GM1、神经营养因子和骨骼肌对DRG神经元表型影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经肽免疫反应(neuropeptide-immunoreactive,NP-IR)神经元和神经丝免疫反应(neurofilament-immunoreactive,NF-IR)神经元是背根神经节(dorsal rootganglion,DRG)神经元的两个主要表型。NP-IR神经元周围突属于无髓或薄髓纤维,分布于内脏和皮肤,可以合成并释放P物质(substance P,SP)等生物活性物质。NF-IR神经元周围突则属于有髓纤维,分布于肌梭,主要参与牵张反射刺激,与本体感觉的信息传递有关。SP是DRG神经元内的神经递质,在神经元的胞体内合成,经轴突运输至神经末梢,在炎症、应激等刺激下释放,发挥生物学效应。神经丝是神经元细胞骨架结构的一个重要组成部分,参与维持神经元正常的形态结构。神经丝主要有轻(NF-L)、中(NF-M)、重(NF-H)三种亚型,其分子量分别为68 kDa,160 kDa和200 kDa。神经丝-200(neurofilament 200,NF-200)是构成轴突的主要骨架结构,在DRG神经元发育过程中有表达,是NF-IR神经元表型的一个重要指标。
     单涎性神经节苷脂(monosiaganglioside,GM1)在神经元的发育、分化和存活等生理状态和病理状态下均具有营养作用。体内与体外实验皆表明,GM1可以发挥神经营养因子样作用。体外实验表明,神经元诱导分化过程中伴随着GM1生物合成的改变和核膜GM1含量的增高。
     神经营养因子(neurotrophins,NTs)在周围神经系统的发育和存活中具有重要的调节作用。神经生长因子(nerve growth factor,NGF)、脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)和神经营养素-3(neurotrophin-3,NT-3)都是NTs家族的成员。研究表明,外源性应用这些营养因子可以保护受损神经元,刺激轴突再生。
     NGF在感觉神经元的发育过程中,对于初级传入神经元的存活和表型的形成具有重要的影响作用。体外培养成年DRG感觉神经元发现,部分DRG感觉神经元的神经肽表型是固有的,并且其表型的表达程度可以由NGF来调节。在DRG神经元受损时,NGF还可以逆转具有高亲和力NGF受体的DRG神经元中神经丝mRNA的减少。
     BDNF在中枢和周围神经系统的发育过程中起着重要的作用,可以调节神经元的存活、生长和分化。在DRG感觉神经元中,BDNF主要存在于小型和中型亚群DRG感觉神经元,可以顺向转运至神经元的周围突和中枢突。体内实验表明,BDNF的存在对于DRG感觉神经元的存活和功能的维持具有非常重要的作用。体外实验也表明,部分感觉神经元的存活依赖于BDNF的存在。
     NT-3可作为促细胞分裂因子或诱导神经元分化的因子,维持胚胎发育中神经元的存活,并促进其分化与增殖。NT-3在感觉神经元和交感神经元的存活和分化,以及神经突起发生、突触形成和轴突生长中均具有非常重要的作用。研究发现,DRG感觉神经元可能是脊髓神经营养因子如NT-3的来源之一,并且在脊髓损伤后DRG感觉神经元内的NT-3可以顺行转运至脊髓,有利于脊髓神经元的再生。
     靶组织在维持神经元的功能和神经-肌间的信息传递中,发挥着重要作用。运动神经元与其支配的骨骼肌(skeletal muscle,SKM)之间具有密切的相互依赖关系。两种组织之间的重要信息传递是由神经-肌接头(neuromuscular junction,NMJ)介导的。在这两种组织的其它部位释放和接收各种因子也是它们之间相互影响的一种方式。神经.肌之间的信息传递之一是神经营养因子和其他分子的相互交换。体外实验发现,新生哺乳动物NF-IR阳性DRG神经元,需要SKM提取物中的一种神经营养因子来维持其存活。实验表明,在神经元的发育过程中,靶源性神经营养因子对于支配肌细胞的不同神经元的存活和分化具有重要的生物学作用。感觉神经末梢可以为去神经支配肌组织提供神经营养因子,SKM的肌梭也受DRG感觉神经元支配。
     GM1、NGF、BDNF、NT-3和靶组织SKM对维持神经元的功能都发挥重要的作用。然而,GM1、NGF、BDNF、NT-3单独应用或与靶组织SKM联合应用是否影响DRG感觉神经元的表型目前尚不清楚。基于以上研究背景,本研究在体外建立DRG神经元单纯培养和DRG神经元与SKM细胞联合培养的细胞模型,通过检测体外培养的DRG神经元中SP-IR和NF-200-1R神经元的表达情况,来分析GM1、NGF、BDNF、NT-3和SKM细胞单独应用以及GM1、NGF、BDNF、NT-3分别与SKM细胞联合应用对DRG神经元表型的影响作用,为初级传入神经元表型变化的发育神经生物学提供新的理论和实验依据。
     第一部分GM1和骨骼肌对培养的IBRG神经元表型的影响作用
     胚胎第12.5天(embryonic day 12.5,E12.5)和胚胎第19.5天(embryonic day19.5,E19.5)的大鼠DRG神经元,分别进行体外单纯分散培养以及与SKM细胞的联合培养,体外培养2 d后,分为8组。(1)E12.5对照组:E12.5DRG神经元单纯培养,不施加任何干预因素,继续在培养液内培养4 d;(2)E19.5对照组:E19.5DRG神经元单纯培养,不施加任何干预因素,继续在培养液内培养4 d;(3)E12.5GM1组:E12.5DRG神经元单纯培养,用GM1(终浓度10μg/ml)孵育4 d;(4)E19.5GM1组:E19.5DRG神经元单纯培养,用GM1(终浓度10μg/ml)孵育4 d:(5)E12.5SKM组:E12.5DRG神经元与SKM细胞联合培养,不施加任何干预因素,继续培养4 d;(6)E19.5SKM组:E19.5DRG神经元与SKM细胞联合培养,不施加任何干预因素,继续培养4 d;(7)E12.5GM1+SKM组:E12.5DRG神经元与SKM细胞联合培养,用GM1(终浓度10μg/ml)孵育4 d:(8)E19.5GM1+SKM组:E19.5DRG神经元与SKM细胞联合培养,用GM1(终浓度10μg/ml)孵育4 d。在培养过程中,用倒置相差显微镜动态观察各组标本在不同时间的生长状态。终止培养后,用扫描电子显微镜观察单纯培养中DRG神经元胞体、突起及神经末梢的形态以及联合培养中DRG神经元胞体、突起的形态以及神经末梢与SKM之间的关系;用免疫荧光双标技术来检测单纯培养和联合培养中DRG神经元中SP-IR和NF-200-IR神经元的表达变化。
     实验结果如下:
     (1)倒置相差显微镜和扫描电子显微镜观察发现,DRG神经元的突起跨过SKM细胞或者到达并分布于SKM细胞表面,在SKM细胞自发性收缩的牵动下,DRG神经元的突起也随之移动。
     (2)GM1可以促进体外分散培养的E12.5DRG神经元中SP和NF-200的表达(P<0.05),而不能促进体外分散培养的E19.5DRG神经元中SP和NF-200的表达。
     (3)靶组织SKM细胞可以促进体外培养的E12.5 DRG神经元中NF-200的表达(P<0.05),而不能促进SP的表达;靶组织SKM细胞对体外培养的E19.5DRG神经元中SP和NF-200的表达无影响作用。
     (4)GM1和靶组织SKM细胞对促进E12.5DRG神经元SP和NF-200的表达具有协同作用(P<0.001);而GM1和靶组织SKM细胞对E19.5DRG神经元SP和NF-200的表达无影响作用。
     以上结果表明:在体外合适的培养环境条件下,DRG神经元和SKM细胞可在形态上建立神经-肌连接;在到达靶组织SKM之前(E12.5)的DRG神经元NF-IR表型依赖于靶组织SKM的存在,而NP-IR表型并不依赖于靶组织SKM的存在,这表明NP-IR表型是由其内在固有的特性所决定的;GM1可以促进E12.5 DRG神经元SP和NF-200的表达,这表明在到达靶组织SKM之前(E12.5)的DRG神经元表型具有可塑性;GM1和靶组织SKM细胞促进E12.5DRG神经元SP和NF-200表达的协同作用进一步表明在到达靶组织SKM之前(E12.5)的DRG神经元表型具有明显的可塑性;在到达靶组织SKM之后(E19.5)的DRG神经元表型并不依赖于靶组织SKM或GM1的存在,这表明DRG神经元表型在这一阶段的可塑性变化不明显。这些结果为理解初级传入神经元表型变化的规律提供了新的理论基础和实验依据,并为进一步深入了解GM1和靶组织SKM对神经元表型在发育过程中变化的影响作用,提供了新的思路和方法。
     第二部分神经营养因子和骨骼肌对培养的DRG神经元表型的影响作用
     体外培养的DRG神经元取自Wistar大鼠第12.5 d的胚胎。无菌条件下进行体外DRG神经元单纯培养以及与SKM细胞的体外联合培养,体外培养2 d后,分为8组。(1)对照组:单纯培养的胎鼠DRG神经元,不施加任何干预因素,继续在培养液内培养4 d;(2)NGF组:单纯培养的胎鼠DRG神经元,用NGF(10 ng/ml)孵育4 d;(3)BDNF组:单纯培养的胎鼠DRG神经元,用BDNF(10 ng/ml)孵育4 d;(4)NT-3组:单纯培养的胎鼠DRG神经元,用NT-3(10 ng/ml)孵育4 d;(5)SKM组:胎鼠DRG神经元与SKM细胞联合培养,不施加任何干预因素,继续在培养液内培养4 d;(6)SKM+NGF组:胎鼠DRG神经元与SKM细胞联合培养,用NGF(10 ng/ml)孵育4 d;(7)SKM+BDNF组:胎鼠DRG神经元与SKM细胞联合培养,用BDNF(10 ng/ml)孵育4d:(8)SKM+NT-3组:胎鼠DRG神经元与SKM细胞联合培养,用NT-3(10 ng/ml)孵育4 d。在培养过程中,用倒置相差显微镜动态观察各组标本在不同时间的生长状态。终止培养后,用免疫荧光双标技术检测单纯和联合培养中DRG神经元SP-IR和NF-200-IR神经元表达的比例,用Western blot技术检测联合培养标本中SP和NF-200蛋白的表达。
     实验结果如下:
     (1)NGF可以促进体外分散培养E12.5DRG神经元SP(P<0.01)和NF-200(P<0.05)的表达,并且NGF和靶组织SKM细胞对促进E12.5DRG神经元SP和NF-200的表达具有协同作用(P<0.01)。
     (2)BDNF可以促进体外分散培养E12.5DRG神经元SP和NF-200的表达(P<0.05),并且BDNF和靶组织SKM细胞对促进E12.5DRG神经元NF-200的表达具有协同作用(P<0.05)。
     (3)NT-3和靶组织SKM细胞均可以促进体外分散培养E12.5DRG神经元NF-200的表达(P<0.05),但不能促进神经元SP的表达;并且NT-3和靶组织SKM细胞对促进E12.5DRG神经元NF-200的表达具有协同作用(P<0.001)。
     以上结果表明:神经营养因子NGF、BDNF和NT-3均可影响到达靶组织SKM之前(E12.5)的DRG神经元表型的表达变化。但NGF、BDNF和NT-3对DRG神经元表型的影响作用程度不同,NGF和BDNF单独应用时可影响NP-IR和NF-IR两种神经元表型,而NT-3则只能影响NF-IR神经元表型。NGF与靶组织SKM联合应用时,NP-IR和NF-IR两种神经元表型均表达增加,这显示NGF与SKM对两种神经元表型的影响具有协同作用。BDNF、NT-3分别与靶组织SKM联合应用时,仅对NF-IR神经元表型的影响具有协同作用。这表明DRG神经元表型在发育过程中的可塑性变化在不同的环境条件下是不同的,但神经营养因子NGF、BDNF、NT-3与SKM的协同作用机制尚需进一步探讨。这些结果为进一步深入了解各种神经营养因子和靶组织SKM对发育过程中神经元表型变化的影响机制,提供了一条新的研究途径。
The neuropeptide-immunoreactive(NP-IR) and neurofilament-IR(NF-IR) neurons are two major phenotypical classes in dorsal root ganglion(DRG).NP-IR neurons are considered to be with unmyelinated or thinly myelinated nociceptive afferents which are considered to innervate skin and viscera.Neuropeptide-IR neurons synthesized and released a variety of bioactive substances,including substance P(SP).Whereas neurofilament-IR neurons typically have myelinated axons which are considered to innervate muscle spindle,involved in the stretch reflex and proprioception.The neurotransmitters of SP are located in the DRG neurons,synthesized in the cell bodies and transported to the axon terminals in the state of inflammation,stress and other stimuli.Neurofilaments are the important structural component of the neurons cytoskeleton,involved in the maintenance of normal structure and morphology.There are three neurofilament subtypes,NF-light, medium,and heavy,that is,NFL,NFM and NFH.The molecular weight was 68 kDa,160 kDa and 200 kDa,respectively.NF-200 is the main component of the cells skeleton structure.In DRG neurons,it is expressed during development.It is an important indicator for the identification of NF-IR neuronal phenotype.
     Monosialoganglioside(GMI) plays a nutritional role in neuronal development, differentiation,and survival in the condition of physiological and pathological.Both in vivo and in vitro experiments showed that,GM1 can play a neurotrophic factor-like role in neurons.In vitro,the differentiation of neurons is accompanied by the biosynthesis of GM1 and the content increased of membrane GM1.
     The motor neurons and skeletal muscle fibers they innervate are strongly dependent on each other.Important communication between both tissues is mediated through the neuromuscular junction.However,release and reception of various factors at other parts of both tissues must also be considered as means of mutual influences.Exchange of neurotrophins and other molecules is likely to be an important source of nerve-muscle communication.The in vitro survival of neonatal mammalian neurofilament-positive DRG neurons requires the presence of a neurotrophic factor present in skeletal muscle extract.The experimental results show that during the development of neurons,target-derived neurotrophic factor has an important role in the survival and differentiation of the innervated neurons. Skeletal muscles(i.e.,muscle spindle) are also innervated by DRG sensory neurons which are considered as neurofilament-IR neurons.
     Neurotrophins(NTs) are the most profound known regulators of survival in the developing peripheral nervous system.Nerve growth factor(NGF),brain-derived neurotrophic factor(BDNF),and neurotrophin 3(NT-3) are three members of the neurotrophic factor(neurotrophin) family.Exogenous administration of these factors has protective properties for injured neurons and stimulates axonal regeneration.NGF has a key role in the survival and establishment of the phenotype of responsive primary afferent neurons during development.Some neuronal phenotypes of neuropeptides are retained and can remain sensitive to NGF regulation in aged DRG neuronal cultures.NGF regulates sensory neuron phenotype by elevated expression of ion channels and receptors contributing to pain. After the DRG neurons damaged,NGF counteracted this injury-induced reduction of neurofilament mRNA but only in neurons with high-affinity NGF receptors.
     BDNF plays a critical role in the development of the central and peripheral nervous systems,supports proliferation,differentiation and survival of neurons.It has been shown that BDNF is present in a subpopulation of small- to medium-sized DRG sensory neurons and is anterogradely transported in both the peripheral and central processes.The presence of BDNF is necessary for the maintenance of the DRG neurons in vivo.In vitro studies suggest that survival of many populations of cranial sensory neurons initially depends on BDNF.
     NT-3 is also a key member of neurotrophin family.NT-3 has an important role in survival and differentiation of neurons served as a factor of promoting cell division or inducing neuronal differentiation.NT-3 plays an important role in survival and differentiation of sensory and sympathetic neurons,sprouting of neurites,synaptic reorganization,and axonal growth.
     GM1,NGF,BDNF,NT-3 and target tissues are essential for the maintenance of the function of neurons.However,much less is known about the influence of GM1, NGF,BDNF,NT-3 and target muscle cells on DRG neuronal phenotypes.And also, association of target muscle cells with GM1,NGF,BDNF and NT-3 on influence of DRG neuronal phenotype remains unknown.Here we have established a single DRG neurons culture model and a neuromuscular co-culture model of DRG neurons and skeletal muscle cells to test what extent to the expression of SP and NF-200 in DRG neurons in both cell culture models.
     PartⅠEffects of GM1 and skeletal muscle cells on dorsal root ganglion neuronal phenotypes in vitro
     DRG was harvested at embryonic days 12.5(El2.5) and E19.5,and cultured without and with skeletal muscle cells(SKM).After cultured for 2 d,the cultures were divided into 8 groups.(1) E12.5 control:E12.5 DRG neurons was cultured continuously for another 4 d;(2) E19.5 control:E19.5 DRG neurons was cultured continuously for another 4 d;(3) E12.5 GM1 group:E12.5 DRG neuronal culture was exposed to GM1(final concentration,FC:10μg/ml) for another 4 d;(4) E19.5 GMI group:E19.5 DRG neuronal culture was exposed to GMI(final concentration, FC:10μg/ml) for another 4 d;(5) E12.5 SKM group:The co-culture of E12.5 DRG neurons and SKM cells was cultured for another 4 d;(6) E19.5 SKM group:The co-culture of E19.5 DRG neurons and SKM cells was cultured for another 4 d;(7) E12.5 GMI+SKM group:The co-culture of E12.5 DRG neurons and SKM cells with GMI exposure(FC:10μg/ml) for another 4 d;(8) E19.5 GM1+SKM group: The co-culture of E19.5 DRG neurons and SKM cells with GMI exposure(FC:10μg/ml) for another 4 d.All the cultured living cells were observed under inverted phase contrast microscope.The morphology of DRG neurons and the relationship between DRG neuronal terminals and SKM cells were observed by using scanning electron microscope(SEM) at 6 d of culture age.DRG cultures and neuromuscular co-cultures were processed for double immunofluorescent labeling of MAP2 and SP or NF-200 at 6 d of culture age.
     The results are as follows:
     (1) Under inverted phase contrast microscope and scanning electron microscopy,it has shown that many DRG neurons neurites crossed or distributed to the surface of the SKM cells.
     (2) GM1 could promote SP and NF-200 expression in the cultures of DRG harvested at E12.5(P<0.05).GMI had not effects on SP and NF-200 expression in the cultures of DRG harvested at E19.5.
     (3) Target SKM could promote expression of NF-200(P<0.05) but not SP in the cultures of DRG harvested at E12.5.Target skeletal muscle cells had not effects on SP and NF-200 expression in the cultures of DRG harvested at E19.5.
     (4) GM1 and target skeletal muscle cells had synergistic effects on the expression of SP and NF-200 in the cultures of DRG harvested at E12.5(P<0.001). Target skeletal muscle cells combined with GM1 had not effects on SP and NF-200 expression in the cultures of DRG harvested at E19.5.
     The results indicate that the contact between DRG neurons and skeletal muscle cells was founded in the neuromuscular co-culture of DRG neurons and skeletal muscle cells.These data suggest that neurofilament-IR neurons,but not neuropeptide-IR neurons,are partially dependent on the presence of target skeletal muscle cells.In the present study,GM1 promoted SP and NF-200 expression in E12.5 DRG neuronal cultures.Target skeletal muscle cells only induced NF-200, but not SP expression in E12.5 DRG neuronal cultures.Furthermore,GM1 and target skeletal muscle cells had synergistic effects on SP and NF-200 expression in E12.5 DRG neuronal cultures.These results indicated that the cultured DRG neurons which were harvested at times before(at E12.5) sensory neurons contact peripheral targets in vivo have some plasticity in the presence of GM1.However, the DRG neurons phenotype harvested after(at E19.5) sensory neurons contact peripheral targets in vivo are not dependent on the presence of target skeletal muscle cells and GM1.These results offered new clues for a better understanding of the association ofGMl and skeletal muscle with neuronal phenotypes.
     PartⅡEffects of neurotrophins and skeletal muscle cells on dorsal root ganglion neuronal phenotypes in vitro
     DRG cell culture preparations utilized E12.5 d Wistar rats.Under aseptic conditions,DRG neurons are cultured as dissociate cells or cultured as the neuromuscular co-cultures of DRG neurons and SKM cells.After cultured for 2d, the cultures were divided into 8 groups.(1) Control:DRG neurons was cultured continuously for another 4 d;(2) NGF group:DRG neuronal culture was exposed to NGF(FC:10 ng/ml) for another 4 d;(3) BDNF group:DRG neuronal culture was exposed to BDNF(FC:10 ng/ml) for another 4 d;(4) NT-3 group:DRG neuronal culture was exposed to NT-3(FC:10 ng/ml) for another 4 d;(5) SKM group:The co-culture of DRG neurons and SKM cells was cultured for another 4 d;(6) SKM+NGF group:The co-culture of DRG neurons and SKM cells with NGF exposure(FC:10 ng/ml) for another 4 d;(7) SKM+ BDNF group:The co-culture of DRG neurons and SKM cells with BDNF exposure(FC:10 ng/ml) for another 4 d; (8) SKM+ NT-3 group:The co-culture of DRG neurons and SKM cells with NT-3 exposure(FC:10 ng/ml) for another 4 d.All the cultured living cells were observed under inverted phase contrast microscope.At 6 d of culture age,all above cultured samples were processed for detecting the expression of SP and NF-200 in DRG neurons by double immunofluorescent technique.The neuromuscular co-culture samples were processed for detecting the expression of SP and NF-200 in DRG neurons by Western blot analysis.
     The results are as follows:
     (1) NGF could promote SP(P<0.01) and NF-200(P<0.05) expression in the cultures of DRG harvested at E12.5 d,and NGF and target SKM cells had synergistic effects on the expression of SP and NF-200 in the cultures of DRG harvested before sensory neurons contact peripheral targets in vivo(E12.5).
     (2) BDNF could promote SP and NF-200 expression in the cultures of DRG harvested at E12.5 d(P<0.05),and BDNF and target SKM cells had synergistic effects on the expression of NF-200 in the cultures of DRG harvested at E12.5.
     (3) NT-3 and target SKM cells could promote expression of NF-200(P<0.05) but not SP in the cultures of DRG harvested at E12.5 d,and NT-3 and target SKM cells had synergistic effects on the expression of NF-200 in the cultures of DRG harvested at E12.5(P<0.001).
     The results indicate that NGF,BDNF or NT-3 have an effect on the expression of DRG neurons phenotype in the cultures of DRG harvested before sensory neurons contact peripheral targets in vivo(E12.5).Neurothophins and target tissues have different effects on the phenotype of DRG neurons.NGF and BDNF play a key role in the NP-IR and NF-IR phenotype of DRG neurons,but NT-3 only have a role in the NF-IR phenotype of DRG neurons.NGF and SKM cells had synergistic effects on the two major phenotypicai classes in DRG.BDNF and NT-3 had synergistic effects on the NF-IR phenotype of DRG neurons in the presence of SKM cells.These datas showed that the DRG neurons phenotypic plasticity is different in different conditions during the development.The mechanism involved in these effects should be clarified by further study.These results provided a new way to find the mechanism of the changes of neuronal phenotypes affected by the NTs and target SKM cells.
引文
Al-Chalabi A, Miller CC. Neurofilaments and neurological disease. Bioessays, 2003, 25 (4): 346-355.
    
    Barde YA. Trophic factors and neuronal survival. Neuron, 1989, 2 (6): 1525-1534.
    Benemei S, Nicoletti P, Capone JG, Geppetti P. CGRP receptors in the control of pain and inflammation. Curr Opin Pharmacol, 2009, 9 (1): 9-14.
    DiGregorio DA, Negrete O, Jeromin A, Peng HB, Vergara JL Contact-dependent aggregation of functional Ca2+ channels, synaptic vesicles and postsynaptic receptors in active zones of a neuromuscular junction. Eur J Neurosci, 2001, 14 (3): 533-546.
    Dreyfus H, Sahel J, Heidinger V, Mohand-Said S, Guerold B, Meuillet E, Fontaine V, Hicks D. Gangliosides and neurotrophic growth factors in the retina. Molecular interactions and applications as neuroprotective agents. Ann N Y Acad Sci, 1998, 845:240-252.
    Dutton EK, Uhm CS, Samuelsson SJ, Schaffner AE, Fitzgerald SC, Daniels MP. Acetylcholine receptor aggregation at nerve-muscle contacts in mammalian cultures: induction by ventral spinal cord neurons is specific to axons. J Neurosci, 1995, 15 (11): 7401-7416.
    Facci L, Leon A, Toffano G, Sonnino S, Ghidoni R, Tettamanti G.Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem, 1984, 42 (2): 299-305.
    Ferrari G, Greene LA. Prevention of neuronal apoptotic death by neurotrophic agents and ganglioside GM1: insights and speculations regarding a common mechanism. Perspect Dev Neurobiol, 1996, 3 (2): 93-100.
    Fitzgerald M. A physiological study of the prenatal development of cutaneous sensory inputs to dorsal horn cells in the rat. J Physiol, 1991, 432: 473-482.
    Fitzgerald M. Prenatal growth of fine-diameter primary afferents into the rat spinal cord: a transganglionic tracer study. J Comp Neurol, 1987,261 (1): 98-104.
    Gibbins IL, Furness JB, Costa M. Pathway-specific patterns of the co-existence of substance P, calcitonin gene-related peptide, cholecystokinin and dynorphin in neurons of the dorsal root ganglia of the guinea-pig. Cell Tissue Res, 1987 , 248 (2): 417-437.
    Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, McGregor GP, Morrison JF, Kelly JS, Evans RM, et al. Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J Neurosci, 1984, 4(12): 3101-3111.
    Goettl VM, Neff NH, Hadjiconstantinou M. Sciatic nerve axotomy in aged rats: response of motoneurons and the effect of GM1 ganglioside treatment. Brain Res, 2003, 968(1): 44-53.
    Goettl VM, Wemlinger TA, Duchemin AM, Neff NH, Hadjiconstantinou M. GM1 ganglioside restores dopaminergic neurochemical and morphological markers in aged rats. Neuroscience, 1999, 92 (3): 991-1000.
    Hall AK, Ai X, Hickman GE, MacPhedran SE, Nduaguba CO, Robertson CP. The generation of neuronal heterogeneity in a rat sensory ganglion. J Neurosci, 1997, 17 (8): 2775-2778.
    Harel R, Futerman AH. Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons. J Biol Chem, 1993, 268 (19): 14476-14481.
    Helme RD, Koschorke GM, Zimmermann M. Immunoreactive substance P release from skin nerves in the rat by noxious thermal stimulation. Neurosci Lett, 1986, 63: 295-299.
    Hokfelt T, Kellerth JO, Nilsson G, Pernow B. Substance p: localization in the central nervous system and in some primary sensory neurons. Science, 1975, 190 (4217): 889-890.
    Howe CL, Valletta JS, Rusnak AS, Mobley WC. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron, 2001, 32 (5): 801-814.
    Huang P, Xu W, Yoon SI, Chen C, Chong PL, Liu-Chen LY. Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem Pharmacol, 2007, 73 (4): 534-549.
    Ichikawa N, Iwabuchi K, Kurihara H, Ishii K, Kobayashi T, Sasaki T, Hattori N, Mizuno Y, Hozumi K, Yamada Y, Arikawa-Hirasawa E. Binding of laminin-1 to monosialoganglioside GMl in lipid rafts is crucial for neurite outgrowth. J Cell Sci, 2009,122 (Pt 2): 289-299.
    Inokuchi J, Mizutani A, Jimbo M, Usuki S, Yamagishi K, Mochizuki H, Muramoto K, Kobayashi K, Kuroda Y, Iwasaki K, Ohgami Y, Fujiwara M. Up-regulation of ganglioside biosynthesis, functional synapse formation, and memory retention by a synthetic ceramide analog (L-PDMP). Biochem Biophys Res Commun, 1997, 237 (3): 595-600.
    Julien JP. Neurofilament functions in health and disease. Curr Opin Neurobiol, 1999, 9 (5): 554-560.
    Kessler JA, Black IB. Similarities in development of substance P and somatostatin in peripheral sensory neurons: effects of capsaicin and nerve growth factor. Proc Natl Acad Sci U S A, 1981, 78 (7): 4644-4647.
    Kucera J, Walro JM, Reichler J. Innervation of developing intrafusal muscle fibers in the rat. Am J Anat, 1988, 183 (4): 344-358.
    
    Kucera J, Walro JM, Reichler J. Role of nerve and muscle factors in the development of rat muscle spindles. Am J Anat, 1989, 186(2): 144-160.
    Kudo N, Yamada T. Development of the monosynaptic stretch reflex in the rat: an in vitro study. J Physiol, 1985, 369: 127-144.
    Lawson SN, Caddy KW, Biscoe TJ. Development of rat dorsal root ganglion neurones. Studies of cell birthdays and changes in mean cell diameter. Cell Tissue Res, 1974, 153 (3): 399-413.
    Lawson SN, Harper AA, Harper EI, Garson JA, Anderton BH. A monoclonal antibody against neurofilament protein specifically labels a subpopulation of rat sensory neurones. J Comp Neurol, 1984,228:263-272.
    Lee Y, Takami K, Kawai Y, Girgis S, Hillyard CJ, MacIntyre I, Emson PC, Tohyama M. Distribution of calcitonin gene-related peptide in the rat peripheral nervous system with reference to its coexistence with substance P. Neuroscience, 1985, 15(4): 1227-1237.
    Levine JD, Clark R, Devor M. Intraneuronal substance P contributes to the severity of experimental arthritis. Science, 1984,226: 547-549.
     Lohof AM, Ip NY, Poo MM. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature, 1993, 363 (6427): 350-353.
    Mars T, Martincic DS. Apoptosis in co-cultures of human muscle and rat spinal cord during the formation of the neuromuscular junction. Pflugers Arch, 2001, 442 (6 Suppl 1):R177-178.
    McCarthy PW, Lawson SN. Cell type and conduction velocity of rat primary sensory neurons with substance P-like immunoreactivity. Neuroscience, 1989, 28 (3): 745-753.
    McManaman JL, Haverkamp LJ, Oppenheim RW. Skeletal muscle proteins rescue motor neurons from cell death in vivo. Adv Neurol, 1991, 56: 81-88.
    Michael GJ, Priestley JV. Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J Neurosci, 1999, 19 (5): 1844-1854.
    Miletic V, Tan H. Iontophoretic application of calcitonin gene-related peptide produces a slow and prolonged excitation of neurons in the cat lumbar dorsal horn. Brain Res, 1988,446 (1): 169-172.
    Mimics K, Koerber HR. Prenatal development of rat primary afferent fibers: I. Peripheral projections. J Comp Neurol, 1995, 355 (4): 589-600.
    Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T, Furukawa K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem, 2002, 277 (13): 11239-11246.
    O'Brien C, Woolf CJ, Fitzgerald M, Lindsay RM, Molander C. Differences in the chemical expression of rat primary afferent neurons which innervate skin, muscle or joint. Neuroscience, 1989, 32 (2): 493-502.
    Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar facet joints in rats. Auton Neurosci, 2000, 86 (1-2): 13-17.
    Oppenheim RW, Haverkamp LJ. Neurotrophic interactions in the development of spinal cord motoneurons. Ciba Found Symp, 1988, 138: 152-171.
     Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci, 1991,14:453-501.
    Pant HC, Veeranna. Neurofilament phosphorylation. Biochem Cell Biol, 1995, 73 (9-10): 575-592.
    Perry MJ, Lawson SN, Robertson J. Neurofilament immunoreactivity in populations of rat primary afferent neurons: a quantitative study of phosphorylated and non-phosphorylated subunits. J Neurocytol, 1991, 20: 746 -758.
    Rabin SJ, Bachis A, Mocchetti I. Gangliosides activate Trk receptors by inducing the release of neurotrophins. J Biol Chem, 2002, 277 (51): 49466-49472.
    Reynolds ML, Fitzgerald M, Benowitz LI. GAP-43 expression in developing cutaneous and muscle nerves in the rat hindlimb. Neuroscience, 1991, 41 (1): 201-211.
    Rodriguez JA, Piddini E, Hasegawa T, Miyagi T, Dotti CG. Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci, 2001, 21 (21): 8387-8395.
    Rusnati M, Urbinati C, Tanghetti E, Dell'Era P, Lortat-Jacob H, Presta M. Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proc Natl Acad Sci USA, 2002, 99 (7): 4367-4372.
    
    Saito K. Development of spinal reflexes in the rat fetus studied in vitro. J Physiol, 1979,294:581-594.
    Schwarz A, Rapaport E, Hirschberg K, Futerman AH. A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching. J Biol Chem, 1995,270 (18): 10990-10998.
    Senba E, Shiosaka S, Hara Y, Inagaki S, Sakanaka M, Takatsuki K, Kawai Y, Tohyama M. Ontogeny of the peptidergic system in the rat spinal cord: immunohistochemical analysis. J Comp Neurol, 1982, 208 (1): 54-66.
    Skaper SD, Katoh-Semba R, Varon S. GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions. Brain Res, 1985 , 355 (1): 19-26.
    Spoerri PE, Roisen FJ. Ganglioside potentiation of NGF-independent trophic agents on sensory ganglia. Neurosci Lett, 1988,90 (1-2): 21-26.
    Streit J, Spenger C, Luscher HR. An Organotypic Spinal Cord - Dorsal Root Ganglion - Skeletal Muscle Coculture of Embryonic Rat. 11. Functional Evidence for the Formation of Spinal Reflex Arcs In Vitro. Eur J Neurosci, 1991,3(11): 1054-1068.
    Supowit SC, Ethridge RT, Zhao H, Katki KA, Dipette DJ. Calcitonin gene-related peptide and substance P contribute to reduced blood pressure in sympathectomized rats. Am J Physiol Heart Circ Physiol, 2005, 289 (3): H1169-1175.
    Theriault E, Otsuka M, Jessell T. Capsaicin-evoked release of substance P from primary sensory neurons. Brain Res, 1979, 170: 209-213.
    V Euler US, Gaddum JH. An unidentified depressor substance in certain tissue extracts. J Physiol, 1931, 72 (1): 74-87.
    Valmier J, Tafti M, Baldy-Moulinier M. Skeletal muscle extracts promote the survival of neurofilament-positive mammalian sensory neurons. Neurosci Lett, 1990,114(1):39-44.
    Vorwerk CK, Bonheur J, Kreutz MR, Dreyer EB, Laev H. GM1 ganglioside administration protects spinal neurons after glutamate excitotoxicity. Restor Neurol Neurosci, 1999, 14(1): 47-51.
    Wang XH, Poo MM. Potentiation of developing synapses by postsynaptic release of neurotrophin-4. Neuron, 1997, 19 (4): 825-835.
    
    Wu G, Lu ZH, Xie X, Ledeen RW. Susceptibility of cerebellar granule neurons from GM2/GD2 synthase-null mice to apoptosis induced by glutamate excitotoxicity and elevated KC1: rescue by GM1 and LIGA20. Glycoconj J, 2004, 21 (6): 305-313.
    Amann R, Sirinathsinghji DJ, Donnerer J, Liebmann I, Schuligoi R. Stimulation by nerve growth factor of neuropeptide synthesis in the adult rat in vivo: bilateral response to unilateral intraplantar injections. Neurosci Lett, 1996, 203 (3): 171-174.
    Aoki Y, Takahashi Y, Ohtori S, Moriya H, Takahashi K. Distribution and immunocytochemical characterization of dorsal root ganglion neurons innervating the lumbar intervertebral disc in rats: a review. Life Sci, 2004, 74 (21): 2627-2642.
    Apfel SC. Neurotrophic factors in peripheral neurophthis: therapeutic implications. Brain Pathol, 1999, 9 (2): 393-413.
    Averill S, McMahon SB, Clary DO, Reichardt LF, Priestley JV. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur J Neurosci, 1995, 7 (7): 1484-1494.
    Barbacid M. The trk family of neurotrophin receptors. J Neurobiol, 1994, 25 (11): 1386-1403.
    Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J, 1982, 1 (5): 549-553.
    Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev, 2000, 14 (23): 2919-2937.
    Boeshore KL, Luckey CN, Zigmond RE, Large TH. TrkB isoforms with distinct neurotrophin specificities are expressed in predominantly nonoverlapping populations of avian dorsal root ganglion neurons. J Neurosci, 1999, 19 (12): 4739-4747.
    Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nature Med, 2002, 8 (2): 136-142.
    Braun S, Croizat B, Lagrange MC, Warter JM, Poindron P. Neurotrophins increase motoneurons' ability to innervate skeletal muscle fibers in rat spinal cord-human muscle cocultures. J Neurol Sci, 1996,136 (1-2): 17-23.
    Buchman VL, Davies AM. Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development, 1993, 118 (3): 989-1001.
    Bueno L. Gastrointestinal pharmacology: irritable bowel syndrome. Curr Opin Pharmacol, 2005, 5 (6): 583-588.
    Caldero J, Prevette D, Mei X, Oakley RA, Li L, Milligan C, Houenou L, Burek M, and Oppenheim RW. Peripheral Target Regulation of the Development and Survival of Spinal Sensory and Motor Neurons in the Chick Embryo. J Neurosci, 1998, 18(1): 356-370.
    Carter MS, Krause JE. Structure, expression and some regulatory mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, neuropeptide K and neuropeptide gamma. J Neurosci, 1990, 10: 2203-2214.
    Chalazonitis A. Neurotrophin-3 as an essential signal for the developing nervous system. Mol Neurobiol, 1996, 12 (1): 39-53.
    
    Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci, 2003, 4 (4): 299-309.
    Davies AM. The role of neurotrophins in the developing nervous system. J Neurobiol, 1994,25(11): 1334-1148.
    Dechant G, Barde YA. The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci, 2002, 5 (11): 1131-1136.
     Duman RS. Novel therapeutic approaches beyond the serotonin receptor. Biol Psychiatry, 1998,44 (5): 324-335.
    Ernfors P, Lee KF, Kucera J, Jaenisch R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell, 1994, 77 (4): 503-512.
    Ernfors P, Rosario CM, Merlio JP, Grant G, Aldskogius H, Persson H. Expression of mRNAs for neurotrophin receptors in the dorsal root ganglion and spinal cord during development and following peripheral or central axotomy. Brain Res Mol Brain Res, 1993, 17 (3-4): 217-226.
    Ernfors P, Wetmore C, Olson L, Persson H. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron, 1990, 5 (4): 511-526.
    Fan YJ, Wu LL, Li HY, Wang YJ, Zhou XF. Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci, 2008,27 (9): 2380-2390.
    Farifias I, Jones KR, Backus C, Wang XY, Reichardt LF. Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature, 1994, 369 (6482): 658-661.
    Freund V, Frossard N. Expression of nerve growth factor in the airways and its possible role in asthma. Prog Brain Res, 2004, 146: 335-346.
    Frossard N, Freund V, Advenier C. Nerve growth factor and its receptors in asthma and inflammation. Eur J Pharmacol, 2004, 500 (1-3): 453-465.
    Gotow T. Neurofilaments in health and disease. Med Electron Microsc, 2000,33 (4): 173-199.
    Hall AK, Ai X, Hickman GE, MacPhedran SE, Nduaguba CO, Robertson CP. The generation of neuronal heterogeneity in a rat sensory ganglion. J Neurosci, 1997, 17 (8): 2775-2778.
    Hayashi M. Molecular mechanisms for the development and aging of the primate central nervous system. Nihon Shinkei Seishin Yakurigaku Zasshi, 2004, 24 (4): 193-198.
    Hellard D, Brosenitsch T, Fritzsch B, Katz DM. Cranial sensory neuron development in the absence of brain-derived neurotrophic factor in BDNF/Bax double null mice. Dev Biol, 2004, 275 (1): 34-43.
    Hohn A, Leibrock J, Bailey K, Barde YA Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature, 1990, 344 (6264): 339-341.
    Howe CL, Valletta JS, Rusnak AS, Mobley WC. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron, 2001, 32 (5): 801-814.
    Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci, 2001, 24: 677-736.
    Jiang ZG, Smith RA. Regulation by nerve growth factor of neuropeptide phenotypes in primary cultured sensory neurons prepared from aged as well as adult mice. Brain Res Dev Brain Res, 1995,90 (1-2):190-193.
    Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol, 2000,10 (3): 381-391.
     Kerr BJ, Bradbury EJ, Bennett DL, Trivedi PM, Dassan P, French J, Shelton DB, McMahon SB, Thompson SW. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci, 1999, 19(12): 5138-5148.
    Kesavapany S, Li BS, Pant HC. Cyclin-dependent kinase 5 in neurofilament function and regulation. Neurosignals, 2003, 12 (4-5): 252-264.
    Kitao Y, Robertson B, Kudo M, Grant G.Proliferation patterns of dorsal root ganglion neurons of cutaneous, muscle and visceral nerves in the rat. J Neurocytol, 2002, 31 (8-9): 765-776.
    Lawson SN, Caddy KWT, Biscoe TJ. Development of rat dorsal root ganglion neurones: studies of cell birthdays and changes in mean cell diameter. Cell Tissue Res, 1974, 153 (3): 399-413.
    Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde YA. Molecular cloning and expression of brain-derived neurotrophic factor. Nature, 1989, 341 (6238): 149-152.
    Leslie TA, Emson PC, Dowd PM, Woolf CJ. Nerve growth factor contributes to the up-regulation of growth-associated protein 43 and preprotachykinin A messenger RNAs in primary sensory neurons following peripheral inflammation. Neuroscience, 1995, 67 (3): 753-761.
    Levi-Montalcini R, Dal Toso R, della Valle F, Skaper SD, Leon A. Update of the NGF saga. J Neurol Sci, 1995, 130 (2): 119-127.
    Levi-Montalcini R, Hamburger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool, 1951,116 (2): 321-361.
    Levi-Montalcini R. The nerve growth factor 35 years later. Science, 1987, 237 (4819): 1154-1162.
    Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci, 1996, 19:289-317.
    Lindsay RM, Lockett C, Steinberg J, Winter J. Neuropeptide expression in cultures of adult sensory neurons: modulation of substance P and calcitonin gene-related peptide levels by nerve growth factor. Neuroscience, 1989, 33 (1): 53-65.
    Lohof AM, Ip NY, Poo MM. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature, 1993, 363 (6427): 350-353.
    Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci, 2005, 6 (8): 603-614.
    Luo W, Wickramasinghe SR, Savitt JM, Griffin JW, Dawson TM, Ginty DD. A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron, 2007, 54 (5): 739-754.
    Luo XG, Rush RA, Zhou XF. Ultrastructural localization of brain-derived neurotrophic factor in rat primary sensory neurons. Neurosci Res, 2001, 39 (4): 377-384.
    Lykissas MG, Batistatou AK, Charalabopoulos KA, Beris AE. The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res, 2007, 4 (2): 143-151.
    Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, Yancopoulos GD. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science, 1990, 247 (4949 Pt 1): 1446-1451.
    Malamitsi-Puchner A, Economou E, Boutsikou T, Nikolaou KE, Vrachnis N Neurotrophin-3 and FLT3 tyrosine kinase receptor in perinatal life. Mediators Inflamm, 2005,2005 (1): 53-56.
    Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.J Neurosci, 2000, 20 (24): 9104-9110.
    Malcangio M, Lessmann V. A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol Sci, 2003,24(3): 116-121.
    Mars T, Martincic DS. Apoptosis in co-cultures of human muscle and rat spinal cord during the formation of the neuromuscular junction. Pflugers Arch, 2001, 442 (6 Suppl 1):R177-178.
    Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, Priestley JV. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci, 1997, 17 (21): 8476-8490.
    Mimics K, Koerber HR. Prenatal development of rat primary afferent fibers: I. Peripheral projections. J Comp Neurol, 1995, 355 (4): 589-600.
    
    Moore KA, Baba H, Woolf CJ. Synaptic transmission and plasticity in the superficial dorsal horn. Prog Brain Res, 2000, 129: 63-80.
    Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol, 2001, 11 (3): 272-280.
    Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci, 2001, 21 (17): 6706-6717.
    Petruska JC, Mendell LM. The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci Lett, 2004, 361 (1-3): 168-171.
    Pietrobon D, Striessnig J. Neurobiology of migraine. Nature Rev Neurosci, 2003, 4 (5): 386-398.
    Poo MM. Neurotrophins as synaptic modulators. Nat Rev Neurosci, 2001, 2 (1): 24-32.
    Priestley JV, Michael GJ, Averill S, Liu M, Willmott N. Regulation of nociceptive neurons by nerve growth factor and glial cell line derived neurotrophic factor. Can J Physiol Pharmacol, 2002, 80 (5): 495-505.
    Ribeiro-da-Silva A, Hokfelt T. Neuroanatomical localisation of substance P in the CNS and sensory neurons. Neuropeptides, 2000, 34 (5): 256-271.
    Rosenthal A, Goeddel DV, Nguyen T, Lewis M, Shih A, Laramee GR, Nikolics K, Winslow JW. Primary structure and biological activity of a novel human neurotrophic factor. Neuron, 1990,4 (5): 767-773.
    Ruiz G, Baflos JE. The effect of endoneurial nerve growth factor on calcitonin gene-related peptide expression in primary sensory neurons. Brain Res, 2005, 1042(1): 44-52.
    Salio C, Averill S, Priestley JV, Merighi A. Costorage of BDNF and neuropeptides within individual dense-core vesicles in central and peripheral neurons. Dev Neurobiol, 2007,67 (3): 326-338.
    Salio C, Lossi L, Ferrini F, Merighi A. Ultrastructural evidence for a pre- and postsynaptic localization of full-length trkB receptors in substantia gelatinosa (lamina II) of rat and mouse spinal cord. Eur J Neurosci, 2005, 22 (8): 1951-1966.
    Saria A, Lundberg JM, Skofitsch G, Lembeck F. Vascular protein linkage in various tissue induced by substance P, capsaicin, bradykinin, serotonin, histamine and by antigen challenge. Naunyn Schmiedebergs Arch Pharmacol, 1983, 324 (3): 212-218.
    Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci, 2000, 23 (12): 639-645.
    Silver L, Gallo G.Extracellular muscle myosin II promotes sensory axon formation. DNA Cell Biol, 2005, 24 (7): 438-445.
    Snider WD, Silos-Santiago I. Dorsal root ganglion neurons require functional neurotrophin receptors for survival during development. Philos Trans R Soc Lond B Biol Sci, 1996, 351 (1338): 395-403.
    Snider WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell, 1994, 77 (5): 627-638.
    Spenger C, Braschler UF, Streit J, Luscher HR. An organotypic spinal cord - dorsal root ganglion - skeletal muscle coculture of embryonic rat. I. The morphological correlates of the spinal reflex arc. Eur J Neurosci, 1991, 3 (11): 1037-1053.
    Stephens HE, Belliveau AC, Gupta JS, Mirkovic S, Kablar B. The role of neurotrophins in the maintenance of the spinal cord motor neurons and the dorsal root ganglia proprioceptive sensory neurons. Int J Dev Neurosci, 2005, 23 (7): 613-620.
    Streit J, Spenger C, Luscher HR. An Organotypic Spinal Cord - Dorsal Root Ganglion - Skeletal Muscle Coculture of Embryonic Rat. II. Functional Evidence for the Formation of Spinal Reflex Arcs In Vitro. Eur J Neurosci, 1991, 3 (11): 1054-1068.
    Supowit SC, Ethridge RT, Zhao H, Katki KA, Dipette DJ. Calcitonin gene-related peptide and substance P contribute to reduced blood pressure in sympathectomized rats. Am J Physiol Heart Circ Physiol, 2005, 289 (3): H1169-1175.
    Tanaka H, Furuya T, Kameda N, Kobayashi T, Mizusawa H. Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures. J Muscle Res Cell Motil, 2000, 21 (6): 507-526.
    Thoenen H. Neurotrophins and neuronal plasticity. Science, 1995, 270 (5236): 593-538.
    Tonra JR, Curtis R, Wong V, Cliffer KD, Park JS, Timmes A, Nguyen T, Lindsay RM, Acheson A, DiStefano PS. Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci, 1998, 18(11): 4374-4383.
    
    Tonra JR. Classical and novel directions in neurotrophin transport and research: anterograde transport of brain-derived neurotrophic factor by sensory neurons. Mic Res Techn, 1999,45 (4-5): 225-232.
    Tucker BA, Rahimtula M, Mearow KM. Laminin and growth factor receptor activation stimulates differential growth responses in subpopulations of adult DRG neurons. Eur J Neurosci, 2006,24 (3): 676-690.
    Uhm CS, Neuhuber B, Lowe B, Crocker V, Daniels MR Synapse-forming axons and recombinant agrin induce microprocess formation on myotubes. J Neurosci, 2001, 21 (24): 9678-9689.
    Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hokfelt T. Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci, 1995, 15 (3 Pt 1): 2081-2096.
    Verge VM, Tetzlaff W, Bisby MA, Richardson PM. Influence of nerve growth factor on neurofilament gene expression in mature primary sensory neurons. J Neurosci, 1990, 10 (6): 2018-2025.
    Vogel KS, Davies AM. The duration of neurotrophic factor independence in early sensory neurons is matched to the time course of target field innervation. Neuron, 1991, 7 (5): 819-830.
    Wang GY, Scott SA. Independent development of sensory and motor innervation patterns in embryonic chick hindlimbs. Dev Biol, 1999, 208 (2): 324-336.
    
    Wang L, Liu Z, Liu H, Wan Y, Wang H, Li Z. Neuronal phenotype and tyrosine kinase receptor expression in cocultures of dorsal root ganglion and skeletal muscle cells. Anat Rec (Hoboken), 2009, 292 (1): 107-112.
    Wang TH, Meng QS, Qi JG, Zhang WM, Chen J, Wu LF. NT-3 expression in spared DRG and the associated spinal laminae as well as its anterograde transport in sensory neurons following removal of adjacent DRG in cats. Neurochem Res, 2008,33(1): 1-7.
    Wang XH, Poo MM. Potentiation of developing synapses by postsynaptic release of neurotrophin-4. Neuron, 1997, 19(4): 825-835.
    
    Warsame Afrah A, Gustafsson H, Olgart L, Brodin E, Stiller CO, Taylor BK.
    Capsaicin-evoked substance P release in rat dorsal horn increases after peripheral inflammation: a microdialysis study. Neurosci Lett, 2004, 368 (2): 226-230.
    Wick EC, Hoge SG, Grahn SW, Kim E, Divino LA, Grady EF, Bunnett NW, Kirkwood KS. Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol, 2006, 290 (5): G959-69.
    Winston J, Toma H, Shenoy M, Pasricha PJ. Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons. Pain, 2001, 89 (2-3): 181-186.
    Wright DE, Snider WD. Neurotrophin receptor mRNA expression defines distinct populations of neurons in rat dorsal root ganglia. J Comp Neurol, 1995, 351 (3): 329-338.
    Yabe JT, Wang FS, Chylinski T, Katchmar T, Shea TB. Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites. Cell Motil Cytoskeleton, 2001, 50 (1): 1-12.
    Zhao C, Veltri K, Li S, Bain JR, Fahnestock M. NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection. J Neurotrauma, 2004, 21(10): 1468-1478.
    Zhou L, Shine HD. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. J Neurosci Res, 2003, 74 (2): 221-226.
    Zhou XF, Cameron D, Rush RA Endogenous neurotrophin-3 supports the survival of a subpopulation of sensory neurons in neonatal rat. Neuroscience, 1998, 86 (4): 1155-1164.
    Zhou XF, Rush RA. Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience, 1996, 74 (4): 945-953.
    Zigova T, Pencea V, Wiegand SJ, Luskin MB Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci, 1998, 11 (4): 234-245.
    Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature, 1995, 374 (6521): 450-453.
    
    Aloe L. Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. Trends Cell Biol, 2004, 14 (7): 395-399.
    
    Angeletti RH, Mercanti D, Bradshaw RA. Amino acid sequences of mouse 2.5S nerve growth factor. I. Isolation and characterization of the soluble tryptic and chymotryptic peptides. Biochemistry, 1973, 12(1): 90-100.
    
    Antonelli A, Lapucci G, Vigneti E, Bonini S, Aloe L. Human lung fibroblast response to NGF, IL-1beta, and dexamethsone. Lung, 2005,183 (5): 337-351.
    
    Arimatsu Y, Miyamoto M. Survival-promoting effect of NGF on in vitro septohippocampal neurons with cholinergic and GABAergic phenotypes. Brain Res Dev Brain Res, 1991, 58 (2): 189-201.
    
    Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J, 1982, 1 (5): 549-553.
    
    Bartoletti A, Cancedda L, Reid SW, Tessarollo L, Porciatti V, Pizzorusso T, Maffei L. Heterozygous knock-out mice for brain-derived neurotrophic factor show a pathway-specific impairment of long-term potentiation but normal critical period for monocular deprivation. J Neurosci, 2002, 22 (23): 10072-10077.
    
    Becker E, Soler RM, Yuste VJ, Gine E, Sanz-Rodriguez C, Egea J, Martin-Zanca D, Cornelia JX. Development of survival responsiveness to brain-derived neurotrophic factor, neurotrophin 3 and neurotrophin 4/5, but not to nerve growth factor, in cultured motoneurons from chick embryo spinal cord. J Neurosci, 1998, 18 (19): 7903-7911.
    
    Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A. Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron, 1991, 7(5): 857-866.
    Bianchi LM, Conover JC, Fritzsch B, DeChiara T, Lindsay RM, Yancopoulos GD. Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice. Development, 1996, 122 (6): 1965-1973.
    Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev, 2000, 14 (23): 2919-2937.
    Binder DK. The role of BDNF in epilepsy and other diseases of the mature nervous system. Adv Exp Med Biol, 2004, 548: 34-56.
    Bolanos CA, Nestler EJ. Neurotrophic mechanisms in drug addiction. Neuromolecular Med, 2004, 5(1): 69-83.
     Bradshaw RA, Murray-Rust J, Ibanez CF, McDonald NQ, Lapatto R, Blundell TL. Nerve growth factor: structure/function relationships. Protein Sci, 1994, 3(11): 1901-1913.
    Bueno L. Gastrointestinal pharmacology: irritable bowel syndrome. Curr Opin Pharmacol, 2005, 5 (6): 583-588.
    
    Burgos I, Cuello AC, Liberini P, Pioro E, Masliah E. NGF-mediated synaptic sprouting in the cerebral cortex of lesioned primate brain. Brain Res, 1995, 692 (1-2): 154-160.
    Cabelli RJ, Allendoerfer KL, Radeke MJ, Welcher AA, Feinstein SC, Shatz CJ. Changing patterns of expression and subcellular localization of TrkB in the developing visual system. J Neurosci, 1996, 16 (24): 7965-7980.
    Castren E. Neurotrophins as mediators of drug effects on mood, addiction, and neuroprotection. Mol Neurobiol, 2004, 29 (3): 289-302.
    Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature, 1990, 347 (6295): 762-765.
    Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci, 2005, 6(12): 919-930.
    Chalazonitis A. Neurotrophin-3 as an essential signal for the developing nervous system. Mol Neurobiol, 1996, 12(1): 39-53.
    Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease. Clin Sci (Lond), 2006, 110 (2): 167-173.
    Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci, 2003,4 (4): 299-309.
    Cohen A, Bray GM, Aguayo AJ. Neurotrophin-4/5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowth in vitro. J Neurobiol, 1994, 25 (8): 953-959.
    Conover JC, Erickson JT, Katz DM, Bianchi LM, Poueymirou WT, McClain J, Pan L, Helgren M, Ip NY, Boland P, et al. Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature, 1995, 375 (6528): 235-238.
    Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LH, McMahon SB, Shelton DL, Levinson AD, et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell, 1994, 76 (6): 1001-1011.
    Davies AM. The role of neurotrophins in the developing nervous system. J Neurobiol, 1994,25(11): 1334-1148.
    Dechant G, Barde YA. The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci, 2002, 5 (11): 1131-1136.
    
    Di Giovanni S, De Biase A, Yakovlev A, Finn T, Beers J, Hoffman EP, Faden AI. In vivo and in vitro characterization of novel neuronal plasticity factors identified following spinal cord injury. J Biol Chem, 2005, 280 (3): 2084-2091.
    DiStefano PS, Friedman B, Radziejewski C, Alexander C, Boland P, Schick CM, Lindsay RM, Wiegand SJ. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron, 1992, 8 (5): 983-993.
    Donovan MJ, Miranda RC, Kraemer R, McCaffrey TA, Tessarollo L, Mahadeo D, Sharif S, Kaplan DR, Tsoulfas P, Parada L, et al. Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol, 1995 , 147 (2): 309-324.
    Duman RS. Novel therapeutic approaches beyond the serotonin receptor. Biol Psychiatry, 1998,44 (5): 324-335.
    Edwards RH, Selby MJ, Garcia PD, Rutter WJ. Processing of the native nerve growth factor precursor to form biologically active nerve growth factor. J Biol Chem, 1988, 263 (14): 6810-6815.
    Ehrhard PB, Erb P, Graumann U, Otten U. Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci U S A, 1993, 90 (23): 10984-10988.
    Ernfors P, Lee KF, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature, 1994, 368 (6467): 147-150.
    Ernfors P, Rosario CM, Merlio JP, Grant G, Aldskogius H, Persson H. Expression of mRNAs for neurotrophin receptors in the dorsal root ganglion and spinal cord during development and following peripheral or central axotomy. Brain Res Mol Brain Res, 1993, 17 (3-4): 217-226.
    Ernfors P, Wetmore C, Olson L, Persson H. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron, 1990, 5 (4): 511-526.
    Fahnestock M. Structure and biosynthesis of nerve growth factor. Curr Top Microbiol Immunol, 1991, 165: 1-26.
    Fan YJ, Wu LL, Li HY, Wang YJ, Zhou XF. Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci, 2008, 27 (9): 2380-2390.
    Fandl JP, Tobkes NJ, McDonald NQ, Hendrickson WA, Ryan TE, Nigam S, Acheson A, Cudny H, Panayotatos N. Characterization and crystallization of recombinant human neurotrophin-4. J Biol Chem, 1994, 269 (1): 755-759.
    Forander P, Soderstrom S, Humpel C, Stromberg I. Chronic infusion of nerve growth factor into rat striatum increases cholinergic markers and inhibits striatal neuronal discharge rate. Eur J Neurosci, 1996, 8 (9): 1822-1832.
    Fox AJ, Patel HJ, Barnes PJ, Belvisi MG Release of nerve growth factor by human pulmonary epithelial cells: role in airway inflammatory diseases. Eur J Pharmacol, 2001,424 (2): 159-162.
    Frossard N, Freund V, Advenier C. Nerve growth factor and its receptors in asthma and inflammation. Eur J Pharmacol, 2004, 500 (1-3): 453-465.
    Geddes AJ, Angka HE, Davies KA, Kablar B. Subpopulations of motor and sensory neurons respond differently to brain-derived neurotrophic factor depending on the presence of the skeletal muscle. Dev Dyn, 2006, 235 (8): 2175-2184.
    Hallbook F, Ibanez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron, 1991, 6 (5): 845-858.
    Hannila SS, Kawaja MD. Nerve growth factor-mediated collateral sprouting of central sensory axons into deafferentated regions of the dorsal horn is enhanced in the absence of the p75 neurotrophin receptor. J Comp Neurol, 2005,486 (4): 331-343.
     Hayashi M. Molecular mechanisms for the development and aging of the primate central nervous system. Nihon Shinkei Seishin Yakurigaku Zasshi, 2004, 24 (4): 193-198.
    Helgren ME, Cliffer KD, Torrento K, Cavnor C, Curtis R, DiStefano PS, Wiegand SJ, Lindsay RM. Neurotrophin-3 administration attenuates deficits of pyridoxine-induced large-fiber sensory neuropathy. J Neurosci, 1997, 17 (1): 372-382.
    Hellard D, Brosenitsch T, Fritzsch B, Katz DM. Cranial sensory neuron development in the absence of brain-derived neurotrophic factor in BDNF/Bax double null mice. Dev Biol, 2004, 275 (1): 34-43.
    Henderson CE, Camu W, Mettling C, Gouin A, Poulsen K, Karihaloo M, Rullamas J, Evans T, McMahon SB, Armanini MP, et al. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature, 1993, 363 (6426): 266-270.
    Heymach JV Jr, Shooter EM. The biosynthesis of neurotrophin heterodimers by transfected mammalian cells. J Biol Chem, 1995, 270 (20): 12297-12304.
    Hohn A, Leibrock J, Bailey K, Barde YA Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature, 1990, 344 (6264): 339-341.
    
    Holtzman DM, Sheldon RA, Jaffe W, Cheng Y, Ferriero DM. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol, 1996, 39(1): 114-122.
    
    Hory-Lee F, Russell M, Lindsay RM, Frank E. Neurotrophin 3 supports the survival of developing muscle sensory neurons in culture. Proc Natl Acad Sci U S A, 1993,90 (7): 2613-2617.
    Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci, 2001, 24: 677-736.
    
    Huang TJ, Sayers NM, Fernyhough P, Verkhratsky A. Diabetes-induced alterations in calcium homeostasis in sensory neurones of streptozotocin-diabetic rats are restricted to lumbar ganglia and are prevented by neurotrophin-3. Diabetologia, 2002, 45 (4): 560-570.
    
    Huang TJ, Sayers NM, Verkhratsky A, Fernyhough P. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp Neurol, 2005, 194 (1): 279-283.
    
    Ip NY, Li Y, Yancopoulos GD, Lindsay RM. Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J Neurosci, 1993, 13 (8): 3394-3405.
    
    Ishida K, Yoshimura N, Yoshida M, Honda Y, Murase K, Hayashi K. Expression of neurotrophic factors in cultured human retinal pigment epithelial cells. Curr Eye Res, 1997, 16 (2): 96-101.
    
    Jiang ZG, Smith RA. Regulation by nerve growth factor of neuropeptide phenotypes in primary cultured sensory neurons prepared from aged as well as adult mice. Brain Res Dev Brain Res, 1995, 90 (1-2):190-193.
    
    Jongstra-Bilen J, Coblentz L, Shooter EM. The in vitro processing of the NGF precursors by the gamma-subunit of the 7S NGF complex. Brain Res Mol Brain Res, 1989,5(2): 159-169.
    Jungbluth S, Bailey K, Barde YA. Purification and characterisation of a brain-derived neurotrophic factor/neurotrophin-3 (BDNF/NT-3) heterodimer. Eur J Biochem, 1994, 221 (2): 677-685.
    Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 1995, 267 (5204): 1658-1662
    Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol, 2000, 10 (3): 381-391.
    Kashiba H, Uchida Y, Senba E. Distribution and colocalization of NGF and GDNF family ligand receptor mRNAs in dorsal root and nodose ganglion neurons of adult rats. Brain Res Mol Brain Res, 2003,110 (1): 52-62.
    Kemi C, Grunewald J, Eklund A, Ho|¨glund CO. Differential regulation of neurotrophin expression in human bronchial smooth muscle cells. Respir Res, 2006,7:18.
    Kim HG, Wang T, Olafsson P, Lu B. Neurotrophin 3 potentiates neuronal activity and inhibits gamma-aminobutyratergic synaptic transmission in cortical neurons. Proc Natl Acad Sci U S A, 1994, 91 (25): 12341-12345.
    Kim SH, Won SJ, Sohn S, Kwon HJ, Lee JY, Park JH, Gwag BJ. Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translational activation of NADPH oxidase. J Cell Biol, 2002, 159 (5): 821-831.
    Kitamura N, Konno A, Kuwahara T, Komagiri Y. Nerve growth factor-induced hyperexcitability of rat sensory neuron in culture. Biomed Res, 2005, 26 (3): 123-130.
     Klein R, Silos-Santiago I, Smeyne RJ, Lira SA, Brambilla R, Bryant S, Zhang L, Snider WD, Barbacid M. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature, 1994, 368 (6468): 249-251.
    Lambiase A, Bracci-Laudiero L, Bonini S, Bonini S, Starace G, D'Elios MM, De Carli M, Aloe L. Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors. J Allergy Clin Immunol, 1997, 100 (3): 408-414.
    Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde YA. Molecular cloning and expression of brain-derived neurotrophic factor. Nature, 1989, 341 (6238): 149-152.
    Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A, 1994,91 (9): 3739-3743.
    Levi-montalcini R, Angeletti PU. Hormonal Control of the NGF content in the submaxillary glands of mice. Int Ser Monogr Oral Biol, 1964, 3:129-141.
    Levi-Montalcini R, Dal Toso R, della Valle F, Skaper SD, Leon A. Update of the NGF saga. J Neurol Sci, 1995,130 (2): 119-127.
    Levi-Montalcini R, Hamburger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J ExpZool, 1951, 116 (2): 321-361.
    Levi-Montalcini R. The nerve growth factor 35 years later. Science, 1987, 237 (4819): 1154-1162.
    Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci, 1996, 19:289-317.
    Lewin GR, Mendell LM. Nerve growth factor and nociception. Trends Neurosci, 1993, 16 (9): 353-359.
    Liebl DJ, Mbiene JP, Parada LF. NT4/5 mutant mice have deficiency in gustatory papillae and taste bud formation. Dev Biol, 1999, 213 (2): 378-389.
    Lindsay RM, Rohrer H. Placodal sensory neurons in culture: nodose ganglion neurons are unresponsive to NGF, lack NGF receptors but are supported by a liver-derived neurotrophic factor. Dev Biol, 1985, 112(1): 30-48.
    Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS. Neurotrophic factors: from molecule to man. Trends Neurosci, 1994, 17(5): 182-190.
    Lindsay RM. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci, 1988, 8 (7): 2394-2405.
    Lindsay RM. Therapeutic potential of the neurotrophins and neurotrophin-CNTF combinations in peripheral neuropathies and motor neuron diseases. Ciba Found Symp, 1996,196: 39-48; discussion 48-53.
    Lohof AM, lp NY, Poo MM. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature, 1993, 363 (6427): 350-353.
    Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci, 2005, 6 (8): 603-614.
    Luo W, Wickramasinghe SR, Savitt JM, Griffin JW, Dawson TM, Ginty DD. A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron, 2007, 54 (5): 739-754.
    Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, Yancopoulos GD. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science, 1990, 247(4949 Pt 1): 1446-1451.
    Malamitsi-Puchner A, Economou E, Boutsikou T, Nikolaou KE, Vrachnis N. Neurotrophin-3 and FLT3 tyrosine kinase receptor in perinatal life. Mediators Inflamm, 2005, 24; 2005 (1): 53-56.
    Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.J Neurosci, 2000, 20 (24): 9104-9110.
    McDonald NQ, Chao MV. Structural determinants of neurotrophin action. J Biol Chem, 1995,270(34): 19669-19672.
    McMahon SB, Armanini MP, Ling LH, Phillips HS. Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron, 1994, 12(5): 1161-1171.
    Merighi A, Carmignoto G, Gobbo S, Lossi L, Salio C, Vergnano AM, Zonta M. Neurotrophins in spinal cord nociceptive pathways. Prog Brain Res, 2004, 146: 291-321.
    
    Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T, Furukawa K. Overexpression of ganglioside GMl results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem, 2002,277 (13): 11239-11246.
    Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG, Murphy RA. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem, 2001, 276 (16): 12660-12666.
    Murase K, Murakami Y, Takayanagi K, Furukawa Y, Hayashi K. Human fibroblast cells synthesize and secrete nerve growth factor in culture. Biochem Biophys Res Commun, 1992, 184(1): 373-379.
    Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol, 2001, 63(1): 71-124.
    Nagy Z, Simon L, Bori Z. Regulatory mechanisms in focal cerebral ischemia. New possibilities in neuroprotective therapy. Ideggyogy Sz, 2002, 55 (3-4): 73-85.
    Nakajima K, Kikuchi Y, Ikoma E, Honda S, Ishikawa M, Liu Y, Kohsaka S. Neurotrophins regulate the function of cultured microglia. Glia, 1998, 24 (3): 272-289.
    Ozaki Y, Kitamura N, Tsutsumi A, Dayanithi G, Shibuya I. NGF-induced hyperexcitability causes spontaneous fluctuations of Intracellular Ca~(2+) in rat nociceptive dorsal root ganglion neurons. Cell Calcium, 2009,45 (3): 209-215.
    Parmryd I, Adler J, Patel R, Magee Al. Imaging metabolism of phosphatidylin-ositol 4,5-bisphosphate in T-cell GM1 -enriched domains containing Ras proteins. Exp Cell Res, 2003, 285 (1): 27-38.
    Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol, 2001, 11 (3): 272-280.
    Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci, 2001, 21 (17): 6706-6717.
    Poo MM. Neurotrophins as synaptic modulators. Nat Rev Neurosci, 2001, 2 (1): 24-32.
    Radziejewski C, Robinson RC, DiStefano PS, Taylor JW. Dimeric structure and conformational stability of brain-derived neurotrophic factor and neurotrophin-3. Biochemistry, 1992, 31 (18): 4431-4436.
    Rende M, Hagg T, Manthorpe M, Varon S. Nerve growth factor receptor immunoreactivity in neurons of the normal adult rat spinal cord and its modulation after peripheral nerve lesions. J CompNeurol, 1992, 319 (2):285-298.
    Riddle DR, Lo DC, Katz LC. NT-4-mediated rescue of lateral geniculate neurons from effects of monocular deprivation. Nature, 1995, 378 (6553): 189-191.
    Robinson RC, Radziejewski C, Stuart DI, Jones EY. Structure of the brain-derived neurotrophic factor/neurotrophin 3 heterodimer. Biochemistry, 1995, 34 (13): 4139-4146.
    Rosenthal A, Goeddel DV, Nguyen T, Lewis M, Shih A, Laramee GR, Nikolics K, Winslow JW. Primary structure and biological activity of a novel human neurotrophic factor. Neuron, 1990, 4 (5): 767-773.
    Rossner S, Yu J, Pizzo D, Werrbach-Perez K, Schliebs R, Bigl V, Perez-Polo JR. Effects of intraventricular transplantation of NGF-secreting cells on cholinergic basal forebrain neurons after partial immunolesion.J Neurosci Res, 1996, 45(1): 40-56.
    
    Royo NC, Conte V, Saatman KE, Shimizu S, Belfield CM, Soltesz KM, Davis JE, Fujimoto ST, McIntosh TK. Hippocampal vulnerability following traumatic brain injury: a potential role for neurotrophin-4/5 in pyramidal cell neuroprotection. Eur J Neurosci, 2006, 23 (5): 1089-1102.
    
    Ruiz G, Banos JE. Heat hyperalgesia induced by endoneurial nerve growth factor and the expression of substance P in primary sensory neurons. Int J Neurosci, 2009, 119 (2): 185-203.
    Ruiz G, Banos JE. The effect of endoneurial nerve growth factor on calcitonin gene-related peptide expression in primary sensory neurons. Brain Res, 2005, 1042(1): 44-52.
    
    Rusnati M, Urbinati C, Tanghetti E, Dell'Era P, Lortat-Jacob H, Presta M. Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proc Natl Acad Sci USA, 2002,99 (7): 4367-4372.
    Russo-Neustadt AA, Chen MJ. Brain-derived neurotrophic factor and antidepressant activity. Curr Pharm Des, 2005, 11 (12): 1495-1510.
    
    Sawai H, Clarke DB, Kittlerova P, Bray GM, Aguayo AJ. Brain-derived neurotrophic factor and neurotrophin-4/5 stimulate growth of axonal branches from regenerating retinal ganglion cells. J Neurosci, 1996, 16 (12): 3887-3894. Schecterson LC, Bothwell M. Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron, 1992, 9 (3): 449-463.
    Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci, 2000, 23 (12): 639-645.
    
    Schober A, Wolf N, Huber K, Hertel R, Krieglstein K, Minichiello L, Kahane N, Widenfalk J, Kalcheim C, Olson L, Klein R, Lewin GR, Unsicker K. TrkB and neurotrophin-4 are important for development and maintenance of sympathetic preganglionic neurons innervating the adrenal medulla. J Neurosci, 1998, 18 (18): 7272-7284.
    
    Schwyzer L, Mateos JM, Abegg M, Rietschin L, Heeb L, Thompson SM, Luthi A, Gahwiler BH, McKinney RA. Physiological and morphological plasticity induced by chronic treatment with NT-3 or NT-4/5 in hippocampal slice cultures. Eur J Neurosci, 2002, 16(10): 1939-1948.
    
    Silverman RE, Bradshaw RA. Nerve growth factor: subunit interactions in the mouse submaxillary gland 7S complex. J Neurosci Res, 1982, 8 (2-3): 127-136.
    
    Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature, 1994, 368 (6468): 246-249.
    Snider WD, Johnson EM Jr. Neurotrophic molecules. Ann Neurol, 1989, 26 (4): 489-506.
    Snider WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell, 1994, 77 (5): 627-638.
    Spalding KL, Rush RA, Harvey AR. Target-derived and locally derived neurotrophins support retinal ganglion cell survival in the neonatal rat retina. J Neurobiol, 2004, 60 (3): 319-327.
    
    Spalding KL, Tan MM, Hendry 1A, Harvey AR. Anterograde transport and trophic actions of BDNF and NT-4/5 in the developing rat visual system. Mol Cell Neurosci, 2002,19 (4): 485-500.
    
    Stephens HE, Belliveau AC, Gupta JS, Mirkovic S, Kablar B. The role of neurotrophins in the maintenance of the spinal cord motor neurons and the dorsal root ganglia proprioceptive sensory neurons. Int J Dev Neurosci, 2005, 23 (7): 613-620.
    
    Supowit SC, Ethridge RT, Zhao H, Katki KA, Dipette DJ. Calcitonin gene-related peptide and substance P contribute to reduced blood pressure in sympathectomized rats. Am J Physiol Heart Circ Physiol, 2005, 289 (3): H1169-1175.
    
    Takeda A, Onodera H, Sugimoto A, Kogure K, Obinata M, Shibahara S. Coordinated expression of messenger RNAs for nerve growth factor brain-derived neurotrophic factor and neurotmphin-3 in the rat hippoampus following transient forebrain ischemia. J Neurosience, 1993, 55 (1): 23-31.
    
    Tannemaat MR, Eggers R, Hendriks WT, de Ruiter GC, van Heerikhuize JJ, Pool CW, Malessy MJ, Boer GJ, Verhaagen J. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci, 2008, 28 (8): 1467-1479.
    
    Thoenen H, Barde YA. Physiology of growth factor. Physiol Rve, 1980, 60 (4): 1284-1335.
    
    Thoenen H. Neurotrophins and neuronal plasticity. Science, 1995, 270 (5236): 593-598.
    
    Tolwani RJ, Buckmaster PS, Varma S, Cosgaya JM, Wu Y, Suri C, Shooter EM. BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience, 2002,114 (3): 795-805.
    Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem, 2002,9 (5): 224-237.
    Ueyama T, Hamada M, Hano T, Nishio I, Masuyama Y, Furukawa S. Production of nerve growth factor by cultured vascular smooth muscle cells from spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens, 1993, 11 (10): 1061-1065.
    Vicario-Abejon C, Owens D, McKay R, Segal M. Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci, 2002, 3(12): 965-974.
    Watanabe T, Ito T, Inoue G, Ohtori S, Kitajo K, Doya H, Takahashi K, Yamashita T. The p75 receptor is associated with inflammatory thermal hypersensitivity. J Neurosci Res, 2008, 86 (16): 3566-3574.
    
    Webber CA, Xu Y, Vanneste KJ, Martinez JA, Verge VM, Zochodne DW. Guiding adult Mammalian sensory axons during regeneration. J Neuropathol Exp Neurol, 2008,67 (3): 212-222.
    Wiesmann C, de Vos AM. Nerve growth factor: structure and function. Cell Mol Life Sci, 2001, 58 (5-6): 748-759.
    Wiesmann C, Ultsch MH, Bass SH, de Vos AM. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature, 1999,401 (6749): 184-188.
    Wiklund P, Ekstrom PA. Axonal outgrowth from adult mouse nodose ganglia in vitro is stimulated by neurotrophin-4 in a Trk receptor and mitogen-activated protein kinase-dependent way. J Neurobiol, 2000,45 (3): 142-151.
    Willison HJ. Antiglycolipid antibodies in peripheral neuropathy: fact or fiction? J Neurol Neurosurg Psychiatry, 1994, 57 (11): 1303-1307.
    Winston J, Toma H, Shenoy M, Pasricha PJ. Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons. Pain, 2001, 89 (2-3): 181-186.
    Yamada K, Mizuno M, Nabeshima T. Role for brain-derived neurotrophic factor in learning and memory. Life Sci, 2002, 70 (7): 735-744.
    Zhou L, Shine HD. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. J Neurosci Res, 2003, 74 (2): 221-226.
    Zhou XF, Li WP, Zhou FH, Zhong JH, Mi JX, Wu LL, Xian CJ. Differential effects of endogenous brain-derived neurotrophic factor on the survival of axotomized sensory neurons in dorsal root ganglia: a possible role for the p75 neurotrophin receptor. Neuroscience, 2005,132 (3): 591-603.
    Zigova T, Pencea V, Wiegand SJ, Luskin MB Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci, 1998,11 (4): 234-245.
    Winston J, Toma H, Shenoy M, Pasricha PJ. Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons. Pain, 2001,89 (2-3): 181-186.
    Yabe JT, Wang FS, Chylinski T, Katchmar T, Shea TB. Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites. Cell Motil Cytoskeleton, 2001,50 (1): 1-12.
    Yamada M, Numakawa T, Koshimizu H, Tanabe K, Wada K, Koizumi S, Hatanaka H. Distinct usages of phospholipase C gamma and Shc in Intracellular signaling stimulated by neurotrophins. Brain Res, 2002,955 (1-2): 183-190.
    Zhao C, Veltri K, Li S, Bain JR, Fahnestock M. NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection. J Neurotrauma, 2004, 21 (10): 1468-1478.
    Zhou XF, Rush RA. Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience, 1996, 74 (4): 945-953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700