钛基Ni,Ni-Co,Ni-Sn电极的制备及其电催化活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于有机小分子的电催化氧化研究具有重要的理论和实际意义,自上世纪九十年代以来就受到国内外许多研究工作者的高度重视。有机小分子的电催化氧化过程的深入研究,对于认识电化学现象,发展电极过程动力学,丰富电化学氧化模型,促进物理化学学科相关理论与实验研究方法的发展,均具有重要的科学意义。铂等贵金属电极上有机小分子的电催化氧化已被广为研究。但作为一种有效的非贵金属电催化剂,镍电极主要应用于有机物的电催化合成以及电分析等领域,很少报道该类电极材料上有机小分子氧化的电化学现象。寻找对有机小分子电化学氧化具有好的催化活性的催化剂及其载体是十分重要的课题。
     水热法是在密闭体系中,以水或其它溶剂作为反应介质,在一定温度和自生压力作用下,使反应物转化为产物的过程。在水热反应条件下,物质的物理和化学性质会发生非常大的改变,所以经常会产生意料之外的反应结果。反应溶剂(如水)在合成过程中,首先是产生压力的作用,其次是提供了一个均匀的反应空间,经常使反应混合物处于溶解或半溶解的状态,使之类似于均相反应,这就使得反应容易进行。水热法作为一种软化学制备方法应用到电极材料的制备中,可得到结构新颖、性能优越的电催化剂。目前,多数电催化剂均采用电化学沉积法负载在碳基体上,本研究中则是以水合肼为还原剂,采用水热法将近似纳米大小的金属颗粒负载在钛基体上,从而制备出新型的钛基电极材料,它们对某些有机小分子的氧化反应表现出高度的电催化活性。本论文利用新方法—水热法在钛基体上制备了镍系列电催化剂(Ni/Ti、Ni-Co/Ti、Ni-Sn/Ti),并通过电化学测试方法对各钛基镍系列电极电催化氧化甲醇的性能进行了对比性研究,从而得出高催化性能、稳定性较好的电极催化剂,同时研究了Ni-Co/Ti电极在碱性介质中对葡萄糖电氧化的催化活性。论文的主要内容和研究结论如下:
     1.对镍电极的应用和有机小分子的电催化氧化进行了概述,重点阐述了甲醇、乙醇和葡萄糖氧化的电催化机理,系统介绍了镍电极研究进展,总结了镍电极在有机电合成及其它方面的应用,并指出催化剂纳米化是当前对催化剂进行研究开发的主要思路。
     2.确定了制备钛基镍系列电极的具体工艺过程。本研究中以水合肼为还原剂,利用水热法制备了Ni/Ti、Ni-Co/Ti、Ni-Sn/Ti电极。这一过程的主要特点是:金属催化剂能够以纳米大小的颗粒直接沉积于基体钛表面上,从而一步完成这类电极材料的制备,不仅过程简单,而且催化剂颗粒稳定,可以反复使用。
     3.利用扫描电镜(SEM)和能谱分析(EDS)测试技术,对水热法制备的Ni/Ti、Ni-Co/Ti和Ni-Sn/Ti电极的形貌、结构与成分等进行了表征和分析。主要的研究结论如下:
     (1)对Ni/Ti电极而言,SEM和EDS分析表明,在钛基表面沉积了尺寸均匀的镍金属球形小颗粒,大小约500nm,并且这些球形小颗粒相互连接,形成链状结构,具有巨大的表面积。
     (2)对Ni-Co/Ti电极而言,SEM和EDS分析表明,在钛基表面沉积了尺寸均匀的镍钴金属球形小颗粒,并且这些球形小颗粒相互紧密连接呈多孔网状结构,相比单独沉积的镍颗粒,大小形状差不多,约500nm球形体,但是球体连接更加致密形成多孔结构,具有巨大的活性位点。
     (3)对Ni-Sn/Ti电极而言,SEM和EDS分析表明,Ni-Sn/Ti电极表面呈现纳米结构的类似花瓣片形状,长度约120~130 nm,厚度约40nm。双金属的Ni-Sn片状粒子较小,相互连接形成层状叠起的结构,从而增大了比表面积,催化活性大大提高,有利于甲醇吸附氧化。
     4.采用循环伏安、线性扫描、电位阶跃和交流阻抗等方法,在NaOH碱性介质中研究了在Ni/Ti、Ni-Co/Ti和Ni-Sn/Ti电极上甲醇的电催化氧化过程,并对电极过程动力学进行了分析研究,同时还研究了葡萄糖在Ni-Co/Ti电极上的电催化氧化反应。主要结论如下:
     (1)伏安特性研究表明,在碱性溶液中,多晶镍电极和Ni/Ti电极对甲醇氧化的电催化活性具有明显的差异。与多晶镍电极相比,Ni/Ti电极对甲醇电化学氧化起始电位提前为0.36V,而前者为0.42V;在电极几何面积相同的条件下,Ni/Ti电极上甲醇氧化峰电流为0.75mA,是前者的近5倍。电位阶跃实验表明,多晶镍电极和Ni/Ti电极上阶跃稳态电流都随甲醇的浓度增加而增大,并且成良好的线性增长。这种依赖关系在Ni/Ti电极上表现更为迅速,响应斜率为8.18,前者仅为1.40。电化学交流阻抗实验表明Ni/Ti电极上甲醇氧化电荷传递电阻R_(ct)很低,几乎只有多晶镍电极上的1/10。
     (2)将水热法制备的Ni-Co/Ti电极与同样方法制备的Co/Ti电极和Ni/Ti电极进行比较,电化学测试实验结果表明:Co/Ti电极对甲醇无催化活性,掺杂20%的Co的Ni_8Co_2/Ti电极对甲醇氧化表现出更为优异的催化性能,与Ni/Ti电极相比,Ni_8Co_2/Ti电极对甲醇氧化的起始电位提前了0.11V,为0.25V,氧化峰的电流增加到3.3倍,为2.5mA。Co的加入明显改善了电催化剂对甲醇电化学氧化性能,Co在较低电位下能够生成大量的含氧物种,与Ni产生协同作用,促进了氧化反应的发生。
     (3)研究了结构新颖的Ni_8Co_2/Ti电极在碱性溶液中对葡萄糖的电催化氧化情况。电化学测试实验结果表明:Ni_8Co_2/Ti电极对葡萄糖氧化表现出极高的催化性能,并且葡萄糖在该电极上电化学氧化速度是受扩散控制,得到葡萄糖在该体系中的扩散系数为6.50×10~(-6)cm~2·s~(-1),葡萄糖在该电极上电化学氧化反应速率常数为3.57×10~4 cm~3·mol~(-1)·s~(-1)。葡萄糖在Ni_8Co_2/Ti电极上的安培响应表明葡萄糖在该电极上具有良好的依赖关系,这种依赖关系从拟合曲线来看是成线性变化的。拟合曲线线性相关系数为0.9995,直线斜率为6.85×10~(-4)A·(mmol/L)~(-1),显示Ni_8Co_2/Ti电极对葡萄糖检测具有灵敏度较高、检测下限较低的特点。
     (4)Ni-Sn/Ti电极对甲醇的电化学氧化也具有极高的电催化性能。电化学测试结果证明,与Ni/Ti电极相比,Ni-Sn/Ti电极对甲醇具有更高的氧化反应速率和更低的起始氧化电位,并且电荷传递电阻较低。当Ni:Sn比例为8:1时,Ni-Sn/Ti电极表现最优异的催化活性。
     目前,虽然对小分子有机物电催化氧化的研究报道较多,但制备性能优良的新型催化剂仍是这一领域的主要研究内容。本文制备的Ni/Ti、Ni-Co/Ti和Ni-Sn/Ti电极,其催化剂颗粒具有新颖的结构,对甲醇或葡萄糖的电催化氧化具有优异的活性,在国内外文献中未见报道。这些新颖的电极材料对今后燃料电池阳极催化剂的制备、以及新型小分子有机物传感器的研究开发开辟了新的思路,为制备纳米电催化剂的研究工作提供了一定的技术依据与理论指导,对研究有机小分子的电催化氧化在理论上具有一定的借鉴与指导意义。
As we all know that the electrocatalytic oxidation of small organic molecules has been receiving extensive investigation since the end of 20th century, which is of significant application both in fundamental research as model systems and in the fuel cells(FC). For example, study on electrocatalytic oxidation of small organic molecules has played an important role in recognizing the electrochemical phenomena, developing the kinetics of electrode processes, enriching the research content of electrooxidation model, and promoting the development of theory experimental methods concerned in physical chemistry. Electrocatalytic oxidation of small organic molecules on noble metals like Pt has been widely studied for about a half century. Nickel has been confirmed to present effective electrocatalytic activity towards some organic molecules such as methanol, ethanol, glucose and aspirin etc. Development of electrocatalysts with significantly electrocatalytic activities for electro-oxidation of small organic molecules has been considered as the most challenging problem in the study of fule cells(FC).
     Hydrothermal method, using metal salts, oxides or hydroxides as a solution or suspension, offers an alternative synthesis route for the nano materials in the elevated temperature and pressure. Because the reactions are carried out in the liquid phase, the chemical properties of many reactions will change. As a soft chemistry method, hydrothermal synthesis method has been applied to preparing the novel electrode materials in this paper. The properties of electrocatalysts made by hydrothermal synthesis are different from that by the traditional solid-state method. Nowadays, most of catalysts are loaded on carbon with electrodeposition techniques. In this thesis, we reported the preparation of nano-sized metal particales deposited on the surface of titanium by the hydrothermal process using hydrazine hydrate as the reduction agent, so as to effectively develop novel electrocatalysts with high electroactivity for the oxidation of small organic molecules. Novel titanium-supported nickel Ni/Ti, binary Ni-Co/Ti and Ni-Sn/Ti electrodes were synthesized by the hydrothermal method. Electro-catalytic activities of the prepared electrodes for methanol oxidation are investigated by conventional electrochemical techniques like voltammetric responses, chronoamperometric measurements and electrochemical impedance spectra, etc. In addition, the Ni-Co/Ti electrode was examined as an electrocatalyst for the electrooxidation of glucose in alkaline solutions. The main contents and conclusions in the thesis are as follows:
     1. Application of nickel hydroxide electrodes and electrocatalytic oxidation of small organic molecules are reviewed briefly. The electro-catalytic mechanism of the oxidation of methanol, ethanol and glucose is elaborated according to corresponding reports of literatures. The research progress of nickel hydroxide electrodes are introduced. Application of nickel hydroxide electrodes to organic electrosynthesis and other fields are summarized. The thesis points out that the main problem in the research of catalysts is the development of nano-catalysts with high electroactivity.
     2. Ni/Ti, Ni-Co/Ti and Ni-Sn/Ti electrodes are synthesized by the hydrothermal process using hydrazine hydrate as the reduction agent. The electrocatalyst particles are directly deposited on the Ti surface under conditions of reaction temperature 120℃and reaction time 10 h.
     3. Scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) are employed to investigate the morphology and element compositions of Ni/Ti, Ni-Co/Ti and Ni-Sn/Ti electrodes obtained by the hydrothermal process. The main results are as follows:
     (1) For the Ni/Ti electrode, SEM and EDS images show that the surface of Ti substrate is partly covered by nickel particles which were present as small balls with the almost uniform size of around 500nm. An interesting finding is that some nickel particles are connected with each other to form alveolate and cateniform structures. Ti substrate surface was not completely covered by nickel particles.
     (2) For the Ni-Co/Ti electrodes, SEM and EDS images show that the surface of Ti substrate is almost totally covered by nickel-cobalt catalyst particles. The samples exhibit similar SEM image to Ni/Ti electrode with the almost uniform size of around 500nm. But the bimetallic Ni-Co particles are tightly combined with each other and form three-dimensional porous network structures, resulting in a significant surface area.
     (3) For the Ni-Sn/Ti electrodes, SEM and EDS images show that the surface of Ti substrate is totally covered by nano-scale particles with the sizes of ca. 120~130nm. The particles are present as nano-scale flakes which thicknesses are around 40 nm. These flakes look like petals of flowers, resulting in a significant surface area and providing considerable numbers of active sites which are necessary for the adsorption and electro-oxidation of methanol on the catalyst.
     4. Electro-catalytic oxidation of methanol in sodium hydroxide solution on Ni/Ti, Ni-Co/Ti and Ni-Sn/Ti electrodes, and electro-oxidation of glucose on Ni-Co/Ti electrode have been studied using cyclic voltammetry, pseudo-steady state polarization, chronoamperometry, and electrochemical impedance spectroscopy(EIS). The results are as follows:
     (1) It was shown from cyclic voltammograms in alkaline solutions that the oxidation current of methanol on the Ni/Ti electrode was much higher than that on a polycrystalline nickel electrode (Ni), and that the onset potential of methanol oxidation on Ni/Ti shifts to 0.36 V, which is less than that on the Ni, and that the oxidation peak current on the Ni/Ti was 5 times higher than on Ni. It was further observed from chronoamperometric measurements that the steady-state current (I_(ss)) on the Ni/Ti was also significantly higher than on Ni, and the I_(ss) is well linearly proportional to the methanol concentration. Electrochemical impedance spectra on the Ni/Ti reveal that the presence of methanol in 1.0mol/L NaOH enhances the charge transfer process of the oxidation of Ni(OH)_2 to NiOOH. In the activation range of methanol oxidation, the charge transfer resistance decreases with the increase of anodic potentials and methanol concentrations. This novel nickel electrode can be used repeatedly and exhibits stable electro-catalytic activity for the methanol oxidation.
     (2) Electrochemical measurements show that Co/Ti electrode doesn't present catalytic activity for methanol oxidation. However, the oxidation current of methanol on the Ni_8Co_2/Ti electrode was much higher than that on Ni/Ti electrode, and the onset potential on Ni_8Co_2/Ti shifts about 0.25V toward the negative potential in comparison with that on the Ni/Ti, The oxidation peak current on the Ni_8Co_2/Ti was 2.3 times higher than on Ni/Ti electrode. Addition of cobalt to the nickel enhances the methanol oxidation due to the formation of conducting oxide in low potential, especially to the co-precipitation of cobalt and nickel hydroxide which enhances the methanol electro-oxidation.
     (3) The Ni_8Co_2/Ti electrode was examined as an electrocatalyst for the electrooxidation of glucose in alkaline solutions. The Ni_8Co_2/Ti electrode exhibits significantly high current of glucose oxidation, and that oxidation reaction of glucose is controlled by the diffusing step. A high catalytic rate constant of 3.57×10~4 cm~3·mol~(-1)·s~(-1) and the diffusion coefficient 6.50×10~(-6) cm~2·s~(-1) of glucose was calculated from amperometric responses on the Ni_8Co_2/Ti electrode. Furthermore, amperometric datas show a linear dependence of the current density for glucose oxidation upon glucose concentration in the range of 0.05~0.5mmol/L with a sensitivity of 6.85×10~(-4)A·(mmol/L)~(-1). A detection limit of 0.0012 mmol/L(1.2 μmol/L) glucose was found. Results show that the prepared Ni_8Co_2/Ti electrode is a promising biosensor for the construction of enzyme-free glucose detection.
     (4) Electrochemical measurements show that Ni-Sn/Ti electrode presents much higher anodic currents and lower onset potential for methanol oxidation than Ni/Ti electrode. The EIS datas indicate that under conditions of various anodic potentials and methanol concentrations, Ni-Sn/Ti displays significantly lower charge transfer resistances. Results show that the electrode of Ni:Sn=8:1 exhibits high electrocatalytic activity towards methanol oxidation.
     According to our review of literatures involved in the electrooxidation of some small organic molecules, it can be concluded that the electro-catalytic oxidation of methanol on Ni/Ti, Ni-Co/Ti and Ni-Sn/Ti electrodes, and electrooxidation of glucose on the Ni-Co/Ti electrode in sodsium hydroxide solution have not been reported. Our study will be of significance in the development of liquid fuel cells and in the electrochemical study on the electrooxidation of small organic molecules.
引文
[1]J.R.Vilche,A.J.Arvia,Kinetics and mechanism of the nickel electrode-Ⅱ.Acid solutions containing a high concentration of sulphate and nickel ions[J].Corros.Sci.,1978,18:441-443
    [2]M.Hajjizadeh,A.Jabbari,H.Heli,et al.,Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode[J].Electrochim.Acta.,2007,53:1766-1774
    [3]Q.S.Song,G.K.Aravindaraj,H.Sultana,et al.,Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries[J].Electrochim.Acta.,2007,53:1890-1896
    [4]P.Parpot,P.R.B.Santos,A.P.Bettencourt,Electro-oxidation of d-mannose on platinum,gold and nickel electrodes in aqueous medium[J].J.Electroanal.Chem.,2007,610:154-162
    [5]M.Jafarian,M.G.Mahjani,H.Heli,et al.,Electrocatalytic oxidation of methane at nickel hydroxide modified nickel electrode in alkaline solution[J].Electrochem.Commun.,2003,5:184-188
    [6]Sheng-Fu Wang,Fen Xie,Ruo-Fei Hu,Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen[J].Sensors and Actuators B:Chemical,2007,123:495-500
    [7]Changzhi Zhao,Changli Shao,Minghua Li Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode[J].Talanta,2007,71:1769-1773
    [8]Zeng Yue,Yu Shangci,Li Ze,et al.,Kinetic model of ethanol oxidation on Ni-Mo electrode[J].Acta Phys.Chim.Sin.,2000,16:1013-1021
    [9]X.Y.Wang,J.Yan,Y.S.Zhang,et al.,Cyclic voltammetric studies of pasted nickel hydroxide electrode microencapsulated by Cobalt[J].J.Appl.Electrochem.,1998,28:1377-1382
    [10]B.Liu,X.Y.Wang,H.T.Yuan,et al.,Physical.and electrochemical characteristics of aluminium-substituted nickel hydroxide[J].J.Appl.Electrochem.,1999,29:855-860
    [11]Innocenzo G.Casella,Maria R.Guascito,Voltammetric and XPS investigations of nickel hydroxide electrochemistry dispersed on gold surface electrode[J].J.Electroanal.Chem.,1999,462:202-210
    [12]衣宝廉.燃料电池—高效、环境友好的发电方式[M].北京:化学工业出版社,2000
    [13]Parsons R.,Noot T.V.,The oxidation of small organic molecules:a survey of recent fuel cell related research[J]. J.Electroanal.Chem., 1988,257:9-45
    [14] Iwasita T., Electrocatalysis of methanol oxidation[J]. Electrochim.Acta., 2002,47: 3663-3674
    
    [15] Andreadis G., Tsiakaras P., Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation[J]. Chem.Eng.Sci., 2006,61:7497- 7508
    [16] Carrette L., Friedrich K.A., Stimming U., Fuel cell:principles,types,fuels and applications[J]. Chemphyschem., 2000,1:162-168
    [17] Liu H., Song C., Zhang L., et al., A review of anode catalysis in the direct methanol fuel cell[J]. J.Power Sources, 2006,155:95-110
    
    [18] Won Choon Choi, Min Ku Jeon, Yo Jin Kim, et al., Development of enhanced materials for direct-methanol fuel cell by combinatorial method and nanoscience[J]. Catal. Today, 2004,93-95:517-522
    [19] Wasmus S., Kuver A., Methanol oxidation and direct methanol fuel cells:a selective review[J]. J.Electroanal.Chem., 1999,461:14-31
    
    [20] Liu H.C., Iglesia E., Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures[J]. J.Phys.Chem.B,2005,109:2155-2163
    [21] Baldauf M., Peridel W., Status of the deveopement of a direct methanol fuel cell[J]. J.Power Sources, 1999,84:161-171
    
    [22] Dohle H., Schmitz H., Bewer T., et al., Development of a compact 500W class direct methanol fuel cell stack[J]. J.Power Sources, 2002,106:313-322
    [23] Schultz T., Zhou S., Sundmacher K., Current status of and recent deveopment in the direct methanol fuel cell[J]. Chem.Eng.Tech., 2001,24:1223-1233
    
    [24] Jaafar J., Ismail A.F., Mustafa A., Physicochemical study of poly ether ketone electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application[J]. Materials Science and Engineering, 2007,460:475-484
    
    [25] Antonucci V., Direct methanol fuel cell for mobile application:A strategy for the future[J]. Fuel Cells Bulletin, 2002,7:6-8
    [26] Wasmus S., Kuver A., Methanol oxidation and direct methanol fuel cells:a selective review[J]. J.Electroanal.Chem., 1999,461:14-31
    [27] Hogarth M.P, Hards G.A., Direct methanol fuel cells[J]. Platinum Metals Rev., 1996,40:150-156
    
    [28] Hobson L.J., Nakano Y., Ozu H., et al., Targeting improve DMFC performances[J]. J.Power Sources, 2002,104:79-86
    [29]Thomas S.C.,Ren X.M.,Gottsfeld S.,et al.,Diret methanol fuel cells:progress in cell performance and cathode research[J].Electrochim.Acta.,2002,47:3741-3748
    [30]Dillon R.,Srinivasan S.,Arico A.S.,International activities in DMFC R&D:status of technologies and potential applications[J].J.Power Sources,2004,127:112-126
    [31]K.B.Prater,Polymer Electrolyte Fuel Fells-a Review of Recent Developments[J].J.Power Sources,1994,51:129-144
    [32]衣宝廉.燃料电池现状与未来[J].电源技术,1998,22:216-221
    [33]沈培康.清洁能源—燃料电池[J].新能源,1995,17:43-46
    [34]Baldauf M.,Kolb F.M.,Formic acid oxidation on ultrathin Pd films on Au(hkl)and Pt(hkl)electrodes[J].J.Phys.Chem.,1996,100:11375-11381
    [35]Markovic N.M.,Gasteiger H.A.,Ross P.N.Jr.,Electro-oxidation mechanism of methanol and formic acid on Pt-Ru alloy surfaces[J].Electrochim.Acta.,1995,40:91-98
    [36]Park S.,Xie Y.,Weaver M.J.,Electrocatalytic pathways on carbon-supported platinum nanoparticles:comparison of partcle-size-dependent rates of methanol,formic acid,and formaldehyde Electrooxidation[J].Langmuir,2002,18:5792-5798
    [37]Zerhun T.,Grundler P.,Oxidation of formaldehyde,methanol,formic acid and glucose at ac heated cylindrical Pt microelectrodes[J].J.Electroanal.Chem.,1998,441:57-63
    [38]de Lima R.B.,Paganin V.,Iwasita T.,et al.,On the electrocatalysis of ethylene glycol oxidation[J].Electrochim.Acta.,2003,49:85-91
    [39]Matsuoka K.,Iriyama Y.,Abe T.,et al.,Electrocatalytic oxidation of ethylene glycol in alkaline solution[J].J.Electrochem.Soc.,2005,152:A729-A731
    [40]Koji Yamada,Kazuaki Yasuda,Hirohisa Tanaka,et al.,Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane[J].J.Power Sources,2003,122:132-137
    [41]Li Z.P.,Liu B.H.,Arai K.,et al.,Evaluation of alkaline borohydride solutions as the fuel for fuel cell[J].J.Power Sources,2004,126:28-33
    [42]Peled E.,Duvdevani T.,Aharon A.,et al.,New fuels as alternatives to methanol for direct oxidation fuel cells[J].Electrochem.Solid state Lett.,2001,4:A38-A41.
    [43]Mench M.M.,Chance H.M.,Wang C.Y,Direct dimethyl ether polymer electrolyte fuel cells for portable applications[J].J.Electrochem.Soc.,2004,151:A144-A150.
    [44]Larry C.,Belgsir E.M.,Leger J.M.,Electrocatalytic oxidation of aliphatic alcohols:Application to the direct alcohol fuel cell(DAFC)[J].J.Appl.Electrochem.,2001,31:799-809
    [45]Elena Cormier,Eric Bain Wasmund,Les V.Renny,et al.,A new powder morphology for making high-porosity nickel structures[J].J.Power Sources,2007,171:999-1009
    [46] Marko Kullapere, Leonard Matisen, Agu Saar, et al., Electrochemical behaviour of nickel electrodes modified with nitrophenyl groups[J]. Electrochem.Commun., 2007, 9:2412-2417
    [47] L.Cassayre, P.Chamelot, L.Arurault, et al., Electrochemical oxidation of binary copper-nickel alloys in cryolite melts[J]. Corrosion Science, 2007,49:3610-3625
    [48] Halpert G., Past development and the future of nickel electrode cell technology[J]. J.Power Sources, 1984,12:177-192
    [49] MacDougall B., Graham M.J., Effect of surface pretreatment on the galvanostatic oxidation of nickel[J]. Electrochim.Acta., 1981,26:705-710
    [50] MacDougall B., Graham M.J., Pitting of nickel during anodic galvanostatic charging in Na_2SO_4 solutions[J]. Electrochim.Acta., 1982,27:1093-1096
    
    [51] Hummel R.E., Smith R.J., Verink Jr E.D., The passivation of nickel in aqueous solutions-I.The identification of insoluble corrosion products on nickel electrodes using optical and ESCA techniques[J]. Corros.Sci.,1987,27:803-813
    [52] Smith R.J., Hummel R.E., Ambrose J.R., The passivation of nickel in aqueous solutions-II.An in situ investigation of the passivation of nickel using optical and electrochemical techniques[J]. Corros.Sci., 1987, 27: 815-826
    [53] Visscher W., Barendrecht E., Anodic oxide films of nickel in alkaline electrolyte[J].Surf.Sci., 1983,135:436-452
    [54] de Souza L.M.M., Kong F.P., McLarnon F.R., et al.,Speclxoscopic ellipsometry study of nickel oxidation in alkaline solution[J]. Electrochim.Acta., 1997,42:1253-1267
    [55] Bode H., Dehmelt K., Witte J., Zur kenntnis der nickelhydroxidelektrode-I. Uber das nickel(II)-hydroxidhydrat[J]. Electrochim. Acta., 1966,11:1079-1087
    [56] Oliva P, Leonardi J, Delmas C, et al., Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides[J]. J.Power Sources, 1982,8:229-255
    [57] 袁安保,张鉴清,曹楚南.镍电极研究进展[J].电源技术,2001,25(1):53-59
    [58] Oshitani M,Yufu H,Takashima K,et al., Development of a pasted nickel electrode with high active material utilization[J]. J.Electrochem.Soc., 1989,136:1590-1593
    
    [59] Luo P F, Kuwana T, Paul D K, et al., Electrochemical and XPS study of the nickel-Titanium electrode surface[J]. Anal.Chem., 1996,68:3330-3337
    
    [60] Waltraud Taucher-Mautner, Karl Kordesch, Studies of pasted nickel electrodes to improve cylindrical nickel-zinc cells[J]. J.Power Sources, 2004,132:275-281
     [61] M.B.J.G.Freitas, Nickel hydroxide powder for NiO·OH/Ni(OH)_2 electrodes of the alkaline batteries[J]. J.Power Sources, 2001,93:163-173
    [62] Z.Q.Zhou, G.W.Lin, J. L.Zhang, et al., Degradation behavior of foamed nickel positive electrodes of Ni-MH batteries[J]. Journal of Alloys and Compounds, 1999,293- 295:795-798
    [63] A.Czerwinski, M.Dmochowska, et al., Electrochemical behavior of nickel deposited on reticulated vitreous carbon[J]. J.Power Sources, 1999,77:28-33
    [64] Zhaorong Chang, Yujuan Zhao, Yunchang Ding, Effects of different methods of cobalt addition on the performance of nickel electrodes[J]. J.Power Sources, 1999,77:69-73
    [65] Qian Zhang,Yanhui Xu, Xiaolin Wang,The electrochemical behavior of Ni(OH)_2 in KOH solution containing aluminum hydroxide[J]. Mater.Chem.Phys., 2004,86:293- 297
    [66] Hao Tang, Jinhua Chen, Shouzhuo Yao, et al. Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation[J]. Materials Chemistry and Physics, 2005,92:548-553
    [67] Xin Zhang, Feng Zhang, Renfeng Guan, et al., Preparation of Pt-Ru-Ni ternary nanoparticles by microemulsion and electrocatalytic activity for methanol oxidation[J]. Materials Research Bulletin, 2007,42:327-333
    [68] Weilin Xu, Tianhong Lu, Changpeng Liu, et al., Electrooxidation of CO_(ad) intermediated from methanol oxidation on polycrystalline Pt electrode[J]. J.Phys.Chem.B, 2006,110: 4802-4807
    
    [69] Errun Ding, Karren L.More, Ting He, Preparation and characterization of carbon- supported PtTi alloy electrocatalysts[J]. J.Power Sources, 2008,175:794-799
    
    [70] Anhong Zhou, Naixian Xie, Investigation of Electrosorption of Organic Molecules onto Gold and Nickel Electrodes Using an Electrochemical Quartz Crystal Microbalance[J]. Journal of Colloid and Interface Science, 1999,220:281-287
    [71] Yue Zeng, Yangcun Zheng, Shangci Yu, et al., An ESR study of the electrocatalytic oxidation of hypophosphite on a nickel electrode[J]. Electrochem.Commun., 2002,4: 293-295
    [72] Yu-Ching Weng, Tse-Chuan Chou, Ethanol sensors by using RuO_2-modified Ni electrode[J]. Sensors and Actuators B: Chemical, 2002,85:246-255
    
    [73] Ahmad Nozad Golikand, Saeed Shahrokhian, Mehdi Asgari, et al., Electrocatalytic oxidation of methanol on a nickel electrode modified by nickel dimethylglyoxime complex in alkaline medium[J]. J.Power Sources, 2005,144:21-27
    [74] Ahmad Nozad Golikand, Mehdi Asgari, Mohammad Ghannadi Maragheh, et al., Methanol electrooxidation on a nickel electrode modified by nickel-dimethylgyoxime complex formed by electrochemical synthesis[J]. J.Electroanal.Chem., 2006,588: 155-160
    [75] M.W.Khalil,M.A.Abdel Rahin,et al., Nickel impregnated silicalite-1 as an electro-catalyst for methanol oxidation[J]. J.Power Sources, 2005,144:35-41
    
    [76] Amjad.M, Pletcher.D, et at., The oxidation of alcohols at a nickel anode in alkaline t-Butanol/water mixtures[J]. J.Electrochem.Soc, 1977,124:203-206
    
    [77] J.Kauler, H.J.Schaefer, Oxidation of alcohols by electrochemically regenerated nickel oxide hydroxide selective oxidation of hydroxysteroids[J]. Tetrahedron, 1982, 38:3299-3308
    
    [78] Shyh-Jiun Liu, Kinetics of methanol oxidation on poly(Ni~(II)-tetramethyldibenzotetraaza[14] annulene)-modified electrodes[J]. Electrochim.Acta., 2004,49:3235-3241
    
    [79] B.E Conway, M.A Suttar, et,al., Electrochemistry of the nicke-oxide electrode-V. self-passivation effects in oxygen evolution kinetics[J]. Electrochim.Acta., 1969,14: 677-694
    
    [80] B.Ballarin,R.Seeber, et al., Electrocatalytic properities of nickel(II) hydrotalcite-type anionic clay: application o methanol and ethanol oxidation[J]. Electroanal.Chem., 1999,463:123-127
    
    [81] M.A.Abdel Rahim, R.M.Abdel Hameed, M.W.Khalil, Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium[J]. J.Power Sources, 2004,134: 160-169
    
    [82] Taraszewska J., Roslonek C., Electrocatalytic oxidation of methanol on a glassy carbon electrode modified by nickel hydroxide formed by ex situ chemical precipitation[J]. J.Electroanal.Chem., 1994,364:209-213
    
    [83] El-Shafei A.A., Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium[J]. J.Electroanal.Chem., 1999,471: 89-95
    [84] Robertson P.M., On the Oxidation of Alcohols and Amines at Nickel Oxide Electrodes: Mechanistic Aspects[J]. J.Electroanal.Chem., 1980,111:97-104
    
    [85] Vaze A.S., Sawant S.B., Pangarkar V.G., Electrochemical oxidation of isobutanol to isobutyricacid at nickel oxide electrode:improvement of the anode stability[J]. J.Appl.Electrochem., 1997,27:584-588
    
    [86] Rostonek G., Taraszewska J., Electrocatalytic oxidation of alcohols on glassy carbon electrodes electrochemically modifed with nickel tetraazamacrocyclic complexes: mechanism off[J]. J.Electroanal.Chem., 1992,325:285-300
    
    [87] Cizewski A., Milczarek G., Electrocatalytic oxidation of alcohols on glassy carbon electrodes electrochemically modified by conductive polymeric nickel(II) tetrakis (3-methoxy-4-hydroxyphenyl) porphyrin film[J]. J.Electroanal.Chem., 1996,413:137- 142
    [88]Cizewski A.,Milezarek G.,Glassy carbon electrode modified by conductive,poly-meric nickel(Ⅱ)porphyrin complex as a 3D homogeneous catalytic system for methanol oxidation in basic media[J].J.Electroanal.Chem.,1997,426:125-130
    [89]Cizewski A.,Milczarek G.Kinetics of electrocatalytic oxidation of formaldehyde on a nickel porphyrin-based glassy carbon electrode[J].J.Electroanal.Chem.,1999,469:18-26
    [90]V.A.Kazakov,V.N.Titova,A.A.Yavich,et al.,Electrocatalytic properties of electrolytic Ni/Ru and Fe/Ru in the methanol oxidation[J].Russian Journal of electrochemistry,2004,40:773-776
    [91]N.Laosiripojana,S.Assabumrungrat,Catalytic steam reforming of methane,methanol and ethanol over Ni/YSZ:The possible use of thesefuels in internal reforming SOFC[J].J.Power Sources,2007,163:943-951
    [92]Zhen-Bo Wang,Ge-Ping Yin,Yu-Yan Shao,et al.,Electrochemical impedance studies on carbon supported PtRuNi and PtRu anode catalysts in acid medium for direct methanol fuel cell[J].J.Power Sources,2007,165:9-15
    [93]Yue Zhao,Yifeng E,Louzhen Fan,et al.,A new route for the electrodeposition of platinum-nickel alloy nanoparticles on multi-walled carbon nanotubes[J].Electrochim.Acta.,2007,52:5873-5878
    [94]Kunugi Y.,Nonaka T.,Chong Y.B.,et al.,Electroorganic reactions on organic electrodes-part 15:Electrolysis using composite-plated electrodes-part Ⅳ.Polarization study on a hydro-phobic Ni/PTFE composite-plated nickel electrode[J].Electrochim.Acta.,1992,37:353-355
    [95]黄令,杨防祖,周绍民等.碱性介质中搞择优取向(220)镍电极上乙醇的电氧化[J].应用化学,2005,22(6):590-594
    [96]黄令,许书楷,周绍民.碱性介质中高择优取向(220)镍电极上丙醇的电氧化[J].高等学校化学学报,1997,18(6):932-937
    [97]黄令,许书楷,汤皎宁等.Ni-Mo-PTFE复合电极的制备及其对甲醇电氧化的催化性能[J].应用化学,1997,14(4):21-24
    [98]孔景临,薛宽宏,何春建等.镍纳米线电极的电化学氧化还原行为及其乙醇的电化学氧化催化作用[J].应用化学,2001,18(6):462-465
    [99]Chen Y L,Chou T.C.,Kinetics and mechanism of anodic oxidation of n-butanol by nickel peroxide[J].Ind.Eng.Chem.Res.,1996,35:2172-2176
    [100]Kowal A.,Port S.N.,Nichols R.J.,Nickel hydroxide electrocatalysts for alcohol oxidation reactions:An evaluation by infrared spectroscopy and electrochemical methods[J].Catal.Today,1997,38:483-492
    [101]章晶晶.镍电极上环己醇电化学氧化研究[D].湖南湘潭:湖南科技大学,2007
    [102]Tripkovic A.V.,Popovic K.D.,Oxidation of methanol on platinum single crystal stepped electrodes from(110)zone in acid solution[J].Electrochim.Acta.,1996,41:2385-2394
    [103]徐红艳,吴华强,徐东梅等.碳纳米管负载纳米Ni修饰电极及碱液中电氧化甲醇[J].应用化学,2007,24(5):503-506
    [104]胡西多,曾志峰,徐常威等.碱性甲醇燃料电池阳极催化剂的研究进展[J].东莞理工学院学报(自然科学版),2007,14(1):30-35
    [105]M Schulze,E Gulzow,G Steinhilber,Activation of nickel-anodes for alkaline fuel cells[J].Applied Surface Science,2001,179:251-256
    [106]Fleischmann M.,Korinek K.,Pleteher D.,The Oxidation of Organic Compounds at a Nickel Anode in Alkaline Solution[J].J.Electroanal.Chem.,1971,31:39-49
    [107]Fleischmann M.,Korinek K.,Pletcher D.,The Kinetiscs and Mechanism of the Oxidation of Amines and Alcohols at Oxide-covered Nickel,Silver,Copper,and Cobalt Electrodes[J].J.Chem.Soc.,1972,10:1396-1403
    [108]R.S.Schrebler Guzam,J.R.Vichle,A.J.Arvia,The kinetics and mechanism of the nickel electrode-Ⅲ.The potentiodynamic response of nickel electrodes in alkaline solutions in the potential region of Ni(OH)_2 formation[J].Corros.Sci.,1978,18:765-778
    [109]L.H.Essis Yei,B.Beden,C.Lamy,Electrocatalytic oxidation of glucose at platinum in alkaline medium:on the role of temperature[J].J.Electroanal.Chem.,1988,24.6:349-362
    [110]褚道葆,李晓华,冯德香等.葡萄糖在碳纳米管/纳米TiO2膜载Pt复合电极上的电催化氧化[J].化学学报,2004,24:2403-2406
    [111]Pei Kang Shen,Alfred C.C.Tseung,In situ monitoring of electrode polarisation during the operation of an electrochromic device based on WO_3[J].J.Electroanal.Chem.,1995,389:219-222
    [112]Xin Zhang,Kwong-Yu Chan,Alfred C.C.Tseung,Electrochemical Oxidation of glucose by Pt/WO_3 electrode[J].J.Electroanal.Chem.,1995,386:241-243
    [113]Larry A.Larew,Dennis C.Johnson,Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media[J].J.Electroanal.Chem.,1989,262:167-182
    [114]Yu.B.Vassilyev,O.A.Khazova,N.N.Nikolaeva,Kinetics and mechanism of glucose ele-ctrooxidation on different electrode-catalysts Part Ⅰ.Adsorption and oxidation on platinum[J].J.Electroanal.Chem.,1985,196:105-125
    [115]Clark L.C.,Lyons C.,Electrode systems for continuous monitoring in cardiovascular surery[J].Ann.N.Y.Acad.Sci.,1962,102:29-45
    [116]Updike S J,Hicks G P,The enzyme electrode[J].Nature,1967,214(6):986-988
    [117]Paulina Suarez,孙世刚,吴辉煌.葡萄糖电化学氧化机理—伏安法与原位FTIR反射光谱法研究[J].科学通讯,1991,22:1707-1710
    [118]赵琨,宋海燕,常竹等.铂纳米颗粒修饰直立方碳纳米管电极的葡萄糖生物传感器[J].高等学校化学学报,2007,28(7):1251-1254
    [119]Kun Wang,Jingjuan Xu,Hongyuan Chen,A novel glucose biosensor based on nanoscaled cobalt phthalocyanine-glecose oxidase biocomposite[J].Biosensors and Bioelectronics,2005,20:1388-1396
    [120]P.Parpot,S.G.Pires,A.P.Bettencourt,Electrocatalytic oxidation of D-galactose in alkaline medium[J].J.Electroanal.Chem.,2004,566:401-408
    [121]O.Enea,Molecular structure effects in electrocatalysis-Ⅱ.Oxidation of D-glucose and of linear polyols on Ni electrodes[J].Electrochim.Acta.,1990,35:375-378
    [122]Isao Taniguchi,Kiichiro Matsushita,Mamoru Okamoto,et al.,Catalytic oxidation of hydrogen peroxide at Ni-cyclam modified electrodes and its application to the preparation of an amperometric glucose sensor[J].J.Electroanal.Chem.,1990,280:221-226
    [123]Henrique Eisi Toma,Lucio Angnes,Amperometric sensor for glucose based on electrochemically polymerized tetraruthenated nickel-porphyrin[J].Analytica.Chimica.Acta.,2005,539:215-222
    [124]Adriana Mignani,Erika Scavetta,Domenica Tonelli,Electrodeposited glucose oxidase/anionic clay for glucose biosensors design[J].Analytica.Chimica.Acta.,2006,577:98-106
    [125]Erika Scavetta,Sandra Stipa,Domenica Tonelli,Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing[J].Electrochem.Commun.,2007,9:2838-2842
    [126]Ojanir,Raoof J B,Salmany-Afagh P,Electrocatalytic oxidation of some carbohydrates by poly(1-naphthylamine)/nickel modified carbonpaste electrode[J].J.Electroanal.Chem,2004,571:1-8
    [127]M.Yousef Elahi,H.Heli,S.Z.Bathaie,et al.,Electrocatalytic oxidation of glucose at a Ni-curcumin modified glassy carbon electrode[J].J.Solid State Electrochem.,2007,11:273-282
    [128]Berchmans S.,Gomathi H.,Prabhakara Rao G.,Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode[J].J.Electroanal.Chem.,1995,394:267-270
    [129]徐红艳,徐冬梅,王谦宜等.碳纳米管负载镍修饰电极对碱液中葡萄糖的电催化氧化[J].安徽师范大学学报(自然科学版),2006,29(6):565-568
    [130]郭仁霞,陈韦韦,胡效亚.基于多壁碳纳米管负载镍的无酶葡萄糖传感器[J].化学传感器,2007,27(1):28-35
    [131]赵常志,张志慧,葛童等.无酶葡萄糖传感器[J].应用化学,2007,24:192-195
    [132]池其金,董绍俊.酶直接电化学与第三代生物传感器[J].分析化学,1994,22(10):1065-1072
    [133]Kremeskotter J,Wilson R,Schiffrin D J,et al.,Detection of glucose via electrochem-iluminescence in a thin-layer cell with a planar optical waveguide[J].Meas.Sci.Techno.,1995,6(9):1325-1328
    [134]Preston J P,Nieman T A.,An electrogenerated chemiluminescence probe and its application utilizing tris(2,2'-bipyridyl)ruthenium(Ⅱ)and luminol chemiluminescence without a flowing stream[J].Anal.Chem.,1996,68(6):966-970
    [135]Cui G,Kim S J,Choi S H,et al.,A disposable amperometric sensor screen printed on a nitrocellulose strip:A glucose biosensor employing lead oxide as an interference-removing agent[J].Anal.Chem.2000,72(8):1925-1929
    [136]叶帮策,谢幸珠.微酶电极的研制及在流动注射中的应用[J].分析化学,1993,21(12):1449-1451
    [137]陈刚,叶建农,张剑霞等.新型葡萄糖氧化酶电极与毛细管电泳的联用[J].复旦大学学报(自然科学版),2002,41(4):382-387
    [138]于秀娟,周定.葡萄糖氧化酶电极制备方法的研究[J].化学传感器,1999,19(2):48-52
    [139]于秀娟,孙丽欣,周定.非导电聚苯胺膜葡萄糖传感器的研究[J].哈尔滨工业大学学报,2003,35(6):85-87
    [140]唐芳琼,孟宪伟.纳米颗粒增强的葡萄糖生物传感器[J].中国科学(B辑),2000,30(2):119-124
    [141]江丽萍,吴霞琴等.基于金纳米的底3代平面型葡萄糖传感器的研究[J].上海师范大学学报(自然科学版),2003,32(1):147-150
    [142]任湘菱,唐芳琼.超细银-金复合颗粒增强酶生物传感器的研究[J].化学学报,2002,60(3):393-397
    [143]王存娥,阳明辉,沈国励等.基于碳纳米管和铁氰酸镍纳米颗粒协同作用的葡萄糖生物传感器[J].化学学报,2006,64(13):1355-1360
    [144]马淳安.有机电化学合成导论[M].北京:科学出版社,2002
    [145]M.H.Pournaghi-Azar,H.Nahalparvari,Electroless preparation and electrochemical behavior of a platinum-doped nickel hexacyanoferrate film-zinc modified electrode:catalytic ability of the electrode for electrooxidation of methanol[J].J.Solid State Electrochem.,2004,8:550-557
    [146]A.Nozad Golikand,M.Ghannadi Maragheh,L.Irannejad,et al.,Electrocatalytic oxidation of methanol on a Nickel(Ⅱ)-1-(2-pyridylazo)-2-naphthol complex modified glass-carbon electrode in alkaline medium[J].Russian Journal of Electrochemistry,2004,42:167-172
    [147]M.Jafarian,R.B.Moghaddam,M.G.Mahjani,et al.,Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium[J].J.Appl.Electrochem.,2006,36:913-918
    [148]B.V.Lyalin,V.A.Petrosyan,Electrosynthesis of adipic acid by undivided cell electrolysis[J].Russ.Chem.Bull.,2004,53(3):688-692
    [149]Yi Qingfeng,Zhang Jingjing,Huang Wu,et al.,Electrocatalytic oxidation of cyclohexanol on a nickel oxyhydroxide modified nickel electrode in alkaline solutions[J].Catalysis Communications,2007,8:1017-1022
    [150]Yi Qingfeng,Huang Wu,Zhang Jingjing,et al.,A novel titanium-supprored nanoporous nickel Electrocatalyst for Cyclohexanol oxidation in alkaline solutions[J].J.Electroanal.Chem.,2007,610:163-170
    [151]章晶晶,黄武,易清风等.环己醇电解氧化制备己二酸[J].应用化学,2008,已录用
    [152]Weinberg N.L.,Weinberg H.R.,Electrochemical oxidation of organic compounds[J].Chem.Rev.,1968,68:449-523
    [153]Moeller K.D.,Synthetic applications of anodic electrochemistry[J].Tetrahedron,2000,56:9527-9554
    [154]George M.V.,Balachandran K.S.,Nickel-peroxide oxidation of organic compounds [J].Chem.Rev.,1975,75(4):491-519
    [155]孔景临,薛宽宏,邵颖等.镍纳米线电极对乙醇的电催化氧化动力学参数的测定[J].物理化学学报,2002,18(3):268-271
    [156]Robertson P.M.,Schwager F.,Norbert I.,The electrochemical oxidation of ethylamine at a nickel anode[J].Electrochim.Acta.,1973,18:923-924
    [157]S.Majdi,A.Jabbari,H.Heli,A study of the electrocatalytic oxidation of aspirin on a nickel hydroxide-modified nickel electrode[J].J.Solid State Electrochem.,2007,11:601-607
    [158]Ting-NienWu,Electrocatalytic oxidation of methyl tert-butyl ether(MTBE)in aqueous solution at a nickel electrode[J].Chemosphere,2007,69:271-278
    [159]H.Razmi-Nerbin,M.H.Pournaghi-Azar,Nickel pentacyanonitrosylferrate film modified aluminum electrode for electrocatalytic oxidation of hydrazine[J].J.Solid State Electrochem.,2002,6:126-133
    [160] Marko Kullapere, Kaido Tammeveski, Oxygen electroreduction on anthraquinone- modified nickel electrodes in alkaline solution[J]. Electrochem.Commun., 2007,9: 1196-1201
    [161] Gobi K.V, Tokuda K., Ohsaka T., Monomolecular films of a nickel (II) pentaazama- crocyclic complex for the electrocatalytic oxidation of hydrogen peroxide at gold Electrodes[J]. J.Electroanal.Chem., 1998,444:145-150
    [162] Losada J., Del Peso L, Beyer L., Redox and electrocatalytic properties of electrodes modified by films of polypyrrole nickel(II) schiff base complexes[J]. J.Electroanal.Chem., 1998,447:147-154
    [163] Hui B.S., Huber CO., Amperometric detection of amines and amino acides in flow injecttion systems with a nickel oxide electrode[J]. Anal.Chim.Acta, 1982,134:211- 218
    [164] Casella I.G., Desimoni E., Cataldi T.R.I., Study of a nickel-catalysed glassy carbon electrode for detection of carbohydrates in liquid chromatography and flow injection analysis[J]. Anal.Chim.Acta., 1991,248:117-125
    [165] Casella LG., Desimoni E., Salvi A.M., Chemically modified electrode for the detection of carbohydrates[J]. Anal.Chim.Acta., 1991,243:61-63
    
    [166] Luo P., Zhang F., Baldwin R.P., Comparison of metallic electrodes for constant- potential amperometric detection of carbohydrates,amino acids and related compounds in flow systems[J]. Anal.Chim.Acta., 1991,244:169-178
    
    [167] Marioli J.M., Luo P.F., Kuwana T., Nickel-chromium alloy electrodes as a carbohydrates detector for liquid chromatography[J]. Anal.Chim.Acta, 1993,282:571-580
    [168] S. Majdi, A. Jabbari, H. Heli, et al., Electrocatalytic oxidation of some amino acids on a nickel-curcumin complex modified glassy carbon electrode[J]. Electrochim. Acta., 2007,52:4622-4629
    [1]日根文男(日),安家驹等译.电解槽工学[M].北京:化学工业出版社,1985
    [2]周伟航等,电化学测量[M].上海:上海科学技术出版社,1985
    [3]李荻.电化学原理[M].北京:北京航天航空大学出版社,1989
    [4]南安普顿电化学小组(英),柳厚田等译.电化学中的仪器方法[M].上海:复旦大学出版社,1992
    [5]田昭武.电化学研究方法[M].北京:科学出版社,1984
    [6]杨辉,卢文庆.应用电化学[M].北京:科学出版社,2002
    [7]阿伦.J.巴德,拉里.R.福克纳著,邵元华,朱果逸,董献堆等译.电化学方法原理和应用(第二版)[M].北京:化学工业出版社,2005
    [8]易清风,李东艳.环境电化学研究方法[M].北京:科学出版社,2006
    [9]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002
    [10]熊兆贤.无机材料研究方法—合成制备分析、表征与性能检测[M].厦门:厦门大学出版社,2000
    [11]潘家来.物质元素的X射线分析—能谱测试技术及其应用[M].北京:科学普及出版社,1984
    [1]Weinberg N.L.,Weinberg H.R.,Electrochemical oxidation of organic compounds[J].Chem.Rev.,1968,68:449-523
    [2]Moeller K.D.,Synthetic applications ofanodic electrochemistry[J].Tetrahedron,2000,56:9527-9554
    [3]George M.V.,Balachandran K.S.,Nickel-peroxide oxidation of organic compounds[J].Chem.Rev.,1975,75(4):491-519
    [4]Oliva P,Leonardi J,Delmas C,et al.,Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides[J].J.Power Sources,1982,8:229-255
    [5]Faure C,Delmas C,Fouassier M,Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO_4 solution[J].J.Power Sources,1991,35:279-290
    [6]Faure C,Borthomieu Y,Delmas C,et al.,Infrared characterization of turbostratic α-and well crystallized α~*-cobalted nickel hydroxides[J].J.Power Sources,1991,36:113-125
    [7]M.B.J.G.Freitas,Nickel hydroxide power for NiO·OH/Ni(OH)_2 electrode of the alka-line batteries[J].J.Power Sources,2001,93:163-173
    [8]J.Kauler,H.J.Schaefer,Oxidation of alcohols by electrochemically regenerated nickel oxide hydroxide selective oxidation of hydroxysteroids[J].Tetrahedron,1982,38:3299-3308
    [9]M.Jafarian,M.G.Mahjani,H.Heli,et al.,Electrocatalytic oxidation of methane at nickel hydroxide modified nickel electrode in alkaline solution[J].Electrochem.Commun.,2003,5:184-188
    [10]M.Jafarian,R.B.Moghaddam,M.G.Mahjani,et al.,Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium[J].J.Appl.Electrochem.,2006,36:913-918
    [11]M.W.Khalil,M.A.Abdel Rahin,et al.,Nickel impregnated silicalite-1 as an electrocatalyst for methanol oxidation[J].J.Power Sources,2005,144:35-41
    [12]Qian Zhang,Yanhui Xu,Xiaolin Wang,The electrochemical behavior of Ni(OH)_2 in KOH solution containing aluminum hydroxide[J].Mater.Chem.Phys.,2004,86:293-297
    [13]A.Nozad Golikand,M.Ghannadi Maragheh,L.Irannejad,et al.,Electrocatalytic oxidation of methanol on a Nickel(Ⅱ)-1-(2-pyridylazo)-2-naphthol complex modified glass-carbon electrode in alkaline medium[J].Russian Journal of Electrochemistry,2004,42:167-172
    [14]M.A.Abdel Rahim,R.M.Abdel Hameed,M.W.Khalil,Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium[J].J.Power Sources,2004,134:160-169
    [15]Ahmad Nozad Golikand,Saeed Shahrokhian,Mehdi Asgari,et al.,Electrocatalytic oxidation of methanol on a nickel electrode modified by nickel dimethylglyoxime complex in alkaline medium[J].J.Power Sources,2005,144:21-27
    [16]M.H.Pournaghi-Azar,H.Nahalparvari.Electroless preparation and electrochemical behavior of a platinum-doped nickel hexacyanoferrate film-zinc modified electrode:catalytic ability of the electrode for electrooxidation of methanol[J].J.Solid State Electrochem.,2004,8:550-557
    [17]Shyh-Jiun Liu,Kinetics of methanol oxidation on poly(Ni~Ⅱ-tetramethyldibenzotetraaza[14]annulene)-modified electrodes[J].Electrochim.Acta.,2004,49:3235-3241
    [18]章晶晶.镍电极上环己醇电化学氧化研究[D].湖南湘潭:湖南科技大学,2007
    [19]章晶晶,黄武,易清风等.环己醇电解氧化制备己二酸[J].应用化学,2008,已录用
    [20]Cote R,Lalande G,Faubert G,et al.,Nonnoble metal-based catalysts for the reduction of oxygen in polyer electrolyte fuel cells[J].New Mat.Electrochem.Systems,1988,1:7-16
    [21]李金峰,宋焕巧,邱新平.直接甲醇燃料电池阳极催化剂的研究进展[J].电源技术,2007,31(2):167-170
    [22]H.Heli,M.Jafarian,M.G.Mahjani,et al.,Electro-oxidation of methanol on copper in alkaline solution[J].Electrochim.Acta.,2004,49:4999-5006
    [23]Daojun Guo,Hulin Li,Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution[J].Carbon,2005,43:1259-1264
    [24]Yonglai Yang,Khaled M.Saoud,Victor Abdelsayed,et al.,Vapor phase synthesis of supported Pd,Au and unsupported bimetallic nanoparticle catalysts for CO oxidation[J].Catal.Commun.,2006,7:281-284
    [25]A.Sarkany,Electroless deposition of Au on Ag sol:Oxidation of carbon monoxide and methanol[J].J.Colloids and Surfaces A:Physicochem.Eng.Aspects,2005,269:67-71
    [26]Yuchuan Liu,Chungchin Yu,Kuanghsuan Yang,Active catalysts of electrochemically prepared nanoparticles for decomposition of aldehyde in alcohol solutions[J].Electrochem.Commun.,2006,8:1163-1167
    [27]Y.Jingsi,X.Jun John,Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions[J].Electrochem.Commun.,2003,5:306-311
    [28]X.Peng,K.Koczkur,A.Chen,et al.,Fabrication and electrochemical properties of novel nanoporous platinum network electrodes[J].Chem.Commun.,2004,24:2872- 2873
    [29]Fang Wang,Jia Zhao,Yanxia Xu,et al.,Electroreduction of dioxygen on Aunano-DNA film electrode in acidic electrolyte[J].Bioelectrochem.,2006,69:148-157
    [30]K.Sasaki,Y.Mo,M.Balasubramanian,et al.,Pt submonolayers on metal nanoparticles novel electrocatalysts for H_2 oxidation and O_2 reduction[J].Electrochim.Acta.2003,48:3841-3849
    [31]Xianyou Wang,Hean Luo,P.V.Parkhutik,et al.,Studies of the performance of nanostructural multiphase nickel hydroxide[J].J.Power Sources,2003,115:153-160
    [32]周震,阎杰,王先友等.纳米材料的特性及其在电催化中的应用[J].化学通报,1998,4:23-26
    [33]A.Ekstrand,K.Jansson,G.Westin,Solution synthesis of nano-phase nickel as film and porpus electrode[J].J.Sol-Gel Sci.Technol.,2000,19:353-356
    [34]Quan Ren,Ya-Pu Zhao,J.C.Yue,et al.,Biological application of multi-component nanowires in hybrid devices powered by F_1-ATPase motors[J].Biomed Microdevices,2006,8:201-208
    [35]Alfred P.Weber,Martin Seipenbusch,Christoph Thanner,et al.,Aerosol Catalysis on Nickel Nanoparticles[J].J.Nanoparticle Res.,1999,1:253-265
    [36]Alfred P.Weber,Parisa Davoodi,Martin Seipenbusch,et al.,Catalytic behavior of nickel nanoparticles:gasborne vs.supported state[J].J.Nanoparticle Res.,2006,8:445-453
    [37]Q.S.Song,Y.Y.Li,S.L.I.Chan,et al.,Physical and electrochemical characteristics of nanostructured nickel hydroxide powder[J].J.Appl.Electrochem.,2005,35:157-162
    [38]B.Rellinghaus,S.Stappert,E.F.Wasssermann,et al.,The effect of oxidation on the structure of nickel nanopaticles[J].Europ.Phys.J.D.,2001,16:249-252
    [39]Amanda C.Garcia,Valdecir A.Paganin,Edson A.,Ticianelli CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC[J].Electrochim.Acta.,2008,53:4309-4315
    [40]F.H.B.Lima,E.R.Gonzalez,Ethanol electro-oxidation on carbon-supported Pt-Ru,Pt-Rh and Pt-Ru-Rh nanoparticles[J].Electrochim.Acta.,2008,53:2963-2971
    [41]Errun Ding,Karren L.More,Ting He Preparation and.characterization of carbonsupported PtTi alloy electrocatalysts[J].J.Power Sources,2008,175:794-799
    [42]Juanying Liu,Jianyu Cao,Qinghong Huang,et al.,Methanol oxidation on carbonsupported Pt-Ru-Ni ternary nanoparticle electrocatalysts[J].J.Power Sources,2008,175:159-165
    [43]Wenming Wang,Dan Zheng,Chong Du,et al.,Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction[J].J.Power Sources,2007, 167:243-249
    [44]Yue Zhao,Yifeng E,Louzhen Fan,et al.,A new route for the electrodeposition of platinum-nickel alloy nanoparticles on multi-walled carbon nanotubes[J].Electrochim.Acta.,2007,52:5873-5878
    [45]Neetu Jha,A.Leela Mohana Reddy,M.M.Shaijumon,et al.,Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell[J].International Journal of Hydrogen Energy,2008,33:427-433
    [46]Dao-Jun Guo,Long Zhao,Xin-Ping Qiu,et al.,Novel hollow PtRu nanospheres supported on multi-walled carbon nanotube for methanol electrooxidation[J].J.Power Sources,2008,177:334-338
    [47]Arava Leela Mohana Reddy,Natarajan Rajalakshmi,Sundara Ramaprabhu,Cobaltpolypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells[J].Carbon,2008,46:2-11
    [48]Hao Tang,Jinhua Chen,Shouzhuo Yao,et al.,Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube(CNT)arrays for methanol oxidation[J].Materials Chemistry and Physics,2005,92:548-553
    [49]K.I.Han,J.S.Lee,S.O.Park,et al.,Studies on the anode catalysts of carbon nanotube for DMFC[J].Electroehim.Acta.,2004,50:791-794
    [50]G.P.Vercesi,J.Rolewicz,Ch.Comninellis,et al.,Characterization of dsa-type oxygen evolving electrodes.Choice of base metal[J].Thermochim.Acta.,1991,176:31-47
    [51]Ch.Comninellis,G.P.Vercesi,Characterization of DSA~(?)-type oxygen evolving electrodes:Choice of a coating[J].J.Appl.Electrochem.,1991,21:335-345
    [52]易清风.甲酸在钛基纳米多孔网状铂电极上的电化学氧化[J].化工学报,2007,58(2):446-451
    [53]易清风,Chen AiCheng,黄武等.一种新型的钛基纳米多孔网状铂电极对甲醇氧化反应的电催化活性[J].高等学校化学学报,2007,28(9):1768-1770
    [54]Yi Qingfeng,Chen AiCheng,Huang Wu,et al.,Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation[J].Electrochem.Commun.,2007,9:1513-1518
    [55]Kallum Koczkur,Qingfeng Yi,Aicheng Chen,Nanoporous Pt-Ru Networks and Their Eleetrocatalytical Properties[J].Adv.Mater.,2007,19:2648-2652
    [56]Yi Qingfeng,Huang Wu,Liu Xiaoping,et al.,Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J].J.Electroanal.Chem.,2008,(in press)
    [57]Yi Qingfeng,Li Lei,Yu Wenqiang,et al.,Hydrothermal synthesis of titanium-supported PtIrRu/Ti electrode and its electrocatalytic activity[J].J.Alloys and Compounds,2008,(in press)
    [58]Yi Qingfeng,Zhang Jingjing,Huang Wu,et al.,Electrocatalytic oxidation of cyclohexanol on a nickel oxyhydroxide modified nickel electrode in alkaline solutions[J].Catalysis Communications,2007,8:1017-1022
    [59]Yi Qingfeng,Huang Wu,Zhang Jingjing,et al.,A novel titanium-supprored nanoporous nickel Electrocatalyst for Cyclohexanol oxidation in alkaline solutions[J].J.Electroanal.Chem.,2007,610:163-170
    [60]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002
    [1]Anderson A B,Grantscharora E,Shiller P,On the lack of activity of substitutional Sn atoms toward the electro-oxidation of Co on Pt anodes,molecular orbital theory[J].J.Electrochem.Soc.,1995,142:1880-1887
    [2]E.ticanelli,J.G.Beery,M.T.Paffett,et al.,An electrochemical,ellipsometric and surface science investigation of the PtRu Bulk alloy surface[J].J.Electroanal.Chem.,1989,258:61-77
    [3]K.Wang,H.A.gasteiger,N.M.Markovic,et al.,On the reation pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces[J].Electrochim.Acta.,1996,41:2587-2593
    [4]C.J.Barnett,G.T.Burstein,A.R.J.Kueernak,et al.,electrocatalytic activity of some carburized nickel,tungsten and molybdenum compounds[J].Electrochim.Acta.,1997,42:2381-2388
    [5]Milosev I,Metikos Hukovic M.,The behavior of CU_(1-x)Ni(x=10%to 40%)alloys in alkaline solutions containing chloride ions[J].Electrochim.Acta.,1997,42:1537-1548
    [6]M.Jafarian,R.B.Moghaddam,M.G.Mahjani,et al.,Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium[J].J.Appl.Electrochem.,2006,36:913-918
    [7]T.Shobha,C.L.Aravinda,L.Gomathi Devi,et al.,Preparation and characterization of oxides of Ni-Cu:anode material for methanol oxidative fuel cells[J].J.Solid state Electrochem.,2003,7:451-455
    [8]Zeng Yue,Yu Shangci,Li Ze,et al.,Kinetic model of ethanol oxidation on Ni-Mo electrode[J].Acta Phys.-Chim.Sin.,2000,16:1013-1021
    [9]黄令,许书楷,汤皎宁等.Ni-Mo-PTFE复合电极的制备及其对甲醇电氧化的催化性能[J].应用化学,1997,14(4):21-24
    [10]T.C.Deivaraj,W.Chena,J.Y.Lee,Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol[J].J.Mater.Chem.,2003,13:2555-2560
    [11]Yue Zhao,Yifeng E,Louzhen Fan,et al.,A new route for the electrodeposition of platinum-nickel alloy nanoparticles on multi-walled Carbon nanotubes[J].Electrochim.Acta.,2007,52:5873-58i8
    [12]S.L.J.Gojkovij,Electrochemical oxidation of methanol on Pt_3Co bulk alloy[J].J.Serb.Chem.Soc.,2003,68:859-870
    [13]Fang P,Luo F,Kuwana T,Nickel-Titanium Alloy electrode as a sensitive and stable LCEC detector for carbohydrates[J].Anal.Chem.,1994,66:2775-2782
    [14]Yeo I H,Johnson D C,Electrochemical response of small organic molecules at nickel copper alloy electrodes[J].J.Electroanal.Chem.,2001,495:110-119
    [15]Anbao Yuan,Shaoan Cheng,Jianqing Zhang,et al.,Effects of metallic cobalt addition on the performance of pasted nickel electrodes[J].J.Power Sources,1999,77:178-182
    [16]M.Jafarian,M.G.Mahjani,H.Heli,et al.,A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode[J].Electrochim.Acta.,2003,48:3423-3429
    [17]曾百肇,魏淑红,赵发琼等.Ni-Co合金电极在碱性介质中的伏安行为及其电催化性能[J].武汉大学学报(理学版),2005,51(2):167-171
    [18]刘有芹,刘六战,沈含熙.氢氧化钴修饰玻碳电极的制备及其电化学行为[J].分析测试学报,2004,23(6):9-13
    [19]Bo Chi,Li Jianbao,Han Yongsheng,et al.,Effect of precipitant on preparation of Ni-Co Spinel Oxide by Coprecipitation Method[J].Materials Letters,2004,58:1415-1418
    [20]林文修,王树喜.电镀Ni-Co合金及其电催化性能的研究[J].电镀与精饰,1997,19(2):10-12
    [21]Sook A K,Studies on the effect of cobalt addition to the nickel hydroxide electrode[J].J.Appl.Electrochem.,1986,16:274-280
    [22]Halpert G,Past development and the future of nickel electrode cell technology[J].J.Power Sources,1984,12:177-192
    [23]J.L.Weininger,Alkaline nickel electrode:introduction to the symposium[M].United states:Energy Citations Database,1981
    [24]Armstrong R D,Briggs G W D,Charles E A,Some effects of the addition of cobalt to nickel hydroxide electrode[J].J.Appl.Electrochem.,1988,18:215-219
    [25]刘有芹,沈含熙.钴氢氧化物修饰玻碳电极的镀膜/循环伏安法制备及其电化学行为[J].化学学报,2004,62(20):2067-2072
    [26]Laviron E,General expression of the linear potential sweep voltammogram in the cade of diffusionless electrochemical systems[J].J.Electroanal.Chem.,1979,101:19-28
    [27]Bouyaghroumni A,Versaud P,Vittori O,Electrodeposition of Co-Ni on aluminum plate from Chloride Bath[J].Candian Metallurgicao Quarterly,1996,35:245-253
    [28]P.Elumalai,H.N.Vasan,N.Munichandraiah,et al.,Kinetics of hydrogen evolution on submicron size Co,Ni,Pd and Co-Ni alloy powder electrodes by d.c.polarization and a.c.impedance studies[J].J.Appl.Electrochem.,2002,32:1005-1010
    [1]L.H.Essis Yei,B.Beden,C.Lamy,Electrocatalytic oxidation of glucose at platinum in alkaline medium:on the role of temperature[J].J.Electroanal.Chem.,1988,246:349-362
    [2]褚道葆,李晓华,冯德香等.葡萄糖在碳纳米管/纳米TiO_2膜载Pt复合电极上的电催化氧化[J].化学学报,2004,24:2403-2406
    [3]Pei Kang Shen,Alfred C.C.Tseung,In situ monitoring of electrode polarisation during the operation of an electrochromic device based on WO_3[J].J.Electroanal.Chem.,1995,389:219-222
    [4]Xin Zhang,Kwong-Yu Chan,Alfred C.C.Tseung,Electrochemical Oxidation of glucose by Pt/WO_3 electrode[J].J.Electroanal.Chem.,1995,386:241-243
    [5]Larry A.Larew,Dennis C.Johnson,Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media[J].J.Electroanal.Chem.,1989,262:167-182
    [6]Yu.B.Vassilyev,O.A.Khazova,N.N.Nikolaeva,Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts Part Ⅰ.Adsorption and oxidation on platinum[J].J.Electroanal.Chem.,1985,196:105-125
    [7]任湘菱,唐芳琼.超细银-金复合颗粒增强酶生物传感器的研究[J].化学学报,2002,60(3):393-397
    [8]唐芳琼,孟宪伟.纳米颗粒增强的葡萄糖生物传感器[J].中国化学(B辑),2000,30(2):119-124
    [9]Yamada S.,Yoshioka T.,Miyaahita M.,et al.,Electrochromic properties of sputtered nickel-oxide films[J].J.Appl.Phys.,1988,63(6):2116-2119
    [10]Passerini S.,Scrosatti B.,Electrochromism of thin-film nickel oxide electrodes[J].Solid State Ionics,1992,53:520-524
    [11]Davila Jimesnez M.M.,Elizalde M.P.,Gonzalez M.,et al.,Electrochemical behaviour of nickel-polyester composite electrodes[J].Electrochim.Acta.,2004,5:4187-4193
    [12]M.B.J.G.Freitas,Nickel hydroxide power for NiO·OH/Ni(OH)_2 electrode of the alkaline batteries[J].J.Power Sources,2001,93:163-173
    [13]Weinberg N.L.,Weinberg H.R.,Electrochemical oxidation of organic compounds[J].Chem.Rev.,1968,68:449-523
    [14]Moeller K.D.,Synthetic applications of anodic electrochemistry[J].Tetrahedron,2000,56:9527-9554
    [15]George M.V.,Balachandran K.S.,Nickel-peroxide oxidation of organic compounds[J].Chem.Rev.,1975,75(4):491-519
    [16]M.Jafarian,M.G.Mahjani,H.Heli,et al.,Electrocatalytic oxidation of methane at nickel hydroxide modified nickel electrode in alkaline solution[J].Electrochem.Commun.,2003,5:184-188
    [17]A.A.El-shafei,Electrocatalytic oxidation of methanol at a nickel hydroxide/glass carbon modified electrode in alkaline medium[J].J.Electroanal.Chem.,1999,471:89-95
    [18]黄令,杨防祖,周绍民等.碱性介质中搞择优取向(220)镍电极上乙醇的电氧化[J].应用化学,2005,22(6):590-594
    [19]黄令,许书楷,周绍民.碱性介质中高择优取向(220)镍电极上丙醇的电氧化[J].高等学校化学学报,1997,18(6):932-937
    [20]Kunugi Y.,Nonaka T.,Chong Y.B.,et al.,Electroorganic reactions on organic electrodespart 15:Electrolysis using composite-plated electrodes-part Ⅳ.Polarization study on a hydrophobic Ni/PTFE composite-plated nickel electrode[J].Electrochim.Acta.,1992,37:353-355
    [21]黄令,许书楷,汤皎宁等.Ni-Mo-PTFE复合电极的制备及其对甲醇电氧化的催化性能[J].应用化学,1997,14(4):21-24
    [22]刘有芹,沈含熙.镍氢氧化物修饰玻碳电极的制备及其电化学行为[J].分析科学学报,2005,21(4):378-380
    [23]徐红艳,徐冬梅,王谦宜等.碳纳米管负载镍修饰电极对碱液中葡萄糖的电催化氧化[J].安徽师范大学学报(自然科学版),2006,29(6):565-568
    [24]郭仁霞,陈韦韦,胡效亚.基于多壁碳纳米管负载镍的无酶葡萄糖传感器[J].化学传感器,2007,27(1):28-35
    [25]孔景临,薛宽宏,何春建等.镍纳米线电极的电化学氧化还原行为及其乙醇的电化学氧化催化作用[J].应用化学,2001,18(6):462-465
    [26]Anbao Yuan,Shaoan Cheng,Jianqing Zhang,et al.,Effects of metallic cobalt addition on the performance of pasted nickel electrodes[J].J.Power Sources,1999,77:178-182
    [27]Oshitani M,Yufu H,Takashima K,et al.,Development of a pasted nickel electrode with high active material utilization[J].J.Electrochem.Soc.,1989,136:1590-1593
    [28]袁安保,张鉴清,曹楚南.镍电极研究进展[J].电源技术,2001,25(1):53-59
    [29]Luo P F,Kuwana T,Paul D K,et al.,Electrochemical and XPS study of the nickel-titanium electrode surface[J].Anal.Chem.,1996,68(19):3330-3337
    [30]孙娟,沈嘉年,姚书典.贵金属掺杂Ti/TiO_2电极的制备及其电催化性能研究[J].化学学报,2006,64(7):647-651
    [31]吴仲达,李松梅,林文廉等.钛基体中离子注入镍和钼的电催化活性[J].高等学校化学学报,1991,12(12):1666-1668
    [32]T.Arikawa,Y.Murakami,Y.Takasu,Simultaneous determination of chlorine and oxy- gen evolving at RuO_2/Ti and RuO_2-TiO_2/Ti anodes by differential electrochemical mass spectroscopy[J].J.Appl.Electrochem.,1998,28:511-516
    [33]A.M.Polcaro,S.Palmas,F.Renoldi,On the performance of Ti/SnO_2 and Ti/PbO_2anodesin electrochemical degradation of 2-chlorophenol for wastewater treatment[J].J.Appl.Electrochem.,1999,29:147-151
    [34]X.Peng,K.Koczkur,A.Chen,et al.,Fabrication and electrochemical properties of novel nanoporous platinum network electrodes[J].Chem.Commun.,2004,24:2872-2873
    [35]易清风.甲酸在钛基纳米多孔网状铂电极上的电化学氧化[J].化工学报,2007,58(2):446-451
    [36]易清风,Chen AiCheng,黄武等.一种新型的钛基纳米多孔网状铂电极对甲醇氧化反应的电催化活性[J].高等学校化学学报,2007,28(9):1768-1770
    [37]Yi Qingfeng,Chen AiCheng,Huang Wu,et al.,Titanium-supported nanoporous bimetallic Pt-Ir eleetrocatalysts for formic acid oxidation[J].Electrochem.Commun.,2007,9:1513-1518
    [38]Kallum Koczkur,Qingfeng Yi,Aicheng Chen,Nanoporous Pt-Ru Networks and Their Electrocatalytical Properties[J].Adv.Mater.,2007,19:2648-2652
    [39]Yi Qingfeng,Huang Wu,Liu Xiaoping,et al.,Electroactivity of Titanium-Supported Nano porous Pd-Pt Catalysts towards Formic Acid Oxidation[J].J.Electroanal.Chem.,2008,(in press)
    [40]Qingfeng Yi,Jingjing Zhang,Aicheng Chen,et al.,Activity of a novel titaniumsupported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol[J].J.Appl.Electrochem.,2008,38:695-701
    [41]Yi Qingfeng,Li Lei,Yu Wenqiang,et al.,Hydrothermal synthesis of titanium-supported PtIrRu/Ti electrode and its electrocatalytic activity[J].J.Alloys and Compounds,2008,(in press)
    [42]易清风,李东艳.环境电化学研究方法[M].北京:科学出版社,2006
    [43]M.Yousef Elahi,H.Heli,S.Z.Bathaie,et al.,Electrocatalytic oxidation of glucose at a Ni-curcumin modified glassy carbon electrode[J].J.Solid State Electrochem.,2007,11:273-282
    [44]阿伦.J.巴德,拉里.R.福克纳著,邵元华,朱果逸,董献堆等译.电化学方法原理和应用(第二版)[M].北京:化学工业出版社,2005
    [45]S.Majdi,A.Jabbari,H.Heli,A study of the electrocatalytic oxidation of aspirin on a nickel hydroxide-modified nickel electrode[J].J.Solid State Electrochem.,2007,11:601-607
    [1]M.A.Abdel Rahim,R.M.Abdel Hameed,M.W.Khalil,Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium[J].J.Power Sources,2004,134:160-169
    [2]N.Laosiripojana,S.Assabumrungrat,Catalytic steam reforming of methane,methanol and ethanol over Ni/YSZ:The possible use of thesefuels in internal reforming SOFC[J].J.Power Sources,2007,163:943-951
    [3]Zhen-Bo Wang,Ge-Ping Yin,Yu-Yan Shao,et al.,Electrochemical impedance studies on carbon supported PtRuNi and PtRu anode catalysts in acid medium for direct methanol fuel cell[J].J.Power Sources,2007,165:9-15
    [4]V.A.Kazakov,V.N.Titova,A.A.Yavich,et al.,Electrocatalytic properties of electrolytic Ni/Ru and Fe/Ru in the methanol oxidation[J].Russian Journal of electrochemistry,2004,40(6):773-776
    [5]J.Kauler,HA.Schaefer,Oxidation of alcohols by electrochemically regenerated nickel oxide hydroxide selective oxidation of hydroxysteroids[J].Tetrahedron,1982,38:3299-3308
    [6]黄令,杨防祖,周绍民等.碱性介质中搞择优取向(220)镍电极上乙醇的电氧化[J].应用化学,2005,22(6):590-594
    [7]Kunugi Y.,Nonaka T.,Chong Y.B.,et al.,Electroorganic reactions on organic electrodes-part 15:Electrolysis using composite-plated electrodes-part Ⅳ.Polarization study on a hydrophobic Ni/PTFE composite-plated nickel electrode[J].Electrochim.Acta.,1992,37:353-355
    [8]B.V.Lyalin,V.A.Petrosyan,Electrosynthesis of adipic acid by undivided cell electrolysis[J].Russ.Chem.Bull.,2004,53(3):688-692
    [9]Yi Qingfeng,Zhang Jingjing,Huang Wu,et al.,Electrocatalytic oxidation of cyclohexanol on a nickel oxyhydroxide modified nickel electrode in alkaline solutions[J].Catalysis Communications,2007,8:1017-1022
    [10]Yi Qingfeng,Huang Wu,Zhang Jingjing,et al.,A novel titanium-supprored nanoporous nickel Electrocatalyst for Cyclohexanol oxidation in alkaline solutions[J].J.Electroanal.Chem.,2007,610:163-170
    [11]Faure C,Delmas C,Fouassier M,Characterization of a turbostratic or-nickel hydroxide quantitatively obtained from an NiSO_4 solution[J].J.Power Sources,1991,35:279-290
    [12]Faure C,Borthomieu Y,Delmas C,et al.,Infrared characterization of turbostratic α-and well crystallized α~*-cobalted nickel hydroxides[J].J.Power Sources,1991,36: 113-125
    [13]M.B.J.G.Freitas,Nickel hydroxide power for NiO-OH/Ni(OH)_2 electrode of the alkaline batteries[J].J.Power Sources,2001,93:163-173
    [14]M.Jafarian,R.B.Moghaddam,M.G.Mahjani,et al.,Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium[J].J.Appl.Electrochem.,2006,36:913-918
    [15]Skowronski J.M.,Wazny A,Nickel foam-based composite electrodes for electrooxidation of methanol[J].J.Solid State Electrochem.,2005,9:890-899
    [16]M.W.Khalil,M.A.Abdel Rahin,et al.,Nickel impregnated silicalite-1 as an electrocatalyst for methanol oxidation[J].J.Power Sources,2005,144:35-41
    [17]Ahmad Nozad Golikand,Saeed Shahrokhian,Mehdi Asgari,et al.,Electrocatalytic oxidation of methanol on a nickel electrode modified by nickel dimethylglyoxime complex in alkaline medium[J].J.Power Sources,2005,144:21-27
    [18]Chao Lin,Andrew B.Bocarsly,Catalytic electrooxidation of hydrazine at the nickel ferricyanide modified electrode:can an array of surface bound one-electron redox centers act in concert[J].J.Electroanal.Chem.,1991,300:325-345
    [19]Eun Young Lee,Daewon Hong,Han Woong Park,et al.,Synthesis,Properties,and Reactions of Trinuclear Macrocyclic Nickel(Ⅱ)and Nickel(Ⅰ)Complexes:Electrocatalytic Reduction of CO_2 by Nickel(Ⅱ)Complex[J].Eur.J.Inorg.Chem.,2003,17:3242-3249
    [20]Ahmad Nozad Golikand,Mehdi Asgari,Mohammad Ghannadi Maragheh,et al.,Methanol electrooxidation on a nickel electrode modified by nickel-dimethylgyoxime complex formed by electrochemical synthesis[J].J.Electroanal.Chem.,2006,588:155-160
    [21]A.Nozad Golikand,M.Ghannadi Maragheh,L.Irannejad,et al.,Electrocatalytic oxidation of methanol on a Nickel(Ⅱ)-1-(2-pyridylazo)-2-naphthol complex modified glass-carbon electrode in alkaline medium[J].Russian Journal of Electrochemistry,2004,42:167-172
    [22]A.Ekstrand,K.Jansson,G.Westin,Solution synthesis of nano-phase nickel as film and porpus electrode[J].J.Sol-Gel Sci.Technol.,2000,19:353-356
    [23]孔景临,薛宽宏,何春建等.镍纳米线电极的电化学氧化还原行为及其乙醇的电化学氧化催化作用[J].应用化学,2001,18(6):462-465
    [24]孔景临,薛宽宏,邵颖等.镍纳米线电极对乙醇的电催化氧化动力学参数的测定[J].物理化学学报,2002,18(3):268-271
    [25]Quan Ren,Ya-Pu Zhao,J.C.Yue,et al.,Biological application of multi-component nanowires in hybrid devices powered by F1-ATPase motors[J].Biomed Microdevices, 2006,8:201-208
    [26]Alfred P.Weber,Martin Seipenbusch,Christoph Thanner,et al.,Aerosol Catalysis on Nickel Nanoparticles[J].J.Nanoparticle Res.,1999,1:253-265
    [27]Alfred P.Weber,Parisa Davoodi,Martin Seipenbusch,et al.,Catalytic behavior of nickel nanoparticles:gasborne vs.supported state[J].J.Nanoparticle Res.,2006,8:445-453
    [28]Q.S.Song,Y.Y.Li,S.L.I.Chan,et al.,Physical and electrochemical characteristics of nanostructured nickel hydroxide powder[J].J.Appl.Electrochem.,2005,35:157-162
    [29]B.Rellinghaus,S.Stappert,E.F.Wasssermann,et al.,The effect of oxidation on the structure of nickel nanopaticles[J].Europ.Phys.J.,2001,16:249-252
    [30]高晓红,张登松,施利毅等.碳纳米管/SnO_4复合电极的制备及其电催化性能研究[J].化学学报,2007,65(7):589-594
    [31]Fen-Fen Zhang,Xiao-Li Wang,Chen-Xin Li,et al.,Assay for uric acid level in rat striatum by a reagentless biosensor based on functionalized multi-wall carbon nanotubes with tin oxide[J],anal.bioanal.chem.,2005,382,1368-1373
    [32]Yi Qingfeng,Zhang Jingjing,Chen Aicheng,et al.,Activity of a novel titanium supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol[J].J.Appl.Electrochem.,2008,38:695-701
    [33]M.Jafarian,M.G.Mahjani,H.Heli,et al.,Electrocatalytic oxidation of methane at nickel hydroxide modified nickel electrode in alkaline solution[J].Electrochem.Commun.,2003,5:184-188
    [34]R.S.Sehrebler Guzam,J.R.Vichle,A.J.Arvia,The potentiodynamic behaviour of nickel in potassium hydroxide solutions[J].J.Appl.Electrochem.,1978,8:67-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700