神经营养因子受体下游信号转导通路的酵母双杂交研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Yeast Two-hybrid Study on Downstream Signaling Transduction Pathways of Neurotrophic Factor Receptors
  • 作者:张勇
  • 论文级别:博士
  • 学科专业名称:神经生物学
  • 学位年度:2002
  • 导师:路长林
  • 学科代码:071006
  • 学位授予单位:第二军医大学
  • 论文提交日期:2002-04-01
摘要
神经营养因子是指机体产生的能够促进中枢和外周神经细胞存活、生长和分化的多肽生长因子。神经营养因子既可以影响发育早期胚胎神经元或者前体细胞的生长与分化,还能够促进成熟神经细胞的存活与生长,而且它对于治疗一些神经系统退行性疾病或促进神经损伤后修复具有非常重要的作用。
     神经营养因子结合并作用于神经营养因子受体,激活胞内信号通路后,才能发挥其重要的生物学效应。神经营养因子以其化学组成和受体的特性等可以分为多个家族,如GDNF家族、NGF家族等。GDNF、NGF、EGF的生物学效应分别由GDNF受体RET、NGF受体TrkA及EGF受体EGFR所介导。尽管上述配体不尽相同,但它们的受体均属于受体酪氨酸激酶(RTK)。近几年来,为了更多地理解为何不同的配体、受体可引起类似或特定的生物学效应,人们对于细胞内由这些受体介导多种信号通路的研究越来越重视。大量工作表明,配体与受体结合,引起受体的二聚化并同时激活受体后,受体可结合大量的信号蛋白分子,如接头蛋白、入坞蛋白或各种调节蛋白等。正是由于大量不同信号分子不断整合的结果,多种不同的信号得以正确传递。发现并了解这些参与受体下游通路转导的信号分对于人们更好地理解胞内信号通路无疑具有重要的意义。
     因此,本研究应用酵母双杂交筛选文库的方法,寻找胞浆内神经营养因子受体酪氨酸激酶的可能底物或调控蛋白,为进一步探索受体下游的具体信号转导或调节机制打下基础。
     本研究的主要结果如下:
     1、将RET胞内域与LexA蛋白融合构建成pGilda-RET~(IC),确认无自激活作用后,将其作
    
     第H军医大学博士学位论文 口摘要(中英文)
     为诱饵蛋白,经酵母双杂交方法筛选人脑LexA cDNA文库,获得274个克隆。经p-半乳糖
     苦酶活性鉴定和测序分析进一步鉴别,筛选到21个质粒片段,从中获得并明确为SHZE等
     基因片段。将pGilda-RET厂与pB42ADS 书共转化HLYSIg,共转化子的 p-半乳糖昔酶活
     力检测呈阳性,表明在酵母中S*2丑与RE丫”之间可相互作用。在获得稳定转染M T与*F*。
     质粒的PC 12细胞基础上,再瞬时转染野生型SHZE或者其突变体R555E于此稳定转染细胞
     株中。细胞裂解物的免疫共沉淀实验结果显示,仅当 GDNF刺激转染了野生型SHZ-B的 PC
     细胞时,可以检测到RET与SHZE的结合。此结果表明,GDNF刺激过量表达RET、GFRa
     与 SHZ-B的PC细胞后,SHZ-B可与 MT在体内发生结合。细胞的形态观察显示,GDNF
     作用于仅转染RET与 GFRa质粒的PC细胞或转染MT、GFRa与 SHZ8质粒的PC细胞后,
     细胞的分化均较明显;而作用于转染RET、GFRa与SHZE突变体R555E质粒的PC12细胞后,
     分化程度明显降低,具有统计学意义。上述结果表明,MT与SHZE的结合可能参与GDNF
     刺激引起PC细胞分化的信号通路。
     2、将EGFR胞内域与LexA蛋白融合构建成pGilda七GFR\确认无自激活作用后,
     将其作为诱饵蛋白,经酵母双杂交方法筛选人脑 LexA cDNA文库,获得 112个克隆。经
     p-半乳糖昔酶活性鉴定和测序分析进一步鉴别,筛选到6个质粒片段,从中获得并明确为
     doki等基因片段。将 pGilda-EGFR’C与 pB42AD-doki共转化 HLY819,共转化子的p-半乳
     糖昔酶活力测定呈阳性,表明在酵母中 doki与 EGFR‘C可结合。pGildUEGFR’C与
     pB42AD刁ok1PTB酵母共转化子的p-半乳糖昔酶活力以及 SD Gal Ura“His”Tp’Leu”平板生
     长实验均呈阳性,表明 doki可经 PTB结构域与 EGFR’C结合。缺失 PTB结构域的 doki门
     doki A PTB)与EGFR‘’共转化子的p-半乳糖昔酶活力以及SD Ga1Ura”His’切“Leu平板生
     长实验均呈阴性,从而进一步从反面证实doki可经PTB结构域与EGFR‘“结合。兔疫共沉
     3
    
     — —
     淀的实验结果,进一步证实了在酵母中d。hi可经PTB结构域与EGFRIC相互作用。根据
     doki PTB结构域与来自EGFR小肽的立体结构模拟提示,我们选择了d。k1PTB结构域内的
     八个氨基酸残基进行突变,即73Y、74T、76L、77R、79Y、92R、93R与119I,每个氨基
     酸残基均突变为丙氨酸 Ala,再将这些 dok1PTB突变体与 EGFR’“共转化酵母 HLY819,检
     测共转化子的-半乳糖昔酶活力。结果显示,当PTB结构域内的73Y、76L、77R或92R
     突变为川a后,EGFR’”不能与 doklPTB结合;而 74T。79Y、93R与 119I突变为 Ala后,
     EGFR厂仍可与 d。klPTB结合。上述结果表明,d。k1PTB结构域内的 73Y、76L、77R和
     92R残基在EGFR与doki的结合中具有重要作用。
     3、将TrkA胞内域与LexA蛋白融合构建成pGilda-Ti*,确认无自激活作用后,将其
Neurotrophic factors is a family of secreted polypeptide growth factors which could promote the development and survival of certain neuronal populations both in the peripheral and in the central nervous system. It is a target-derived polypeptide, essential for development and maintenance of peripheral sympathetic and neural crest-derived sensory neurons as well as adult neurons in the brain. Some of the neurotrophic factors may be therapeutically beneficial for patients with nerve injury or some neurological disorders such as Alzheimer's disease and Parkinson's disease.
    The biological effects of neurotrophic factors are mediated by their high-affinity ligand-receptor which present on the surface of those responsive neurons. According to the distinct components of receptors and different chemeical properties of ligands, neurotrophic factors could be classified to several families, for example GDNF and NGF family. The biological effects of GDNF, NGF and EGF were mediated by their corresponding receptor RET, TrkA and EGFR respectively. Although the ligands are totally different, all of these receptors belong to the family of receptor tyrosine kinases(RTKs). After binding with ligands, the RTKs would dimerize, simultaneously autophosphorylated and activated and then trigger the downstream signaling pathway. Since distinct signal transduction pathways are determined by the specific interaction between RTKs and their downstream effectors or regulators, it will be a possibly good strategy to investigate on the downstream molecules to better understand the
    
    
    complexities of receptor signaling networks.
    In present study, the human brain cDNA library was screened by using yeast two-hybrid system to search for new intracellular substrates or regulatory proteins of RET,EGFR and TrkA.
    The main results of our research are as follows:
    1. The intracellular part of RET receptor was fused to LexA and used as a bait to screen a human brain LexA two-hybrid cDNA library, and 274 positive clones were obtained. Among them, 21 plamids were selected and identified to be SH2-B and some other gene fragments. The interaction between RET and SH2-B was confirmed by using p-galactosidase activity assay in yeast. When overexpressed in PC 12 cells, wild type SH2-B could co-immunoprecipitated with RET in response to GDNF while SH2-B mutant R555E could not. It was observed that overexpression of wild type SH2-B enhanced GDNF-induced neurite growth while overexpression of SH2-B mutant R555E could inhibit it. Our results suggest that SH2-B could interact with RET in PC 12 cells stimulated with GDNF, and the interaction may be involved with the differentiation of PC 12 cells induced by GDNF.
    2. The intracellular part of EGFR was fused to LexA and used as a bait to screen a human brain LexA two-hybrid cDNA library, and 112 positive clones were obtained. Among them, 6 plamids were selected and identified to be dokl and some other gene fragments. The interaction between EGFR and dokl was confirmed by using p-galactosidase activity assay in yeast. Moreover, we found that the interaction of EGFR with dokl was mediated by the PTB domain since the dokl PTB could bind with EGFR while the dokl A PTB could not. After alanine mutagenesis scanning study, together with yeast two-hybrid analysis, our results demonstrated that the amino acid residue 73 Y, 76L, 77R and 92R in the dokl PTB domain may be critical for
    
    the interactaction of doklwith and EGFR.
    3. The intracellular part of TrkA was fused to LexA and used as a bait to screen a human brain LexA two-hybrid cDNA library, and 269 positive clones were obtained. Among them, 11 plamids were selected and identified to be TrkAlc-BPl and some other gene fragments. The interaction between TrkAIC-BPl and TrkAIC was confirmed by using p-galactosidase activity
    assay and co-immunoprecipitation experiment in yeast. Our results suggest that TrkA -BP1 is a new TrkA-binding protein and it may be a new member of rho-GAP family since the protein sequence analysis revealed that it contains a
引文
奥斯伯等。精编分子生物学实验指南。科学出版社,1998。
    Airaksinen MS et al. GDNF family neurotrophic factor signalling: four masters one servant? Mol. Cell. Neurosci 1999,13:313-325.
    Alberti L et al. Grb2 binding to the different isoforms of RET tyrosine kinase. Oncogene 1998,17:1079-1087.
    Apfel SC et al. Neurotrophic factors in the therapy of peripheral neuropathy. Baillieres Clin Neurol 1995 Nov;4(3):593-606.
    Arighi E et al. Identification of She docking site on RET tyrosine kinase. Oncogene 1997,14:773-782.
    Aroian RV et al. Multiple functions of let-23, a C. elegans receptor tyrosine kinase gene required for vulval induction. Genetics 1991, 128:251-267.
    Asai N et al. A mutation at tyrosine 1062 in MEN2A-RET and MEN2B-RETimpairs their transforming activity and association with She adaptor proteins. J Biol Chem 1996, 271:17644-17649.
    Baloh RH et al. The GDNF family ligands and receptors-implications for neural development. Curr Opin Neurobiol 2000, 10: 103-110.
    Besset V et al. Signaling complexes and protein-protein interactions involved in the activation of the Ras and PI3K pathways by the c-RET receptor tyrosine kinase. J Biol Chem 2000,275:39159-39166.
    Borrello MG et al. The full oncogenic activity of RET/PTC2 depends on tyrosine 539, a docking site for phospholipase. Mol Cell Biol 1996,16:2151-2163.
    Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 1995; 18:223-53.
    Carpino N et al. p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronie myelogenous leukemia progenitor cells. Cell 1997,88:197-204.
    Cha YK et al. Epidermal growth factor induces oxidative neuronal injury in cortical culture. J Neurochem 2000 Jul;75(1):298-303.
    Clandinin TR et al. Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor kinase activation in C. elegans. Cell 1998, 92:523-533.
    Cong F et al. Characterization of a novel member of the dok family that binds and modulates Abl signaling. Mol Cell Biol 1999,19:8314-8325.
    
    
    Di Cristofano A et al. Molecular cloning and characterization of p56dok-2 defines a new family of Ras-GAP binding proteins. J Biol Chem 1998,273:4827-4830.
    Durick K et al. Mitogenic signaling by RET/PTC2 requires association with enigma via a LIM domain. J Biol Chem 1996, 271: 12691-12694.
    Encinas M et al. c-Src is required for glial cell line-derived neurotrophic factor family ligand-mediated neuronal survival via a phosphatidylinositol-3 kinase-dependent pathway. J Neurosci 2001,21(5): 1464-72.
    Erlich S et al. ErbB-4 activation inhibits apoptosis in PC12 cells. Neuroscience 2001; 107(2):353-62.
    Fields S & Song O. A novel genetic system to detect protein-protein interactions. Nature 1989, 340:245-247.
    Habib AA et al. The epidermal growth factor receptor associates with and recruits phosphatidylinositol 3-kinase to the platelet-derived growth factor beta receptor. J Biol Chem 1998, 273:6885-6891.
    Habib T et al. Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein. J Biol Chem 1998, 273:18605-18609.
    Hail A.Rho GTPases and the actin cytoskeleton. Science 1998,279:509-514.
    Hayashi H et al. Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene 2000,19:4469-4475.
    Herrington J et al. SH2-B Is Required for Growth Hormone-induced Actin Reorganization. J Biol Chem 2000, 275(17):13126-13133.
    Holland SJ et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 1997,16:3877-3888.
    Hosomi Y et al. Characterization of a 60-kilodalton substrate of the insulin receptor kinase. J Biol Chem 1994,269(15): 11498-11502.
    Hollenberg MD. Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends Pharm Sci 1994, 15:108-114.
    Huang X et al. Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C gamma 1, Grb2, and phosphatidylinositol 3-kinase Proc Natl Acad Sci USA 1992,92:11618-11622.
    Ibanez CF. Emerging themes in structural biology of neurotrophic factors. Trends Neurosci 1998,21(10):438-444.
    
    
    Ji GS et al. Epidermal growth factor signaling and mitogenesis in PLC gammal null mouse embryonic fibroblasts. Mol Biol Cell 1998, 9:749-757.
    Kaplan DR & Miller FD. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 1997,9:213-221.
    Kaplan DR et al. The trk proto-oncogene product:a signal transducing receptor for nerve growth factor. Science 1991, 252(5005):554-558.
    Kashige N et al. Tyrosine phosphorylation of p62dok by p210bcr-abl inhibits RasGAP activity. Proc Natl Acad Sci USA 2000,97(5):2093-2098.
    Klein R et al. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 1991,65(1):189-197.
    Kornblum HI et al. Multiple trophic actions of heparin-binding epidermal growth factor (HB-EGF) in the central nervous system. Eur J Neurosci 1999 Sep; 11(9):3236-46.
    Kouhara H et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activition to the Ras/MAPK signaling pathway. Cell 1997,89:693-702.
    Kotani K et al. SH2-B alpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase.Biochem J 1998,335:103-109.
    Lesa GM et al. Positive and negative tissue-specific signaling by a nematode epidermal growth factor receptor. Mol Biol Cell 1997, 8:779-793.
    Lin LF et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993,260:1130-1132.
    Loeb DM et al. The trk proto-oncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC12 cell lines. Cell 1991,66(5):961-966.
    Lorenzo MJ et al. RET alternate splicing influences the interaction of activated RET with the SH2 and PTB domains of Shc, and the SH2 domain of Grb2. Oncogene 1997,14:763-771.
    Luo L et al. Rho family GTP-binding proteins in growth cone signalling. Curr Opin Neurobiol 1997,7:81-86.
    Maness Lm et al. The neurotrophins and their receptors: structure, function, and neuropathology. Neurosci Biobehav Rev 1994 Spring;18(1):143-59.
    Meakin SO et al. The signaling adaptor FRS-2 competes with She for binding to the nerve growth factor receptor TrkA. J Biol Chem 1999,274:9861-9870.
    Michael JW et al. Insulin Receptor-mediated p62 dok Tyrosine Phosphorylation at Residues 362 and 398 Plays Distinct Roles for Binding GTPase-activating Protein and Nck and Is Essential for Inhibiting Insulin-stimulated Activation of Ras and Akt. J. Biol. Chem 2001, 276(46): 42843-42850.
    
    
    Mueller BK.Growth cone guidence:first steps towards a deeper understanding.Annu Rev Neurosci 1999,22:351-388.
    Murakami H et al. Enhanced phosphatidylinositol 3-kinase activity and high phosphorylation state of its downstream signalling molecules mediated by RET with the MEN2B mutation. Biochem Biophys Res Commun 1999,262:68-75.
    Nelms K et al. FRIP, a hematopoietic cell-specific rasGAP-interacting protein phosphorylated in response to cytokine stimulation. Immunity 1998, 9: 13-24.
    Nelms K et al. Alternative splicing, gene localization, and binding of SH2-B to the insulin receptor kinase domain. Mamm. Genome 1999, 10: 1160-1167.
    Noguchi T et al. Tyrosine phosphorylation of p62(dok) induced by cell adhesion and insulin: possible role in cell migration. EMBO J 1999, 18:1748-1760.
    Ogawa W et al. Evidence for two distinct 60-kilodalton substrates of the SRC tyrosine kinase. J Biol Chem 1994, 269: 29602-29608.
    Osborne M et al. The yeast tribrid system-genetic detection of trans-phosphorylated ITAM-SH2-interactions. Bio Technology 1995, 13: 1474-1478.
    Porras A et al. Activation of Ras by insulin in 3T3 L1 cells does not involve GTPase-activating protein phosphorylation. J Biol Chem 1992,267(29):21124-21131.
    Price JV et al. The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homolog. Cell 1989, 56:1085-1092.
    Qian X et al. Identifacation and characterization of novel substrates of Trk receptors in developing neurons.Neuron 1998,21:1017-1029.
    Qian X et al. SH2-B and APS are multimeric adapters that augment TrkA signaling.Mol Cell Biol2001,21(5):1613-1620.
    Riedel H et al. PSM, an insulin-dependent, pro-rich, PH, SH2 domain containing partner of the insulin receptor. J Biochem 1997,122:1105-1113.
    Rommel C et al. Ras-a versatile cellular switch. Curr Opin Genet Dev 1998, 8:412-418.
    Rui L et al. Identification of SH2-B beta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling.Mol Cell Biol 1997,6633-6644.
    Rui L et al. Platelet-derived growth factor(PDGF) stimulates the association of SH2-B beta with PDGF receptor and phosphorylation of SH2-B beta. J Biol Chem 1998,273:21239-21245.
    Rui L et al. SH2-B Is Required for Nerve Growth Factor-induced Neuronal Differentiation. J biol Chem 1999, 274(15): 10590-10594.
    
    
    Rui L et al. Identification of SH2-B beta as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2.Proc Natl Acad Sci USA 1999, 96:7172-7177.
    Schejter ED et al. The Drosophila EGF receptor homolog (DER) gene is allelic to faint little ball, a locus essential for embryonic development. Cell 1989, 56:1093-1104.
    Sibilia M et al. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 1995, 269:234-238.
    Sternberg PW et al. Conspiracy Theory: Ras and Raf do not act alone. Cell 1998, 95:447-450.
    Suzu S et al. p56(dok-2) as a cytokine-inducible inhibitor of cell proliferation and signal transduction. EMBO J 2000,19:5114-5122.
    Tamir I et al. The RasGAP-binding protein p62dok is a mediator of inhibitory FcgammaRIIB signals in B cells. Immunity 2000,12:347-358.
    Tessier-Lavigne M et al. The molecular biology of axon guidence. Science 1996,274:1123-1133.
    Threadgill DW et al. Targeted disruption of mouse EGF receptor-effect of genetic background on mutant phenotype. Science 1995,269:230-234.
    Ullrich A and Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990, 61:203-212.
    van der Geer P et al. Receptor protein-tyrosine kinases and-their signal transduction pathways. Annu Rev Cell Biol 1994,10:251-337.
    van Dijk TB et al. Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells. Blood 2000, 96(10):3406-3413.
    Yamada M et al. The neurotrophic action and signalling of epidermal growth factor. Prog Neurobiol 1997 Jan; 51(1): 19-37.
    Yamanashi Y et al. Identification of the Abl-and rasGAP-associated 62kDa protein as a docking protein, Dok. Cell 1997, 88: 205-211.
    Yamanashi Y et al. Role of the rasGAP-associated docking protein p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes Dev 2000,14,: 11-16.
    Yamashita H et al. The Csk homologous kinase associates with TrkA receptors and is involved in neurite outgrowth of PC12 cells. J Biol Chem 1999,274:15059-15065.
    Yokouchi M et al. Cloning and characterization of APS, an adaptor molecule containing PH and SH2 domains that is tyrosine phosphorylated upon B-cell receptor stimulation. Oncogene 1997,15:7-15.
    Zhang B et al. The insulin receptor-related receptor. Tissue expression, ligand binding specificity, and signaling capabilities. J Biol Chem 1992,67(26): 18320-18328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700