充气强化的微生物浸出试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶浸采矿技术,尤其是微生物浸出技术能够较好回收低品位矿物中的有用成分,拓宽了地下矿产资源的利用范围,为满足世界日益增长的金属需求开辟了新的途径。然而,该技术对低品位原生硫化铜矿浸出速度慢、浸出率低的问题一直无法从根本上得到解决。
     论文结合国家“973”重点基础研究发展规划项目“微生物浸出体系多因素强关联”(2004CB619205)、国家杰出青年科学基金项目“散体多相介质中多级渗流传质的动力学研究”(50325415)和国家自然科学基金项目“应力波作用下溶浸液在堆浸散体介质中的流动机理研究”(50574099)等科研课题的部分研究内容,以改善低品位难浸硫化矿物的浸出效果为目的,以德兴铜矿硫化矿物为研究对象,通过理论分析、室内试验、数值模拟等方法,以充气强化微生物浸出技术研究为主线,主要完成了如下研究工作:
     (1)从浸出化学和矿物学的角度阐述了硫化矿物的微生物浸出机理,介绍了适合浸矿的微生物种类及其生长特性,总结了目前国内外影响最大的几种关于微生物作用原理的学说,对气液两相渗流理论进行了总结和分析。
     (2)开展了微生物浸出的充气强化试验,主要考察了含气率、孔隙结构、气泡尺寸等三因素对浸出率、细菌浓度、总铁浓度等指标的综合影响,探明了各因素的主次关系以及因素和指标之间的内在联系,并得出了表征孔隙率、充气速度、气嘴尺寸和Cu~(2+)浓度之间关系的回归方程。
     (3)引入了中高温堆浸概念,围绕矿堆模型进行了温度场分析,研究了充气强化在中高温堆浸技术中的作用以及中高温堆浸所需的新工艺和新措施,系统描述了中高温堆浸技术的基本工艺流程和操作步骤。
     (4)运用COMSOL Multiphysics数值模拟软件对充气强化堆浸过程进行了数值模拟,对比分析了常规堆浸与充气强化堆浸过程中渗流场和溶氧分布的特性,验证了试验结果的准确性。
Solution mining technology, especially the bioleaching technology, is a better way to recover the useful components from low-grade minerals, which has improved the availability of underground mineral resources conservation. However, while it was applied to treat with low-grade primary sulfide ore, this technique has some disadvantages of low leaching velocity and low leaching rate and can not be resolved fundamentally.
     This thesis is supported by the "973" National Key Fundamental Research and Development Program of China "The Multifactor Strong Relating in Leaching System "(2004CB619205), the National Science Fund for Distinguished Young Scholars of China "The Study on Dynamics of Multilevel Seepage and Mass Transfer in Multiphase Granular Medium"(503254l5), the National Natural Science Fund of China "the study on solution seepage mechanism in heap leaching granular medium under the function of stress wave "(50574099), and so on. Combining with partial research work of these programs, this thesis aims at increasing the leaching rate of low grade sulfide minerals. Through theoretical analysis, indoor experiments, numerical simulation methods and so on, the work focuses on aeration intensified heap bioleaching, and the main contents are as follows:
     (1) The mechanism of sulfide bioleaching was expounded by the viewpoints of leaching chemistry and mineralogy. The microorganisms available for leaching and their growth characteristics were introduced. Several doctrines about bioleaching mechanism, famous at home and abroad, were summarized. Theories of gas-liquid seepage were summarized and analyzed.
     (2) A series of experiments of aeration assisted bioleaching were carried out, and the combined influence of air rate, pore structure, bubble size, etc. on leaching rate, bacteria concentration, TFe concentration, etc. was investigated. The ordering relation of the factors and the internal relations between the factors and the variables were proved up, and the regression equation shown the relation of porosity, aeration velocity, gas-jet size and Cu~(2+) concentration was obtained.
     (3) A new concept of medium-high temperature heap leaching was inducted. The temperature field of heap model was analyzed. The functions of aeration in medium-high temperature heap leaching and some new techniques and measures needed by the medium-high temperature heap leaching technology were studied and the basic technological flow and operate procedures were described systematically.
     (4) The process of aeration assisted heap leaching was numerically simulated by the COMSOL Multiphysics software. The specialities of seepage field and dissolved O~2 distribution in classical heap leaching process and aeration assisted heap leaching process were comparatively analyzed, and the experimental results were proved.
引文
[1]谷树忠,姚予龙,沈镭等.资源安全及其基本属性与研究框架[J].自然资源学报,2002,17(3):280-285
    [2]周淑敏.重国国土资源安全的地位和评价[J].石家庄经济学院学报,2005,28(5):608-611
    [3]王东生.优势互补-地矿合作-共同发展.中国有色金属学会第五届学术年会论文集[C],2003,8:66-72
    [4]于光.循环经济——矿产资源可持续发展的必然选择[J].当代经济管理,2005,27(5):92-96
    [5]王雪峰.矿产资源的保护与合理开发利用的对策建议[J].矿产保护与利用,2007,5:5-8
    [6]李瑛.浅析我国矿产资源管理现状与完善[J].中国科技信息,2007,22:22-24
    [7]罗晓玲.国内外铜矿资源分析[J].世界有色金属,2000,(4):4-10
    [8]杨建功.我国有色金属矿产资源供需形势分析[J].中国国土资源经济,2004,200(8):10-13
    [9]刘玉强.2005中国矿产开发及矿产品供需形势分析与建议[J].矿产与地质,2005,19(3):219-222
    [10]康伟,裘燕燕.我国矿产资源有偿使用制度体系的改革思考[J].地质与资源,2007,16(3):237-240
    [11]郑飞.过去十年铜精矿市场述评与展望[J].国外金属矿选矿,2003,(11):7-11
    [12]杨苏琦.中国铜矿资源现状及产销形势分析[J].云南冶金,2002,31(6):52-55
    [13]浸矿技术编委会.浸矿技术[M].北京:原子能出版社,1994
    [14]吴爱祥,王洪江,杨保华等.溶浸采矿技术的进展与展望[J].采矿技术,2006,6(3):39-48
    [15]刘同有.国际采矿技术发展的趋势[J].中国矿山工程,2005,34(1):35-40
    [16]周爱民.有色矿山采矿技术新进展[J].采矿技术,2005,5(3):1-7
    [17]朱屯.现代铜湿法冶金[M].北京:冶金工业出版社,2002
    [18]谭凯旋,王清良,伍衡山,等.溶浸采矿热力学和动力学[M].长沙:中南大学出版社.2003
    [19]王世强,谭凯旋,易正戟.溶浸采矿地球化学[J].矿业快报,2007,458(6): 6-8
    [20]童雄,钱鑫.国外强化金矿堆浸技术的最新进展[J].国外金属矿选矿,1996,33(5):1-3
    [21]李尚远,陈明阳,李春奎.铀金铜矿石堆浸原理与实践[M].北京:原子能出版社,1997
    [22]李明,全爱国.铀矿堆浸在我国的试验研究与发展[J].铀矿冶,1990,9(4):8-12
    [23]查克兵.德兴铜矿堆浸生产影响因素的分析与探讨[J].采矿技术,1998,3(3):4-5
    [24]彭琴秀.德兴铜矿运用堆浸技术的生产实践[J].有色冶金设计与研究,2002,23(4):53-56
    [25]彭琴秀.德兴铜矿含铜废石细菌浸出试验研究[J].湿法冶金,2002,21(2):83-87
    [26]Bartlett R.W.Solution mining.Leaching and fluid recovery of materials[J].Gordon and Breach science publishers,Philadelphia,PA,1992:276
    [27]陈仕安,黄祥富,樊保团.细菌氧化再生液淋浸铀矿的探讨[J].铀矿冶,1995,14(3):170-177
    [28]王周谭.我国采用堆浸工艺处理低品位金矿的回顾与展望[J].陕西地质,1994,12(2):87-93
    [29]Fernando Acevedo Present and future of bioleaching in developing countries[J].EJB Electronic Journal of biotechnology ISSN:2002,5(2):196-199
    [30]邱欣,池汝安,徐盛明,等.堆浸工艺及理论的研究进展[J].金属矿山,2000,(11):20-23
    [31]吴爱祥,孙业志,刘湘平,等.散体动力学理论及其应用[M].北京:冶金工业出版社,2002,1-25
    [32]李宏煦,王淀佐.生物冶金中的微生物及其作用[J].有色金属,2003,55(2):58-63
    [33]王昌汉.就地破碎浸铀法的技术特性及最佳应用准则[J].中国核科技报告,2000,0:1-8
    [34]王昌汉.溶浸采铀(矿)[M].北京:原子能出版社,1998
    [35]王昌汉.就地破碎溶浸采矿法几个关键技术的探讨[J].南华大学学报,2001,15(2):13-15
    [36]H.R.Watling.The bioleaching of sulphide minerals with emphasis on copper sulphides—A review[J].Hydrometallurgy,2006,84:81-108.
    [37]伍衡山,刘永.溶浸采矿法回收某尾砂中铜金属的可行性研究[J].中国矿业,2001,10(6):65-67.
    [38]招国栋,伍衡山,刘清,等.浅论低品位铜矿的浸出技术及其发展趋势[J].西部探矿工程,2004,93(2):65-69.
    [39]张锦瑞,王伟之,李富平,等.金属矿山尾矿综合利用与资源化[M].北京:冶金工业出版社,2002.
    [40]K.M.Swamy,L.B.Sukla,K.L.Narayana,et al.Use of ultrasound in microbial leaching of nickel from laterites[J].Ultrasonics Sonochemistry,1995,2(1):5-9.
    [41]Andre Collasiol,Dirce Pozebon,Sandra M.Maia.Ultrasound assisted mercury extraction from soil and sediment[J].Analytica Chimica Acta,2004,518:157-164.
    [42]陈世琯.超声波在湿法冶金中的应用[J].上海有色金属,2003,24(3):142-146.
    [43]胡松青,李琳,郭祀远,等.功率超声对溶液性质的影响[J].应用声学,2003,22(1):26-30.
    [44]T.J.Mason,E.Joyce,S.S.Phull,et al.Potential uses of ultrasound in the biological decontamination of water[J].Ultrasonics Sonochemistry,2003,10:319-323.
    [45]W.Chen,W.P.Cai,Z.X.Chen,et al.Structural change of mesoporous silica with sonochemically prepared gold nanoparticles in its pores[J].Ultrasonics Sonochemistry,2001,8:335-339.
    [46]袁明亮,赵国魂,邱冠周.砷金矿与锰银矿同时浸出中的超声强化作用[J].过程工程学报,2003,3(5):409-412.
    [47]O.Schlafer,M.Sievers,H.Klotzbucher,et al.Improvement of biological activity by low energy ultrasound assisted bioreactors[J].Ultrasonics,2000,38:711-716.
    [48]Timothy J.Mason.Large scale sonochemical processing:aspiration and actuality [J].Ultrasonics Sonochemistry,2000,7:145-149.
    [49]O.Dahlem,J.Reisse,V.Halloin.The radially vibrating horn:A scaling-up possibility for sonochemical reactions[J].Chemical Engineering Science,1999,54:2829-2838.
    [50]谢锋,杨立.充氧对含砷金矿细菌氧化过程影响的研究.沈阳黄金学院学报,1995,14(3):346-350
    [51]钱梓文,远山正幸,花强,等.溶氧振荡对聚β羟基丁酸混合培养过程的调 控作用.生物工程学报,2001,17(4):441-444
    [52]裴世红,张翔,王红心,等.湿法炼铜(生物浸出法)的近况及展望[J].当代化工,2003,32(3):166-168
    [53]张汉波,施文,于春蓓,等.水分和氧气对铅锌矿渣中重金属耐受细菌活性的影响[J].农业环境科学学报,2004,23(1):90-93
    [54]PeterA.Spencer.细菌氧化的关键参数——搅拌、通气、温度和砷[J].湿法冶金,1994,52(4):32-34
    [55]N.Taylan et al.,Effects of ultrasound on the reaction step of boric acid production process from colemanite[J],Ultrason.Sonochem.(2006),doi:10.1016/j.ultsonch.2006.11.001
    [56]胡林林,王建龙,文湘华,等.低溶解氧条件下生物脱氮研究中的新现象[J].应用与环境生物学报,2003,9(4):444-447
    [57]Mitsubishi.Copper expected to improve in 2001[J].Mining Engineering.2001,54(4):13-17
    [58]D.内斯托.用氧化亚铁硫杆菌生物浸出难处理金矿物的机理[J].国外金属矿选矿,2001,11:11-14
    [59]赵继华,陈启元.超声场对种分反应动力学过程的影响[J].中国有色金属学报,2002,12(4):822-825
    [60]张通,张志全,张东燕,等.硫化铜矿超声波预处理提高细菌浸铜浸出率[J].过程工程学报,2001,1(3):315-317
    [61]Carlos F.Jove Colon,Eric H.Oelkers,Jacques Schott.Experimental investigation of the effect of dissolution on sandstone permeability,porosity,and reactive surface area[J].Geochimica et Cosmochimica Acta,2004,68(4):805-817
    [62]Yunlai Yang,Andrew C.Aplin.Influence of lithology and compaction on the pore size distribution and modelled permeability of some mudstones from the Norwegian margin[J].Marne and Petroleum Geology,15(1998)163-175
    [63]M.Jamialahmadi,F.G.Javadpour.Relationship of permeability,porosity and depth using an artificial neural network[J].Journal of Petroleum Science and Engineering 26(2000)235-239
    [64]D.S.Holmes.Processing maustdes:challenges and opportunities[J].Minerals and Metallurgica Processing,1998,(5):49-56
    [65]Dixson D.G.Hendrix J L.Mathematical model for heap leaching of one of more solid reactants from porous ore pellets[J].Metallurgical transaction B,1993, 24B:1087-1102
    [66]李宏煦,硫化矿生物堆浸的动力学仿真与优化研究(博士后科研工作报告)[D].北京:有色金属研究总院,2002
    [67]Samposn M.I,phllips C.V,Blake R.C.Influence of the attachment of acidophlic bacteria during the oxidation of sulfides[J].Minerals Engineering,2000,13:373
    [68]Fowler T.A,Crundwell F.K.The leaching of sphalerite by Thiobacillus ferrooxidans:Experiment at controlled redox potentials indicate that there is no direct mechanism of bacterial action[J].Applied and Environmental Microbiology,1998,64:3570
    [69]Karan G,Natarajan K.A,Modak J.M.Estimation of mineral adhered biomass of thiobacillus ferrooxidans by prote in assay:some problems and remedies[J].Hydrometallurgy,1996,42:169
    [70]Escoba B.J,Jedlicki E,Vargas T.A method for evaluating the proportion of free and attached bacteria in the bio-leaching of chalcopyrite with Thiobacillus ferrooxidans[J].Hydrometallurgy,1996,40:1
    [71]Boon M,Snijder M,Hansford G.S.The oxidations kinetics of zinc Sulphide with Thiobacillus ferrooxidans[J].Hydrometallurgy,1998,48:171
    [72]I.Palencia,R.Romero,A.Mazuelos,F.Carranza.Treatment of secondary copper sulphides(chalcocite and covellite)by the BRISA process[J].Hydrometallurgy 66(2002)85-93
    [73]L.R.P.de Andrade Lima.Liquid axial dispersion and holdup in column leaching [J].Minerals Engineering 19(2006)37-47
    [74]陶东平.粗糙表面化学反应动力学模型[J].金属学报.2001,37(10):1073-1078
    [75]龙中儿,蔡昭铃,丛威,等.微生物浸出金属硫化矿的动力学研究进展[J].矿冶工程,2002,22(1):6-10
    [76]Luis Carlos Molina Felixa,Lluis A.Belanche Munoz.Representing a relation between porosity and permeability based on inductive rules[J].Journal of Petroleum Science and Engineering 47(2005)23-34
    [77]James G.Berryman.Electrokinetic effects and fluid permeability[J].Physica B 338(2003)270-273
    [78]Joachim Schoelkopf,Patrick A.C.Gane,Cathy J.Ridgway.Observed non-linearity of Darcy-permeability in compacted fine pigment structures[J].Colloids and Surfaces A:Physicochem.Eng.Aspects 236(2004)111-120
    [79]万良勇,谢定义.初始渗流对饱和砂土动力特性的影响[J].中国岩石力学与工程学会第七次学术大会论文集,西安,2002,9:139-142
    [80]谢学斌,潘长良.露天矿排土场散体岩石粒度分布的分形特征[J].湘潭矿业学院学报,2003,18(3):56-59
    [81]矫滨田,鲁晓兵,王淑云.土体降雨滑坡中细颗粒运移及效应[J].地下空间与工程学报,2005,1(7):1014-1016
    [82]王淑云,鲁晓兵,时忠民.颗粒级配和结构对粉砂力学性质的影响[J].岩土力学,2005,26(7):1029-1032
    [83]张均锋,孟祥跃.冲击载荷下饱和砂土中超孔隙水压力的建立与消散过程[J].岩石力学与工程学报,2003,22(9):1463-1468
    [84]P.Sruoga,N.Rubinstein,G.Hinterwimmer.Porosity and permeability in volcanic rocks:a case study on the Sere Tobifera,South Patagonia,Argentina[J].Journal of Volcanology and Geothermal Research 132(2004)31-43
    [85]M.Singh,K.K.Mohanty.Permeability of spatially correlated porous media[J].Chemical Engineering Science 55(2000)5393-5403
    [86]Xiao-yan Li,Bruce E.Logan.Permeability of fractal aggregates[J].Wat.Res.Vol.35,No.14,pp.3373-3380,2001
    [87]A.Farci,D.Floris,P.Meloni.Water permeability vs.porosity in samples of Roman mortars[J].Journal of Cultural Heritage 6(2005)55-59
    [88]H.S.Whitesell,R.A.Overfelt.Influence of solidification variables on the microstructure,macrosegregation,and porosity of directionally solidified Mar-M247[J].Materials Science and Engineering A318(2001)264-276
    [89]Josep M.Soler.Reactive transport modeling of the interaction between a high-pH plume and a fractured marl:the case of Wellenberg[J].Applied Geochemistry 18(2003)1555-1571
    [90]Eric Tenthorey,Stephen E Cox,Hilary F.Todd.Evolution of strength recovery and permeability during fuid-rock reaction in experimental fault zones[J].Earth and Planetary Science Letters 206(2003)161-172
    [91]Abdulrazag Y.Zekri,Shedid Ali Shedid.The effect of fracture characteristics on reduction of permeability by asphaltene precipitation in carbonate formation[J].Journal of Petroleum Science and Engineering 42(2004)171-182
    [92]王如宾.单裂隙岩体稳定温度场与渗流场耦合数学模型研究[J].灾害与防治工程,2006,1:65-70
    [93]柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型[J].地下水, 1997,19(2):59-6
    [94]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005
    [95]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995
    [96]Laith Tashman,Eyad Masad,Clayton Crowe,Balasingam Muhunthan.Simulation of fluid flow in granular microstructure using a non-staggered grid scheme[J].Computers & Fluids 32(2003)1299-1323
    [97]Patrick F.Dobson,Timothy J.Kneafsey,Jeffrey Hulen,Ardyth Simmons.Porosity,permeability,and fuid flow in the Yellowstone geothermal system,Wyoming[J].Journal of Volcanology and Geothermal Research 123(2003)313-324
    [98]J.D.Miller,C.L.Lin,C.Garcia.Ultimate recovery in heap leaching operations as established from mineral exposure analysis by X-ray micro tomography[J].Mineral Processing.2003,(72):331-340
    [99]马俊伟.堆浸工艺中矿岩散体介质的渗透特性试验研究(硕士论文)[D].长沙:中南大学.2005:70-71
    [100]张在海.铜硫化矿生物浸出高效菌种选育及浸出机理(博士论文)[D].长沙:中南大学.2002:9-10
    [101]吴爱祥,张杰,江怀春.低渗透性矿堆浸孔隙率改善研究[J].矿冶工程,2006,26(6):5-12
    [102]M.Sidborn,J.Casas,J.Martinez,act.Two-dimensional dynamic model of a copper sulphide ore bed[J].Hydrometallurgy.2003,(71):67-74
    [103]李宏煦,王淀佐,陈景河.细菌浸矿的间接作用分析[J].有色金属,2003,55(4):98-100
    [104]李宏煦,王淀佐,陈景河.细菌浸矿作用分析[J].有色金属,2003,55(3):68-71
    [105]J.W.Bennetta,A.L.M.Ritchie.A proposed technique for measuring in situ the oxidation rate in biooxidation and bioleach heaps[J].Hydrametallurgy,2004,72:51-57
    [106]尹升华.低品位矿石生物浸出过程溶质迁移规律研究(硕士论文)[D].长沙:中南大学.2006:67-70
    [107]习咏.铜矿岩散体介质堆浸过程的浸出动力学试验及模拟研究(硕士论文)[D].长沙:中南大学.2006:83-84
    [108]P.Bogaerts,A.V.Wouwer,Parameter identification for state estimation-application to bioprocess software sensors[J].Chemical Engineering Science,2004, 59(12):24-36
    [109]鲁晓兵,杨振声.饱和砂土中孔隙水压力的计算方法[J].岩土工程技术,1999,1:47-49
    [110]张杰,吴爱祥,陈学松.铜矿尾砂超声强化浸出试验研究[J].矿业快报,2007.10:25-28
    [111]张志涌,等.精通MATLAB(6.5版)[M].北京:北京航空航天大学出版社,2003
    [112]沈致和.围护结构三维导热的有限元分析[J].合肥工业大学学报(自然科学版).2004,2(2):203-206
    [113]Rongfeng Guan,Xuelie Wang,Xuefang Wang.Finite element analysis on stress-induced birefringence of Polarization-maintaining optical fiber[J].CHINESE OPTICS LETTERS.2005,1(3):42-45
    [114]http://www.femlab.com.cn/,http://www.cntech.com.cn/product/femlab
    [115]夸克工作室编.有限元分析教学范本FEMLAB与Mathematica[M].北京:清华大学出版社.2003
    [116]苑莲菊.工程渗流力学及应用[M].北京:中国建材工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700