胞的骨吸收活性,使骨吸收陷窝个数和面积均减少,证实表达的OPG蛋白具有抑制成熟破骨细胞骨吸收活性的功能。
     6.100羽56周龄ISA蛋鸡分为5组,A组为对照组,B、C、D、E组每隔3 d肌肉注射剂量分别为100μg、200μg、300μg、400μg的鸡骨保护素酵母表达冻干产物水溶物。每周采血测血钙、血磷、碱性磷酸酶、抗酒石酸酸性磷酸酶和骨钙素。每天记录产蛋量、破壳蛋数,测定蛋壳强度和厚度。最后测定骨生物力学性能和骨密度。结果表明:B、C两组总平均产蛋率显著高于对照组和其它实验组。与A组相比,用药组总平均软破壳蛋率下降,其中B、C两组差异显著(P<0.05)。各组蛋壳厚度和强度无明显差异;用药组血钙显著低于对照组,血磷无明显差异;B、C、D组碱性磷酸酶活性显著高于对照组(P<0.05);C、D两组骨钙素水平显著高于对照组(P<0.05);E组抗酒石酸酸性磷酸酶活性显著低于对照组(P<0.05);C组胫骨生物力学性能和放射骨密度显著高于对照组。结论:适当剂量(约200μg)的外源OPG蛋白可以改善骨代谢、提高产蛋量。
Osteoprotegerin(OPG) was firstly found in mammalian, it was a secreted protein which could inhibit the differentiation of osteoclast precursor cells and the activity of mature osteoclast, and also induce osteoclast apoptosis. A variety of hormones and cytokines regulated the bone metabolism through the regulation of OPG/RANKL ratio in fact. Considering that OPG had a very important role in bone metabolism, there were two aims of this study, one was to find a way to obtain functional OPG protein, the other aim was to evaluate the possibilisity of gene therapy for cage layer osteoporosis.
     1. The more simple and effective method of isolating the osteoclastic cells from the embryonic chicken was built in order to supply a new way to study the biological activities of osteoprotegerin as well as the cage layer osteoporosis. Tibias and humeri were isolated from 10 chicken embryos(18 d of age)and cleaned of extraneous soft tissue, split each bone lengthwise and quickly flush the inside surface of bones to abtain the cell supernatants. Cell suspension were replated at 24-well dishes, nonadherent cells were washed off after 2 h. The adherent cells had a classic characteristic of osteoclasts: be multinucleated giant cells; like a fried egg, a dumbbell and a ellipse; staining positively for TRAP in cells; forming bone absorptive lacunae on the bone slices.
     2. Based on the more effective method of isolating osteoclastic cells from the long bone(tibia and humeri) of embroynic chicken, the effects of ipriflavone and dexamethasone on the bone resorption of osteoclastic cells was observed. After 6-day co-cultured, bovine bone slices were taken out for toluidine blue staining in order to idenitfy the vitality of the cultured cells. The results showed that, ipriflavone at 10-~7 to 10-~9 M reduced the number and area of bone resorption pit lacunae(P<0.05), while dexamathesone at 10-~6 to 10-~8 M could increase the the number and area of bone resorption pit lacunae. Both effects of these two drugs had a positive correlation with their dosage.
     3. To abtain the encoding genes of chicken osteoprotegerin(GenBank submission number, DQ098013) from the chicken embryo osteoblasts by RT-PCR method, the chOPG DNA fragment was cloned into pMD18-T vector, DNA sequencing, restriction enzyme digestion and PCR amplification all confirmed the inserted fragment was a complete chicken OPG gene with ORF, which had the identities of 99.3% with the chicken OPG gene published in the Genbank. The ammo acid sequence phylogenetic of OPG between chicken and mammalian showed that, the chicken had 69.95% identity to human and 65.51% identity to rat and mouse. The results supplied the basis of the recombinant expression of chOPG
     4. A pair of primers were designed to sub-clone the gene encoding chicken OPG mature protein, then the OPGm gene was inserted to the expression plasmid pET-32a(+) and expressed in Rosetta-gami(DE3) pLysS with IPTG inducement. The SDS-PAGE result showed that the cloned recombinant protein expressed in the form of inclusion bodies in Rossetta with molecular weight of 63 kD and amounted to 11.9% of the whole protein, and western blotting indicated that the expressed protein had satisfied immunobiological activity. Pure protein was obtained by Ni~(2+)-NTA chelating column for preparation of anti-OPG polyclonal antibody by immunizing New Zealand rabbit, the titer of antiserum generated was 1:10240 by ELISA. Western blotting analysis showed that it could bind with OPG protein specially expressed in Pichia Yeast.
     5. Another pair of primers were designed to sub-clone the gene encoding chicken OPG mature protein, then the chOPGm' was inserted into vector pPICZa-A. The constructed plasmid was transformed into yeast X-33 by electroporation. The recombinant transformants were selected by Zeocin. Induced by the addition of methanol every 24 hours, the product analyzed by SDS-PAGE was sized about 43 kD and 53 kD at a yield of 200 mg per litter of culture. The result of Western blotting indicated that the recombinant protein had specific antigenicity mainly owing to heterogeneous glycosylation. The chOPG recombinant protein at certain concentration could restrain the activity of mature osteoclasts in vitro, that was to say, the number and area of the bone resorptive lacunae were decreased.
     6. 100 ISA cage layers were divided into 5 groups. Group A was controll, chOPG were injected to B, C, D, E groups at the dosage about 100μg, 200μg, 300μg, 400μg per four days. Every week, hen blood was collected to check the Ca, P, AKP. Each day, the number of eggs and abnormal and broken eggs were noted. The thickness and intensity of eggshells were tested every week. At last, bone biomechanical property and bone radiographic density were measured. The total average rate of eggs of group B and C was significantly higher than that of group A and the other groups. The total average rate of abnormal and broken eggs of group B, C, D and E were all decreased, group B and C were significantly lower than group A. The thickness and intensity of eggshells between each group were not significant. The serus level of Ca of addministrated groups were significantly lower than the control while no difference of the serus level of P. The serous level of AKP of group B, C and D were significantly higher than the control; The serous level of BGP of group C and D were also significantly higher than the control; while the serous level of StrACP of group E was significantly lower than the control. The bone biomechanical property and bone radiographic density of group C was significantly higher than the control. The study demonstrated that the appropriate dosage of chOPG may improve bone metablism and the production of cage layer during the late cycle.
引文
[1] Simonet W S, Lacey D L, Dunstan C R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density [J]. Cell, 1997, 89(2): 309-319
    
    [2] Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro [J]. Endocrinology, 1998, 139(3): 1329 - 1337
    [3] Tan K B, Harrop J, Reddy M, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells [J]. Gene, 1997, 204: 35-46
    [4] Kwon B S, Wang S, Udagawa N, et al. TR1, a new member of the tumor necrosis factor receptor family, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption [J]. FASEB, 1998, 12: 845-854
    [5] Yun T J, ChaudharyPM, Shu G L, et al. OPG/FDCR-1, a TNF receptor family member, is expressedin lymphoid cells and is up-regulated by ligating CD40 [J]. J Immunol, 1998, 161: 6113-6121
    [6] Yamaguchi K, Kinosaki M, Goto M, et al. Characterization of structural domain of human osteoclastogenesis inhititory factor [J]. JBiolChem, 1998, 273(9): 5117-5123
    [7] Tomoyasu A, Goto M, Fujise N, et al. Characterization of monomeric and homodimeric forms of osteoclastogenesis inhibitory factors [J]. Biochem Biophy Res Com, 1998, 245: 382 - 387
    [8] Morinaga T, Nakagawa N, Yasuda H, et al. Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis inhibitory factor [J]. Eur J Biochem, 1998, 254(3): 685 - 689
    [9] Khosla S. Minireview: The OPG/RANKL/RANK system [J].. Endocrinology, 2001, 142: 5050-5055
    [10] Tsuda E, Goto M, Mochizuki S I, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis [J]. Biochem Biophys Res Com, 1997, 234: 137-142
    
    [11] Shiotani A, Takami M, Itoh K, et al. Regulation of osteoclast differentiation and function by receptor activator of NF-κB ligand and osteoprotegerin [J]. AnatRec, 2002, 268(2): 137-146
    
    [12] Akatsu T, Murakami T, Nishikawa M, et al. Osteoclastogenesis inhibitory factor suppresses osteoclast survival by interfering in the interaction of stromal cells with osteoclast [J]. Biochem Biophys Res Commun, 1998, 250(2): 229-234
    
    [13] Bucay N, Sarosi I, Dunstan C R, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial alcification [J]. Genes Dev, 1998, 12:1260-1268
    [14] Schoppet M, Preissner K T, Hofbaucer L C. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function [J]. Arterioscler Thromb Vasc Biol, 2002, 22(4): 549-553
    [15] Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast evelopment and function [J]. Endocrinology, 2000, 141:3478-3484
    [16] Thirunavukkarasu K, Miles R R, Halladay D L, et al. Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta {TGF-beta}. Mapping of the OPG promoter region that mediates TGF-beta effects [J]. J Biol Chem, 2001, 276: 36241-36250
    [17] Uemura H, Yasui T, Kiyokawa M, et al. Serum osteoprotegerin/osteoclastogenesis-inhibitory factor during pregnancy and lactation and the relationship with calcium-regulating hormones and bone turnover markers [J]. J Endocrinol, 2002, 174(2): 353-359
    [18] Emery J G, McDonnell P, Burke M B, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL [J]. JBiol Chem, 1998, 273: 14363-14367
    [19] Lacey D L, Timms E, Tan H-L, et al. Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation [J]. Cell, 1998, 93(2): 165-176
    [20] Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL [J]. Proc Natl Acad Sci, 1998, 95(7): 3597-3602
    [21] Wong B R, Rho J, Arron J, et al. TRANCE is a novel ligand of the tumor necrosis receptor family that activates c-jun N-terminal kinase in T cells [J]. J Biol Chem, 1997, 272(40): 25190-25194
    [22] Anderson M A, Maraskovsky E, Billingsley W L, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function [J]. Nature, 1997, 390(6656): 175-179
    [23] Kong Y Y, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand [J]. Nature, 1999, 402(6759): 304-309
    [24] Nagai M, Kyakumato S, Sato N. Cancer cells responsible for humoral hypercalcemia express mRNA encoding a secreted form of ODF/TRANCE that induces osteoclast formation [J]. Biochem Biophy Res Commun, 2000, 269(2): 532-536
    [25] Gao Y H, Shinki T, Yuase T, et al. Potential role of cbfal, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF) [J]. Biochem Biophys Res Commun, 1998, 252(3): 697-702
    [26] Kadaira K, Kadaira K A, Mizuno A, et al. Cloning and characterization of the gene encoding mouse osteoclast differentiation factor [J]. Gene, 1999, 230(1): 121-127
    [27] Lum L, Wong B R, Josien R, et al. Evidence for a role of a tumor necrosis: factor-a (TNF-a) converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dentritic cell survival [J]. J Biol Chem, 1999, 274(19): 13613-13618
    [28] Fuller K, Wong B, Fox S, et al. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts [J]. J Exp Med, 1998, 188(5): 997-1001
    [29] Kong Y Y, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis [J]. Nature, 1999, 397(6717): 315-323
    [30] Wong B R, Josien R, Choi Y. TRANCE is a TNF family member that regulates dendritic cell and osteoclast function [J]. J Leukoc Biol, 1999, 65(5): 715-724
    [31] Josien R, Wong B R, Li H L, et al. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells [J]. J Immunol, 1999, 162(5): 2562-2568
    [32] Josien R, Li H L, Ingulli E, et al. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo [J]. J Exp Med, 2000, 191(3): 495-502
    [33] Fata J E, Kong Y Y, Li J, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development [J]. Cell, 2000, 103(1): 41-50
    [34] Theil L E, Boyle W J, Penninger J M. RANK-L and RANK: T cells, bone loss, and mammalian evolution [J]. Annu Rev Immunol, 2002, 20: 795-823
    [35] Matin T J, Gillespie M T. Receptor activator of nuclear factor kappa B ligand (RANKL): another link between breast and bone [J]. Trends Endocrinol Metab, 2001, 12(1): 2-4
    [36] Tverberg LA, Gustafson M F, Scott T L, et al. Induction of calcitonin and calcitonin receptor expression in rat mamary tissue during pregnancy [J]. Endocrinology, 2000, 141(10): 3696-3702
    [37] Hsu H, Lacey D L, Dunstan C R, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand [J]. Proc Natl Acad Sci USA, 1999, 96(7): 3540-3545
    [38] Katagiri T, Takahashi N. Regulatory mechanism of osteoblast and osteoclast differentiation [J]. Oral Disease, 2002, 8: 147-159
    [39] Li J, Sarosi I, Yah X Q, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metablism [J]. Proc Natl Acad Sci USA, 2000, 97(4): 1566-1571
    [40] Dougall W C, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development [J]. Genes Dev, 1999, 13(18): 2412-2424
    [41] Futterer A, Mink K, Luz A, et al. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues [J]. Immunity, 1998, 9(1): 59-70
    [42] Rennert P D, James D, Mackay F, et al. Lymph node genesis is induced by signaling through the lymphotoxin beta receptor [J]. Immunity, 1998, 9(1): 71-79
    [43] Pasparakis M, Alexopoulou L, Grell M, et al. Peyer's patch organogenesis is intact yet formation of B lymphocyte follicles is defective in peripheral lymphoid organs of mice deficient for tumor necrosis factor and its 55-kDa receptor [J]. Proc Natl Acad Sci USA, 1997, 94(12): 6319-6323
    [44] Bachmann M F, Wong B R, Josien R, et al. TRANCE, a tumor necrosis factor family member critical for CD40 ligand-indepent T helper cell activation [J]. J Exp Med, 1999, 189(7): 1025-1031
    [45] Kayagaki N, Yamaguchi N, Nakayama M, et al. Involvement of TNF related apoptosis-inducing ligand in human CD_4~+ T cell-mediated cytotoxicity [J]. J Immunl, 1999, 162(5): 2639-2647
    [46] Martinez-Lorenzo M J, Anel A, Gamen S, et al. Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles [J]. J Immunol, 1999, 163(3): 1274-1281
    [47] Bouillet P, Metcalf D, Huang D C, et al. Proapoptotic bcl-2 relative bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity [J]. Science, 1999, 286(5445): 1735-1738
    [48] Hughes P, Bouillet P, Strasser A. Role of Bim and other Bcl-2 family members in autoimmune and degenerative diseases [J]. Curr Dir Autoimmun, 2006, 9: 74-94
    [49] Martin T J, Gillespie M T. Receptor activator of nuclear factor kappa B ligand(RANKL): another link between breast and bone [J]. Trends Endocrinol Metab, 2001, 12(1): 2-4
    [50] Khosla S. Minireview: the OPG/RANKL/RANK system [J]. Endocrinology, 2001, 142(12): 5050-5055
    [51] Gori F, Hofbauer L C, Dunstan C R, et al. The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated [J]. Endocrinology, 2000, 141(12): 4768-4776
    [52] Lee Z H, Kwach K, Kim K K, et al. Activation of c-jun N-terminal kinase and activator protein 1 by receptor activator of nuclear factor kappaB [J]. Mol Pharmacol, 2000, 58(6): 1536-1545
    [53] Wong B R, Josien R, Lee S Y, et al. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor [J]. J Biol Chem, 1998, 273(43): 28355-28259
    [54] Arron J R, Vologodskaia M, Wong B R, et al. Apositive regulatory role for Cb1 family proteins in TRANCE and CD40L mediated Akt activation [J]. J Biol Chem, 2001,276(32): 30011-30017
    [55] Hiroaki H, Tuohy N A, Woo J T, et al. The Calcineurin/NFAT signaling patheway regulates osteoclastogenesis in RAW264.7 cells [J]. J Biol Chem, 2004, 279(14): 13984-13992
    [56] Hofbauer L C, Khosla S, Dunstan C R, et al. Estrogen stimulate gene expression and protein production of osteoprotegerin in human osteoblastic cells [J]. Endocrinology, 1999, 140: 4367-4370
    [57] Lindberg M K, Erlandsson M, Alatalo S L, et al. Estrogen receptor a but not estrogen receptor β, is involved in the regulation of the OPG/RANKL (osteoproegerin/receptor activator of NF-κB ligand) ratio and serum interleukin-6 in male mice [J]. J Endocrinol, 2001, 171: 425-433
    [58] Saika M, Inoue D, Kido S, et al. 17β-estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST2, via estrogen receptor-a. [J]. Endocrinology, 2001, 142: 2205-2212
    [59] Bekker P J, Holloway D, Nakanishi A, et al. The effect of a single dose of osteoprotegerin in postmenopausal women [J]. J Bone Miner Res, 2001, 16: 3348-3360
    [60] Kostenuik P J, Capparelli C, Morony S, et al. OPG and PTH-(1-34) additive effect on bone density and mechanical strength in osteopenic ovariectomized rats [J]. Endocrinology, 2001, 142: 4295-4304
    [61] Hofbauer L C, Gori F, Riggs B L, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis [J]. Endocrinology, 1999, 140: 4382-4389
    [62] Sasaki N, Kusano E, Ando Y, et al. Glucocorticoid decreases circulating osteoprotegerin (OPG): possible mechnism for glucocorticoids induced osteoporosis [J]. Nephrol Dial Transplant, 2001, 16: 479-482
    [63] Romas E, Gillespie M T, Martin T J. Involvement of receptor activator of NF-κB ligand and tumor necrosis factor-a in bone destruction in rheumatoid arthritis [J]. Bone, 2002, 30: 340-346
    [64] Nakashima T, Wada T, Penninger J M. RANKL and RANK as novel therapeutic targets for arthritis [J]. Curr Opin Rheumatol, 2003, 15: 280-287
    [65] Haynes D R, Barg E, Crotti T N, et al. Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls [J]. Rheumatology, 2003, 42: 123-134
    [66] Schett G, Redlich K, Hayer S, et al. Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice [J]. Arthritis Rheum, 2003, 48: 2042-2051
    [67] Locklin R M, Khosla S, Riggs B L. Mechanisms of biphasic anabolic and catabolic effects of parathyroid hormone (PTH) on bone cells [J]. Bone, 2001, 28(Suppl): s80
    [68] Wuyts W, Wesenbeeck V, Mlorales-Piga A, et al. Evaluation of the role of RANK and OPG genes in Paget's disease of bone [J]. Bone, 2001, 28: 104-107
    [69] Menaa C, Reddy S V, Kurihara N, et al. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget's disease of bone [J]. J Clin Invest, 2000, 105: 1833 - 1838
    [70] Min H, Morony S, Sarosi I, et al. Osteoprotegerin reverses osteoporosis inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis [J]. JExpMed, 2000, 192: 463-474
    [71] Wise G E, Yao S M, Zhong QY, et al. Inhibition of osteoclastogenesis by the secretion in vitro by rat dental follicle cells and its implications for tooth eruption [J]. Arch Oral Biol, 2002, 47: 247 - 254
    [72] Zhang D, Yang Y Q, Li X T, et al. The expression of osteoprotegerin and the receptor activator of nuclear factor kappa B ligand in human periodontal ligament cells cultured with and without la,25-dihydroxyvitamin D_3[J]. Arch Oral Biol, 2004, 49: 71-76
    [73] Atkins G J, Haynes D R, Graves S E, et al. Expression of osteoclast different differentiation signals by stromal elements of giant cell tumors [J]. J Bone Miner Res, 2000, 15: 640-649
    [74] Croucher P, Shipmen C M, Lippitt J, et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma [J]. Blood, 2001, 98: 3534 - 3540
    [75] Chikatsu N, Takeuchi Y, Tamura Y, et al. Interactions between cancer and bone marrow cells induce asterclast differentiation factor expression and osteoclast-like cell formation in vitro [J]. Biochem Biophys Res Commun, 2000, 267: 632-637
    [76] Honore P, Luger N M, Sabino M A C, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord [J]. Nat Med, 2000, 6: 521-528
    [77] Kanematsu M, Yoshimura K, Takaoki M, et al. Vector-averaged gravity regulates gene expression of receptor activator of NF-kappaB (RANK) ligand and osteoprotegerin in bone marrow stromal cells via cyclic AMP/protein kinase A pathway [J]. Bone, 2002, 30: 553-558
    [78] Bateman T A, Dunstan C R, Ferguson V L, et al. Osteoprotegerin mitigates tail suspension-induced osteopenia [J]. Bone, 2000, 26: 443 - 449
    [79] Hughes A E, Ralston S H, Marken J, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis [J]. Nat Genet, 2000, 24: 45-48
    [80] Orcevic D, Katavic V, Lukic I K, et al. Cellular and molecular interactions between immune system and bone [J]. Croat Med J, 2001, 42(4): 384-392
    [81] Nutt S L, Heavey B, Rolink AG, et al. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 [J]. Nature, 1999, 401(6753): 556-562
    [82] Lu L, Chaudhury P, Osmond D G. Regulation of cell survival during Blymphopoiesis: apoptosis and Bcl-2/Bax content of precursor B cells in bone marrow of mice with altered expression of IL-17 and recombinase-activating gene-2 [J]. J Immunol, 1999, 162(4): 1931-1940
    [83] Sharrock W J. Bone and the hematopoietic and immune systems: a report of the proceeding of a scientific workshop [J]. J Bone Miner Res, 1998, 13(4): 537-543
    [85] Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signaling cross-talk between RANKL and IFN-gamma [J]. Nature, 2000, 408: 600-605
    [86] Marusic A, Grcevic D, Katavic V, et al. Role of B lymphocytes in new bone formation [J]. Lab Invest, 2000, 80(11): 1761-1774
    [87] Zhang J, Fu M, Myles D, et al. PDGF induces osteoprotegerin expression in vascular smooth muscle cells by multiple singal pathways [J]. FEBS Lett, 2002, 521(1-3): 180-184
    [1] Schlesinger P H, Blair H C, Teitelbaum S L, et al. Characterization of the Osteoclast Ruffled Border Chloride Channel and Its Role in Bone Resorption [J]. J Biol Chem, 1997, 272(6): 18636-18643.
    [2] Teti A, Marchisio P C, Zallone A Z. Clear zone in osteoclast function: role of podosomes in regulation of bone resorption activity [J]. Am J Physiol, 1991, 261: C1
    [3] Hattersley G, Chambers T J. Calcitonin receptors as markers for osteoclastic differentiation: correlation belween generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures [J]. Endocinology, 1989, 125: 1606-1612
    [4] Drake F H, Dodds R A, James I E, el al. Cathepsin K, but not cathepsins B, L, or S is abundantly expressed in human osteoclasts [J]. J Biol Chem, 1996, 271(21): 12511-12516
    [5] Laitala T, Vaananen K. Proton channel part of vacuolar H~+-ATPase and carbonic anhydrase Ⅱ expression is stimulated in resorbing osteoclasts [J]. J Bone Min Res, 1993, 8: 119-126
    [6] Andersson G N, Marks S C Jr. Tartrate-resistant acid ATPase as a cytochemical marker for osteoclasts [J]. J Histochem Cytochem, 1989, 37(1): 115-117
    [7] McHugh K P, Dilke K H, Zheng M H, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts [J]. J Clin Invest, 2000, 105(4): 433-440
    [8] Neale S D, Athanasou N A. Cytokine receptor profile of arthroplasty macrophages, foreign body giant cells and mature osteoclasts. Acta Orthop Scand, 1999, 70(5): 452-458
    [9] Lacey D L, Tan H L, Lu J, et al. Osteoprotegerin ligand modulates routine osteoclast survival in vitro and in vivo [J]. Am J Pathol, 2000, 157(2): 435-448
    [10] Tondravi M M, McKercher S R, Anderson K, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1 [J]. Nature, 1997, 386 (6620): 81-84
    [11] Schlesinger P H, Blair H C, Teitelbaum S L, et al. Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption [J]. J Biol Chem, 1997, 272(6): 18636-18643
    [12] McHugh K P, Hodivala-Dilke K, Zheng M H, et at. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts [J]. J Clin Invest, 2000, 105(4): 433-440
    [13] Franzoso G, Carlson L, Xing L, et al. Requirement for NF-κB in osteoclast and B-cell development [J]. Genes Dev, 1997, 11(24): 3482-3496
    [14] Xing L, Bushnell T, Carlson L, et al. NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis [J]. J Bone Miner Res, 2002, 17(7): 1200-1210
    [15] Hsu H, Lacey D L, Dunstan C R, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand [J]. Proc Natl Acad Sci U S A, 1999, 96(13): 3540-3545
    [16] Cano E, Mahadevan L C. Parallel signal processing among mammalian MAPKs [J]. Trends Biochem Sci, 1995, 20(3): 117-122
    [17] Grigoriadis A E, Wang Z Q, Cecchini M G, et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling [J]. Science, 1994, 266(5184): 443-448
    [18] Mansky K C, Sankar U, Han J, et al. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling [J]. J Biol Chem, 2002, 277(13): 11077-11083
    [19] Lee S E, Woo K M, Kim S Y, et al. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated Kinase pathways are involved in osteoclast differentiation [J]. Bone, 2002, 30(1): 71-77
    [20] Takeshita S, Namba N, Zhao J J, et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts [J]. Nat Med, 2002, 8(9): 943-949
    [21] Ishida N, Hayashi K, Hoshijima M, et al. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator [J]. J Biol Chem, 2002, 277(43): 41147-41156
    [22] Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts [J]. Dev Cell, 2002, 3(6): 889-901
    [23] Cappellen D, Luong-Nguyen N H, Bongiovanni S, et al. Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B [J]. J Biol Chem, 2002, 277(24): 21971-21982
    [24] Crotti C N, Flannery M, Walsh N C, et al. NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiation [J]. Gene, 2006, 372: 92-102
    [24] Zhang Y H, Heulsmann A, Tondravi M M, et al. Tumor necrosis factor-alpha stimulates osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways [J]. J Biol Chem, 2001, 276(1): 563-568
    [25] Azuma Y, Kaji K, Katogi R, et al. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclast [J]. J Biol Chem, 2001, 275(7): 4858-4864
    [26] Kanazawa K, Kudo A. TRAF2 is essential for TNF-alpha-induced osteoclastogenesis [J]. J Bone Miner Res, 2005, 20(5): 840-847
    [27] Ross F P. Cytokine regulation of osteoclast formation and function [J]. J Musculoskelet Neuronal Interact, 2003, 3(4): 282-286
    [28] Hiroaki H, Tuohy N A, Woo J T, et al. The Calcineurin/NFAT signaling patheway regulates osteoclastogenesis in RAW264. 7 cells [J]. J Biol Chem, 2004, 279(14): 13984-13992
    [29] Rozen N, Ish-Shalom S, Rachmiel A, et al. Interleukin-6 modulates trabecular and endochondral bone turnover in the nude mouse by stimulating osteoclast differentiation [J]. Bone, 2000, 26(5): 469-474
    [30] Girasole G, Passeri G, Jilka R L, et al. Interleukin-11: a new cytokine critical for osteoclast development [J]. J Clin Invest, 1994, 93(4): 1516-1524
    [31] Lubbert E, van den Bersselaar L, Oppers-Walgrenn B, et at. IL-17 promotes bone erosion in routine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance [J]. J Immunol, 2003, 170(5): 2655-2662
    [32] Nagata N, Kitaura H, Yoshida N, et al. Inhibition of RANKL-induced osteoclast formation in mouse bone marrow cells by IL-12: involvement of IFN-gamma possibly induced from non-T cell population [J]. Bone, 2003, 33(4): 721-732
    [33] Yamada N, Niwa S, Tsujimura T, et at. Interleukin-18 and interleukin-12 synergistically inhibit osteoclasticbone-resorbing activity [J]. Bone, 2002, 30(6): 901-908
    [34] Bertolini D R, Nedwin G E, Bringman T S, et al. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors [J]. Nature, 1986, 319(6053): 516-518
    [35] Avnet S, Cenni E, Perut F, et al. Interferon-alpha inhibits in vitro osteoclast differentiation and renal cell carcinoma-induced angiogenesis [J]. Int J Oncol, 2007, 30(2): 469-476
    [36] Weinstock-Guttman B, Hong J, Santos R, et al. Interferon-beta modulates bone-associated cytokines and osteoclast precursor activity in multiple sclerosis patients [J]. Mult Scler, 2006, 12(5): 541-550
    [37] Huber D M, Bendixen A C, Pathrose P, et al. Androgens suppress osteoelast formation.induced by RANKL and macrophage-colony stimulating factor [J]. Endocrinology, 2001, 142(9): 3800-3808
    [38] Sundquist K T, Cecchini M G, Marks S C Jr. Colony-stimulating factor-1 injections improve but do not cure skeletal sclerosis in osteopetrotic(op) mice [J]. Bone, 1995, 16(1): 39
    [39] Sabokbar A, Crawford R, Murray D W, et al. Macrophage-osteoclast differentiation and bone resorption in osteoarthrotic subchondral acetabular cysts [J]. Acta Orthop Scand, 2000, 71(3): 255-261
    [40] Chen W, Li Y P. Generation of mouse osteoclastogenic cell lines immortalized with SV40 large T antigen [J]. J Bone Miner Res, 1998, 13(7): 1112-1123
    [41] Kanatani M, Sugimoto T, Takahashi Y, et al. Estrogen via the estrogen receptor blocks cAMP-mediated parathyroid hormone (PTH)-stimulated osteoclast formation [J]. J Bone Miner Res, 1998, 13(5): 854-862
    [42] 孙元明,杨福军,李雨民等.源于脾干细胞的破骨细胞诱导生成及培养[J].中国地方病学杂志,2003,2:7-9
    [43] Massey H M, Scopes J, Horton M A, et al. Transforming growth factor-betal (TGF-beta) stimulates the osteoclast-forming potential of peripheral blood hematopoietic precursors in a lymphocyte—rich microenvironment [J]. Bone, 2001, 28(6): 577-582
    [1] Chamber T J, Magnus C J. Calcitonin alters behavior of isolated osteoclasts [J]. Pathol, 1982, 136: 27-39
    [2] Kartsogiannis V. Localization of parathyroid hormone-related protein in osteoclasts by in situ hybridization and immunohistochemistry [J]. Bone, 1998, 22(3): 189-194
    [3] Katsuyoshi T, Nobuyuki S, Shin-ichi M, et al. Osteoclast differentiation factor mediates an essential signal for bone resorption induced by la,25(OH)_2D_3, prostaglandin E_2, or parathyroid hormone in the microenvironment of bone [J]. BBAC, 1998, 246: 337-341
    [4] Chamber T J, Revell P A, Fuller K, et al. Resorption of bone by isolated rabbit osteoclasts [J]. Cell Sci, 1984, 66: 383-399
    [5] Kakudo S, Miyazawa K, Kameda T, et al. Isolation of highly enriched rabbit osteoclasts from collagen gels: a new assay system for bone-resorbing activity of mature osteoclasts [J]. Bone Miner Metab, 1996, 14: 129-136
    [6] Neale S D, Sabokbar A, Athanasou N A, et al. Human osteoblasts support human monocyte-osteoclast differentiation [J]. Bone, 1999, 24(5): 41s
    [7] Helfrich M H, Ralston S H. Bone research protocols [M]. Totowa, New Jersey: Humana Press Inc, 2003, 70-71
    [8] Carol V. Avian Osteoclasts [J]. Calcified Tissue International, 1991, 49: 153-154
    [9] Ishino T, Yajin K, Takeno S, et al. Human osteoclast maturation from bone marrow cells co-cultured with osteoblast from ethmoid sins [J]. Rhinology, 2003, 41(1): 49-53
    [10] Athansou NA,茹润芳译.破骨细胞的细胞生理学[J].中医正骨,1998,10(1):52-56
    [11] 史凤芹,于世凤,庞淑珍.鸡破骨细胞分离培养方法的建立[J].中国骨质疏松杂志,1995,1(2):101-103
    [1] Bonucci E, Silvestrini G, Ballanti P, et al. Cytological and ultrastructural investisation on osteoblastic and preosteoclastic cells grown in vitro in the presence of ipriflavone: preliminary results [J]. Bone and Mineral, 1992, 19(suppl 1): s15-25
    [2] Albanese C V, Cudd A, Argentino L, et al. Ipriflavone directly inhibits osteoclastic activity [J]. Bioehem Biophys Res Commun, 1994, 199(2): 930-936
    [3] 张皎,侯加法.依普拉芬对产蛋后期笼养蛋鸡骨代谢和生产性能的影响[J].中国兽医学报,2003,23(6):613-615
    [4] 张皎,侯加法.依普拉芬对鸡胚成骨细胞的增殖和分化的影响[J].中国骨质疏松杂志,2004,210(2):236-238
    [5] Kim CH, Cheng SL, Kim GS, et al. Effects of dexamethasone on proliferation, activity, and cytokine secretion of normal human bone marrow stromal cells: possible mechanisms of glucocorticoid-induced bone loss [J]. Endocrinol, 1999, 162: 371-379
    [6] Kaji H, Sugimoto T, Kanatani M, et al. Dexamethasone stimulates osteoclast-like cell formation by directly acting on hemopoietic blast cells and enhances osteoclast-like cell formation stimulated by parathyroid hormone and prostaglandin E2 [J]. J Bone Miner Res, 1997, 12(5): 734-741
    [7] Katase K, Kato T, Hirai Y, et al. Effects of ipriflavone on bone following a bilateral ovariectomy and menopause: a randomized placebo-controlled study [J]. Calcif Tissue Int, 2001, 69(2): 73-77
    [8] Civitelli R. In vitro and in vivo effects of ipriflavone on bone formation and bone biomechanics [J]. Calcif Tissue Int, 1997, 61(suppl 1): s12-14
    [9] Miyake M, Arai N, Ushio S, et al. Promoting effect of kaempferol on the differentiation and mineralization of murine pre-osteoblastic cell line MC3T3-E1 [J]. Biosci Biotechnol Biochem, 2003, 67(6): 1199-1205
    [10] Zallone A. Direct and indirect estrogen actions on osteoblasts and osteoclasts [J]. Ann N Y Acad Sci, 2006 1068: 173-179
    [11] Zhou LY, Wu Tie. Glucocorticoid and osteoporsis [J]. Chin J Osteoporos, 2003, 9(2): 177-180
    [12] Silvestrini G, Mocetti P, Di Grezia R, et al. Localization of the glucocorticoid receptor mRNA in cartilage and bone cells of the rat. An in situ hybridization study [J]. Eur J Histochem, 2003, 47(3): 245-252
    [13] Kim H J, Zhao H, Kitaura H, et al. Glucocorticoids suppress bone formation via the ostcoclast [J]. J Clin Invest, 2006, 116(8): 2152-2160
    [14] Cui Q, Wang G J, Balian G. Pluripotential marrow cells produce adipocytes when transplanted into steroid-treated mice [J]. Connect Tissue Res, 2000, 41: 45-56
    [1] Simonet W S, Lacey D L, Dunstan C R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density [J]. Cell, 1997, 89(2): 309-319
    [2] Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitor factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro [J]. Endocrinology, 1998, 139(3): 1329-1337
    [3] 张皎,侯加法.依普拉芬对体外鸡胚成骨细胞的药效初探[J].中国骨质疏松杂志,2004,10(2):236-238
    [4] 张成岗,贺福初.生物信息学方法与实践[M].北京:科学出版社,2002
    [5] 蒋彦,王小行,曹毅,等.基础生物信息学及应用[M].北京:清华大学出版社,2003
    [6] Michele C, James C, Stephen M, et al. The Jalview Java alignment editor [J]. Bioinformatics, 2004, 20(3): 426-427
    [7] Hofbauer L C, Heufelder A E. Role of receptor activator of nuclear factor-κb ligand and osteoprotegerin in bone cell biology [J]. J Mol Med, 2001, 79: 243-253
    [8] Hofbauer L C, Dunstan C R, Spelsberg T C, et al. Osteoprotegerin production by human osteoblast lineage cells in stimulated by vitamin D, bone morphogenetic protein-2, and cytokines [J]. Biochem Biophys Res Commun, 1998, 250: 776-781
    [9] Thirunavukkarasu K, Miles R R, Halladay D L, et al. Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF-beta). Mapping of the OPG promoter region that mediates TGF-beta effects [J]. J Biol Chem, 2001, 276(39): 36241-36250
    [10] Vidal O N, Sjogren K, Eriksson B I, et al. Osteoprotegerin mRNA increased by interleukin-1a in human osteosarcoma cell line MG-63 and in human osteoblast-like cells [J]. Biochem biophys Res Commun, 1998, 248: 696-700
    [11] Brandstrom H, Jonsson K B, Vidal O, et al. Tumor necrosis factor-alpha and -beta up-regulate the levels of osteoprotegerin mRNA in human osteosarcoma MG-63 cell [J]. Biochem Biophys Res Commun, 1998, 248(3): 454-457
    [12] Sakata M, Shiba H, Komatsuzawa H, et al. Osteoprotegerin levels increased by interleukin-1β in human periodontal ligament cells are suppressed through prostaglandin E_2 synthesized de novo [J]. Cytokine, 2002, 18: 133-139
    [13] Wan M, Shi X, Feng X, et al. Transcriptional mechanisms of bone morphogenetic protein-induced osteoprotegrin gene expression [J]. J Biol Chem, 2001, 276(13): 10119-10125
    [1] 姚静,邓益锋,周振雷,侯加法.鸡骨保护素(chOPG)编码区基因的克隆和序列分析[J].农业生物技术学报,2006,14(5):816-817
    [2] Simonet W S, Lacey D L, Dunstan C R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density [J]. Cell, 1997, 89(2): 309-319
    [3] Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitor factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro [J]. Endocrinology, 1998, 139(3): 1329-1337
    [4] 张皎,侯加法.依普拉芬对体外鸡胚成骨细胞的药效初探[J].中国骨质疏松杂志,2004,10(2):236-238
    [5] QIAGEN Companies.The QIAexpressionisttm:A handbook for high-level expressin and purification of 6xHis-tagged proteins,5thed[M].QIAGEN Distributors,2003
    [6] Sambrook J,Russell D w.Molecular Cloning:A Laboratory Mannual,3rded[M].Cold Spring Harbor Laboratory Press,2001,1217-1265
    [7] 韩苇,张英起,颜真,等.人破骨细胞抑制因子基因的克隆和表达[J].第四军医大学学报,2002,23(22):2036-2039
    [8] 刘继中,胡蕴玉,纪宗玲,等.Expression of human osteoprotegerin gene in E.Coli and bioactivity analysis of expression product[J].中华外科杂志,2003,41(9):641-645
    [9] Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes [J]. Gene, 1982, 18: 199-209
    [10] 朱迎春,王琰,刘群英,等.重组人Fab金属螯合层析法纯化条件的研究[J].生物化学与生物物理进展,1997,24(2):136-139
    [1] Liu J Z, Chen S M, Li Y, et al. Secretory expression of human osteoprotegerin in pichia pastoris and bioactivity analysis of the recombinant Protein [J]. Chinese Journal of Biochemistry and Molecular Biology, 2003, 19(5): 566-571
    [2] 王宝利,戴芳,郭刚,等.人骨保护素成熟肽表达载体的构建、表达及重组蛋白免疫学鉴定[J].天津医药,2003,31(11):691-693
    [3] Cregg J M,Cereghine J L,Shi J,et al.Recombinant protein expression in Pichia pastoris[J].Mol Biotechnol,2000,16(1):23-52
    [4] 萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T,金冬燕,黎孟枫等译.分子克隆实验指南[M].第二版,北京:科学出版社,1998,235-543
    [5] 颜子颖,王海林译(F.奥斯伯,R.布伦特,R.E.金斯顿等著).精编分子生物学实验指南[M].第二版,北京:科学出版社,1999,29-71
    [6] 剧海,梁东春,郭刚,等.用于PCR实验的毕赤酵母基因组DNA制备方法的比较[J].天津医药,2003,356:270-272
    [7] Ferderick M A, Robert E K, Seidman J G, et al. Translated by Yah Z Y (颜子颖, Li M F (黎孟枫). Short Protocols in Molecular Biology [M]. Beijing: Science Press, 1998, 332-363
    [8] 顾园,诸欣平,王少华.毕赤酵母表达蛋白质的糖基化[J].生命的化学,2004,24(4):353-355
    [9] 赵慧,郑文岭,马文丽.信号肽对外源蛋白分泌效率的影响[J].生命的化学,2003,23(3):177-179
    [1] 曲连芳,褚桂芳.家禽的骨骼疾病[J].辽宁畜牧与兽医,1995,1:31-33
    [2] 李凯年.笼养产蛋母鸡饲养的动物福利问题[J].畜牧兽医科技信息,2004,5(2):12-14
    [3] National Research Council. Nutrient Requirements of Poultry. 9th rev. ed. Natl Acad Press, Washington, DC, 1994
    [4] Bekker P J, Hollow D, Nakanishi A, et al. The effect of a single dose of osteoprotegerin in postmenopausal women [J]. J Bone Miner Res, 2001, 16(2): 348-360
    [5] Rodan G A, Martin T J. Therapeutic Approaches to Bone Diseases [J]. Science, 2000, 289 (5484): 1508-1504
    [6] Margolis R N, Wimalawansa S J. Novel targets and therapeutics for bone loss [J]. Ann N Y Acad Sci, 2006, 1068: 402-409
    [7] Tietz N W, Rinker A D, Shaw L M. IFCC methods for the measurement of catalytic concentration of enzymes Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1) [J]. J Clin Chem Clin Biochem, 1983: 21(11): 731-748
    [8] Gosling P. Analytical reviews in clinical biochemistry: calcium measurement [J]. Ann Clin Biochem, 1986, 23 (Pt 2): 146-156
    [9] 叶应妩,王毓三.全国临床检验操作规程第二版[M].南京:东南大学出版社.1997:192-194
    [10] 陶庆树,周振雷,王艳,等.计算机X线片骨放射密度法在蛋鸡骨质疏松症研究中的应用[J].现代生物医学进展,2006,6:12-14
    [11] Gregory N G, Wilkins L J. Broken bones in dometic fowl: handling and processing damage in end-of-lay battery hens [J]. Br Poult Sci, 1989, 30: 555-562
    [12] Whitehead C C. Overview of bone biology in the egg-layjing hen [J]. Poult Sci, 2004, 83(2): 193-199
    [13] Takahashi N, Yamana H, Yoshiki S, et al. Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures [J]. Endocrinology, 1988, 122(4): 1373-1382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700