煤在超临界水反应过程中的污染物迁移特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是中国重要的基础能源和化工原料,在国民经济中占据战略地位。煤炭的利用存在许多问题,如运输成本高、利用效率低、污染问题难以解决等。提高我国煤炭利用效率、减少环境污染的根本途径是研制和推广煤炭的分质利用技术。由于超临界水的特殊性质,煤在超临界水中的转化近年来倍受关注。其反应介质为水,因此即使是水分含量较高、难以利用的褐煤,也无需进行干燥;反应介质及褐煤中的水均可参与反应,水中的H原子可提高燃气热值,O原子可减少氧量消耗;反应后气体产物较为洁净;根据反应条件的不同,可获得不同的目标产物,从而实现煤炭的分质利用,同时可对煤中的污染性元素进行定向脱除。
     本文以褐煤作为研究对象,对煤在超临界水中反应的产物特性及污染物迁移特性进行研究,旨在提高煤利用效率的同时,降低煤中污染物对环境的影响。
     研究了除污染物外的常规产物在气、液、固的分布特性。CO2、CH4、H2是主要的气体产物,随着温度及压力的升高,气体产率均有明显上升。CO是重要的中间产物,含量较低,在超临界水中通过水煤气转换反应,生成C02和H2。随氧当量比(ER)的升高,C02产率上升,CH4及C2H6的产率下降,H2产率则呈现先上升后降低的趋势。液体产物中酚类所占比例最多,多环芳烃种类较多。与原煤相比,固体产物中的C、N含量升高,H、S含量降低,灰分比例及热值升高,挥发分比例降低。固体产物中羟基及脂肪类有机物的特征峰消失,含氧官能团的特征峰明显减小,表面出现片状的碎片及孔隙结构。
     探讨了煤中S在超临界水反应后三相产物中的赋存形态及转化机理,并推断出S的反应路径。文中试验条件下,S元素的反应率在58-78%之间。原煤中有机硫含量最高,经过超临界水反应后,80%以上的有机硫均已分解;硫化铁硫的固存率随温度、压力、ER的升高均呈降低趋势;硫酸盐硫的总量在ER≧0.3时,超过原煤中硫酸盐硫的总量。S042-及S2032-是液体产物中主要的无机含硫产物,S2-和HS-、SO32-和HS03-相对较少。文中试验条件下,煤在超临界水中反应后,气体中的含硫化合物仅检出H2S。反应路径如下:煤中不同形态的S部分分解产生含硫自由基,与H2反应生成H2S,与煤中大分子有机物结合生成噻吩硫,与煤中富氧官能团或加入的H202反应生成802;硫醇、硫醚等有机硫经过分解或水解也可产生H2S;生成的H2S部分溶于水生成S2-+HS-,部分与煤中有机物结合生成有机硫,部分以气态形式排放;生成的S02溶于水生成SO32-+HSO3-,S的不同价态的阴离子之间会发生相互转化。在文中的试验条件下,认为CaSO4未发生分解。
     分析了煤中N在超临界水反应后的存在形式及中间产物,得出了N的反应路径。褐煤中的N在超临界水中的反应率并不高,在26%-46%之间,固体产物中N含量的变化幅度较小。液体产物中NH4+、NO3为主要的无机氮存在形式。气体中除N2外未检出其他含氮化合物。反应路径为:煤中的大分子有机氮与超临界水、H202反应,导致氮链断裂,生成NH3、有机类硝基化合物及其他大分子含氮化合物,其中硝基化合物及大分子含氮化合物可能与H自由基结合,生成NH3,NH3溶于水生成NH4+,而硝基化合物在超临界水中发生水解,生成NO3-,NO3和NH4+发生氧化还原反应生成N2。
     探究了煤中重金属在超临界水反应过程中的挥发及富集特性,分析了反应前后赋存形态的变化,并进行了反应路径的推断。Pb、Cd为半挥发性元素,其反应率分别在16%-27%及11%-26%之间;Mn、Cu、Zn属于难挥发元素,反应率均低于10%;Cr和Ni的反应率出现负值,反应釜发生了腐蚀。固体产物中的重金属相比原褐煤均有了不同程度的富集。液体产物中重金属的含量与超临界水的萃取能力及重金属化合物的溶解度有密切关系。同时,水的加入一定程度上也阻止了重金属向气体产物的迁移,气体产物中重金属的浓度低于仪器检出限。利用Tessier萃取法将煤中的重金属分为可交换态、碳酸盐态、铁锰氧化物态、有机态及残渣态。经过超临界水反应后,不稳定的可溶态及碳酸盐态向稳定的形态发生了不同程度的转变,超临界水反应降低了煤中重金属的环境风险。反应路径如下:可交换态重金属通过溶于水或发生离子交换溶出到液体产物中,生成重金属离子;绝大部分碳酸盐态重金属分解产生重金属的氧化物及C02;超临界水可将部分铁锰氧化物态的重金属脱附到液体中;部分有机态的重金属连同有机物一起溶于超临界水中。上述溶解出的重金属与02、H20反应生成相应的氧化物及氢氧化物,归属于铁锰氧化态;与一般有机物结合会生成有机态;进入矿物晶格中即转化为残渣态。
     阐明了煤中碱金属在超临界水中的反应特性,分析了反应前后碱金属赋存形态的变化,得出了不同形态碱金属的反应路径。煤在超临界水反应过程中,K、Na的反应率分别在1.1%-11.4%及0.3%-19.9%之间,反应率的高低与K、Na化合物在水中的溶解度有密切的关系。固体产物中碱金属相比原褐煤有所富集。碱金属在液体产物中的浓度变化范围较大,与超临界水的萃取能力及碱金属的溶解度有关。同时,水的加入一定程度上阻止了碱金属向气体产物的迁移,气体产物中碱金属的浓度均低于仪器检出限。利用化学萃取法将煤中的碱金属分为水溶态、羧酸盐态、配位官能团态及硅铝酸盐态。水溶态及羧酸盐态的碱金属在超临界水中不稳定,可转化为配位官能团态及硅铝酸盐态,降低了碱金属的环境风险。反应路径如下:水溶态的碱金属首先溶于水中生成碱金属离子,羧酸盐态及配位官能团态的碱金属分解释放碱金属离子,硅铝酸盐态在试验条件下相对稳定。上述释放的碱金属离子与煤分解得到的大分子有机物结合会产生配位官能团态,与煤中的Si02、矿物质等反应会生成稳定的硅铝酸盐态沉积在固体产物中。
     综上所述,煤在超临界水中反应后,气体产物中除H2S外,未检出其他污染性化合物;液体产物中存在一定浓度的硫、氮无机阴离子及重金属、碱金属;固体产物中硫化铁硫及有机硫的反应率较高,二者可向硫酸盐硫转化,氮的反应率不高,重金属及碱金属均由不稳定的形态向稳定的形态转化;推断得出煤中硫、氮、重金属、碱金属在超临界水反应过程中的迁移路径。
     展望未来,煤经过超临界水反应后,可实现分质利用。固体产物水分较低,热值较高,可作为燃料使用;液体产物的利用有待进一步的探讨;气体产物较为洁净,可大大降低气体产物的净化成本,有望替代IGCC及煤制天然气的气化技术。
As the basic energy in china, coal takes major position in our economical life. Many issues exsit in coal utilization, such as high transportation cost and severe pollution. To improve efficiency of coal utilization and reduce environmental pollution, advanced technology should be developed. Coal reaction in supercritical water has been concerned in recent years. The reaction takes place in water so that coal should be used without dryness. Water participates in the reaction in which H could improve heating value of gas and O could reduce consumption of oxygen. Gas products are clean due to the exsitence of water. Different products could be obtained through varying reaction conditions and meanwhile polluting elements could be removed.
     Lignite was selected for research in the paper. Characteristics of conventional products and pollutants migration were studied to improve efficiency of coal utilization and reduce pollution to environment.
     Distribution characteristics of conventional products in solid,liquid and gaseous phases were studied and influencing mechanism of reaction conditions was discussed to investigate utilizing potentiality of products for coal reaction in supercritical water. Conclusions were obtained. CO2, CH4and H2were main gaseous products and gas yield increased evidently with temperature and pressure increasing. As the important intermediate product in gas phase, CO content was low and it was transformed to CO2and H2through water-gas shift. With ER rising, yield of CO2increased while that of CH4and C2H6decreased, but H2presented inconsistent trend. Phenols took up about70%of organics in liquid phase. And various kinds of polycyclic aromatic hydrocarbon were detected in liquid. Comparing with raw coal, contents of C and N increased while that of H and S decreased in solid residue. Besides, ash content and calorific value were enhanced. Volatile matter was almost dissolved out completely at550℃。 Infrared absorption characteristic peaks of hydroxyl and aliphatics disappeared and that of oxygen-containing functional groups was weakened in solid residue. Laminar structure and pore structure were found on the surface of solid residue.
     Existing forms and transforming mechanism of sulfur in products were studied and migration paths of sulfur were deduced. In the experimental conditions of the paper, decomposition rate of S was at the range of58%-78%. Organic sulfur occupied the highest amount in raw coal in the paper. And80%of organic sulfur was dissolved after supercritical water reaction. Amounts of sulfate in solid residues exceeded that in raw coal when ER was higher than0.3. It illustrated that other forms of sulfur were transformed to sulfate deposited in solid during supercritical water reaction. SO42-and S2O32-were the main products in liquid, and contents of S2-,HS-SO32-,HSO3-were low. In the process of reaction in supercritical water for coal, no sulfur-containing compounds except H2S were detected in gas phase. Migration paths of sulfur in supercritical water reaction were as follows. Different forms of sulfur in coal were descomposed partly to produce free radical with sulfur which reacted with H2to generate H2S. Meanwhile free radical with sulfur possibly combined with large molecular organic matter to generate thiophenic sulfur and reacted with functional groups rich in oxygen or H2O2to produce SO2. Thiol and thioether could descomposed or hydrolyzed to generate H2S which could react with unsaturated hydrocarbon to form thiol and thioether. H2S was dissolved partly to water to gengerate S2-and HS-and part of H2S possibly combined with large molecular organic matter to generate thiophenic sulfur. The rest was released as gas. SO2was dissolved to form SO32-and HSO3-. Anions of sulfur with different valence could transmute into each other.
     Existing forms and intermediate products of nitrogen were studied and migration paths of sulfur were deduced. Comparing with S, decomposition rate of N was lower in supercritical water reaction, which was between26%-46%. Content of N in solid residues varied slightly. NH4+and NO3-were main forms in liquid for inorganic nitrogen. Nitrogen-containing compounds except N2were not detected in gas. Migration paths of nitrogen in supercritical water reaction were as follows. Organic nitrogen in coal reacted with supercritical water and H2O2, which led to cracking of nitrogen chain to produce NH3, nitro compounds and other organic compounds with nitrogen. Nitro compounds could combine with free radical H to generate NH3which was dissolved in water to produce NH4+. Hydrolysis of nitro compounds led to formation of NO3" which could react with NH4+to produce N2.
     Reaction characteristics of heavy metals were illustrated and speciations in products were comprared with raw coal. Also migration paths of heavy metals were deduced. Pb and Cd were semi-volatile elements, and decomposition rates were between16-27%and11-26%respectively. Mn,Cu and Zn were nonvolatile elements, and decomposition rates were lower than10%. Decomposition rates of Cr and Ni were negative, which demonstrated corrosion of the reactor. Enrichment abilities of Pb and Cd were relatively poor and that of Cu and Zn were similar to Mn while relative enrichment coefficients to Mn of Cr and Ni were far higher than1due to corrosion. Extraction ability of supercritical water at different conditions and solubilities of metal compounds were important to concentrations of heavy metals in liquid. Meanwhile, addition of water inhibited migration of heavy metals to gaseous product. Concentration of heavy metals in gaseous product was lower than detected limit. After supercritical water reaction, heave metals studied were transformed from F1and F2to relatively stable forms. Supercritical water reaction reduced environmental risk of heavy metals. Forms of F1and F2were unstable in supercritical water and could transform to relatively stable forms. Migration paths of heavy metals in supercritical water reaction were as follows. For heavy metals, Fl could dissolve into water through dissolution or ion exchange. F2was unstable in supercritical water, which could decomposed to oxides and CO2. Part of F3could dissolve into liquid. Part of F4together with organic meatter could dissolve in water. Heavy metals dissolved above reacted with H2O2and H2O to produce oxides or hydroxides precipitated in solid which belonged to F3. Heavy metals dissolved combined with organic matter to produce F4. Heavy metals dissolved combined with indissolvable organic matter or entered into lattice to transform to F5which precipitated in solid.
     Reaction characteristics of alkali metals were studied and speciations in products were comprared with raw coal. Also migration paths of alkali metals were deduced. Decomposition rates of alkali metals(K,Na) were studied that K was between1.1%-11.4%and Na was between0.3%-19.9%, which was closely related to water addition amount and solubility of compounds containing K and Na. Enrichment ability of Na was similar to Mn and that of K was a little more than Mn. Extraction ability of supercritical water at different conditions and solubilities of alkali metals were crucial. Meanwhile, addition of water inhibited migration of alkali metals to gaseous product. Concentration of alkali metals in gaseous product was lower than detected limit. Forms of water soluble(A1) and bound to carboxylate(A2) were unstable in supercritical water reaction, which could transformed to forms of bound to function group with oxygen or nitrogren(A3) and insoluble(A4). Concentration of alkali metals in liquid varied greatly. Migration paths of alkali metals were as follows. For alkali metals, A1was dissolved in water to generate alkali metal ions. A2and A3could be decomposed to release alkali metal ions while A4was relatively stable in experimental conditions in the paper. Alkali metal ions dissolved above combined with large molecular organic matter to generate A3and reacted with SiO2and minerals to generate A4.
     In conclusion, no pollutants were detected except H2S in gaseous products after coal reaction in supercritical water. A certain amount of heavy metals and alkali metals besides inorganic anions containing sulfur and nitrogen exsited in liquid products. Sulfur, nitrogen, heavy metals and alkali metals in solid products were transformed from unstable forms to more stable forms. Migration paths of sulfur, nitrogen, heavy metals and alkali metals in coal during supercritical water reaction were deduced.
     Looking forward to the future, classified utilization would be realized after coal reaction in supercritical water. Lower water content and higher heat value make solid products could use as fuel. Further study should be done to determine utilization forms of liquid products. Gaseous products were relatively clean for coal reaction in supercritical water and purification cost could be reduced. It is a promising gasification technology for IGCC and coal-based natural gas.
引文
[1]漆新华,庄源益.超临界流体技术在环境科学中的应用[M].科学出版社,2005:72-75
    [2]Ivette Vera Perez, Steven Rogak, Richard Branion. Supercritical water oxidation of phenol and 2,4-dinitrophenol[J]. The Journal of Supercritical fluids,2004,30(1):71-87.
    [3]Young Ho Shin, Nae Chul Shin, Bambang Veriansyah, et al. Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant[J]. The Journal of hazardous materials,2009, 163(2-3):1142-1147.
    [4]Philip A.Marrone. Supercritical water oxidation-Current status of full-scale commercial activity for waste destruction[J]. The Journal of Supercritical Fluids,2013,79(10th International Symposium on Supercritical Fluids):283-288.
    [5]M.D.Bermejo, F.Cantero, M.J.Cocero. Supercritical water oxidation of feeds with high ammonia concentrations pilot plant experimental results and modeling[J]. Chemical Engineering Journal, 2008,137(3):542-549.
    [6]Frederic Vogel, Joanna L.DiNaro Blanchard, Philip A.Marrone, et al. Critical review of kinetic data for the oxidation of methanol in supercritical water[J]. The Journal of supercritical fluids, 2005,34(3):249-286.
    [7]S.Moussiere, C.Joussot-Dubien, P.Guichardon, et al. Modelling of heat transfer and hydrodynamic with two kinetics approaches during supercritical water oxidation process[J]. The Journal of supercritical fluids,2007,43(2):324-332.
    [8]Young Ho Shin, Hong-shik Lee, Bambang Veriansyah, et al. Simultaneous carbon capture and nitrogen removal during supercritical water oxidation[J]. The Journal of supercritical fluids, 2012,72:120-124.
    [8]C.Brunner. Near and supercritical water. Part II:Oxidation processes[J]. The Journal of supercritical fluids,2009,47(3):382-390.
    [9]龚为进,李方,奚旦立.丙烯酸废水超临界水氧化动力学研究[J].环境工程学报,2008,2(5):643-646.
    [10]龚为进,李方,奚旦立.超临界水氧化处理高浓度丙烯酸废水[J].化工环保,2007,27(5):413-416.
    [11]刘艳艳.用超临界水氧化法进行废水处理的应用研究[D].大连:大连理工大学:2008.
    [12]毛肖岸,郝小红,郭烈锦,等.超临界水中纤维素气化制氢的实验研究[J].工程热物理学报,2003,24(3):388-390.
    [13]Takuya Yoshida, Yoshito Oshima, Yukihiko Matsumura. Gasification of biomass model compounds and real biomass in supercritical water[J]. Biomass and Bioenergy,2004,26(1): 71-78.
    [14]吕友军,郭烈锦,郝小红,等.锯木屑在超临界水中气化制氢过程的主要影响因素[J].化工学报,2004,55(12):2060-2066.
    [15]郝小红,郭烈锦,吕友军,等.生物质超临界水气化制氢反应动力学分析[J].西安交通大学学报,2005,39(7):681-684.
    [16]Y.J.Lu, L.J.Guo, C.M.Ji, et al. Hydrogen production by biomass gasification in supercritical water:A parameter study[J]. International Journal of Hydrogen Energy,2006,31 (7):822-831.
    [17]Jale Yanik, Steve Ebale, Andrea Kruse, et al. Biomass gasification in supercritical water: Partl.Effect of the nature of biomass[J]. Fuel,2007,86(15):2410-2415.
    [18]Chan drasekar Venkitasamy, Doug Hendry, Nikolas Wilkinson, et al. Investigation of thermochemical conversion of biomass in supercritical water using a batch reactor[J]. Fuel, 2011,90(8):2662-2670.
    [19]Sha Li, Youjun Lu, Liejin Guo, et al. Hydrogen production by biomass gasification in supercritical water with bimetallic Ni-M/yA12O3 catalysts(M=Cu,Co and Sn)[J]. International Journal of Hydrogen Energy,2011,36(22):14391-14400.
    [20]Hui Jin, Youjun Lu, Liejin Guo, et al. Hydrogen production by partial oxidative gasification of biomass and its model compounds in supercritical water[J]. International Journal of Hydrogen Energy,2010,35 (7):3001-3010.
    [21]Youjun Lu, Liejin Guo, Ximin Zhang, et al. Hydrogen production by supercritical water gasification of biomass:Explore the way to maximum hydrogen yield and high carbon gasification efficiency[J]. International Journal of Hydrogen Energy,2012,37(4):3177-3185.
    [22]Masaru Watanabe, Makoto Mochiduki, Shuhei Sawamoto, et al. Partial oxidation of n-hexadecane and polyethylene in supercritical water[J]. The Journal of Supercritical Fluids, 2001,20(3):257-266.
    [23]孟令辉,黄玉东,张妍,等.聚丙烯的热分解与超临界水分解对比实验研究[J].材料科学与工艺,2003,11(3):311-314.
    [24]杜昭辉,孙淑芳.废橡胶超临界裂解与传统裂解工艺的比较[J].辽宁石油化工大学学报,2006,26(2):15-18.
    [25]Zhang Haifeng, Su Xiaoli, Sun Dongkai, et al. Investigation on degradation of polyethylene to oil in a continuous supercritical water reactor[J]. Journal of Fuel Chemistry and Technology, 2007,35(4):487-491.
    [26]Jude A.Onwudili, Paul T.Williams. Degradation of brominated flame-retarded plastics (Br-ABS and Br-HIPS)in supercritical water[J]. The Journal of Supercritical Fluids,2009,49(3): 356-368.
    [27]Fu-Rong Xiu, Yingying Qi, Fu-Shen Zhang. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process[J]. Waste Management,2013,33(5):1251-1257.
    [28]Leming Cheng, Rong Zhang, Jicheng Bi. Pyrolysis of a low-rank coal in sub-and supercritical water[J]. Fuel Processing Technology,2004,85(8-10):921-932.
    [29]程乐明,张荣,毕继诚.KOH对低阶煤在超临界水中制取富氢气体的影响[J].化工学报,2004,55(S 1):44-49.
    [30]Doki Yamaguchi, P.John Sanderson, Seng Lim, et al. Supercritical water gasification of Victorian brown coal:Experimental characterization[J]. International Journal of Hydrogen Energy,2009,34(8):3342-3350.
    [31]Yongliang Li, Liejin Guo, Ximin Zhang, et.al. Hydrogen production from coal gasification in supercritical water with a continuous flowing system[J]. International Journal of Hydrogen Energy,2010,35(7):3036-3045.
    [32]Rong Zhang, Wei Jiang, Leming Cheng. Hydrogen production from lignite via supercritical water in flow-type reactor[J]. International Journal of Hydrogen Energy,2010,35(21): 11810-11815.
    [33]Modell M, ReidRC, AminSI. Gasification Process:US,4113446[P].1978-09-12.
    [34]Cheng Leming, Zhang Rong, Bi Jicheng, et al. Effect of CaO on conversion of lignite to hydrogen-rich gas in supercritical water [J]. Journal of Fuel Chemistry and Technology,2007, 35(3):257-261.
    [35]孙冰洁,杜新,张荣,等.KOH对超临界水中褐煤连续制氢的影响[J].燃料化学学报,2010,38(5):518-521.
    [36]Hui Jin, Youjun Lu, Bo Liao, et al. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor[J]. International Journal of Hydrogen energy,2010,35(13): 7151-7160.
    [37]姜炜,程乐明,张荣,等.连续式超临界水反应器中褐煤制氢过程影响因素的研究[J].燃料化学学报,2008,36(6):660-665.
    [38]Anatoli A. Vostrikov, Sergey A.Psarov, Dmitri Yu. Dubov, et al. Kinetics of coal conversion in supercritical water[J]. Energy & Fuels,2007,21(5):2840-2845.
    [39]Zhiwei Ge, Simao Guo, Liejin Guo, et al. Hydrogen production by non-catalytic partial oxidation of coal in supercritical water:Explore the way to complete gasification of lignite and bituminous coal[J]. International Journal of Hydrogen Energy,2013,38(29):12786-12795.
    [40]Shuzhong Wang, Yang Guo, Liang Wang, et al. Supercritical water oxidation of coal: Investigation of operating parameters'effects, reaction kinetics and mechanism[J]. Fuel processing technology,2011,92(3):291-297.
    [41]Penninger J M L, Kersten R J A, Baur H C L. Hydrolysis of diphenylether in supercritical water: Effects of dissolved NaCl. The Journal of Supercritical Fluids,1999,17(3):215-226.
    [42]Jie Wang, Takayuki Takarada. Role of calcium hydroxide in supercritical water gasification of low-rank coal[J]. Energy & Fuels,2001,15(2):356-362.
    [43]Jinli Zhang, Xiaoxia Weng, You Han, et al. Effect of supercritical water on the stability and activity of alkaline carbonate catalysts in coal gasification[J]. Journal of Energy Chemistry, 2013,22(3):459-467.
    [44]Tao Wang, Xiaofeng Zhu. Conversion and kinetics of the oxidation of coal in supercritical water[J]. Energy & Fuels,2004,18(5):1569-1572.
    [45]Jie Wang, Takayuki Takarada. Characterization of high-temperature coal tar and supercritical-water extracts of coal by laser desorption ionization-mass spectrometry[J]. Fuel processing technology,2003,81(3):247-258.
    [46]Yang Guo, Shuzhong Wang, Chad M.Huelsman, et al. Products, pathways and kinetics for reactions of indole under supercritical water gasification conditions[J], The Journal of supercritical fluids,2013,73:161-170.
    [47]马彩霞,张荣,毕继诚.煤焦油在超临界水中的改质研究[J].燃料化学学报,2003,31(2):103-110.
    [48]韩丽娜,张荣,毕继诚.超临界水中煤焦油沥青轻质化的实验研究[J].燃料化学学报,2008,36(1-5):1-5.
    [49]Anatoly A.Vostrikov, Oxana N.Fedyaeva, Dmitry Y.Dubov, et al. Conversion of brown coal in supercritical water without and with addition of oxygen at continuous supply of coal-water slurry[J]. Energy,2011,36(4):1948-1955.
    [50]樊文苓,田弋大.超临界水条件下煤的脱硫实验研究[J].矿物学报,1998,18(1):55-61.
    [51]Bo Wu, Haoquan Hu, Yunpeng Zhao. XPS analysis and combustibility of residues from two coals extraction with sub-and supercritical water[J]. Journal of Fuel Chemistry and Technology, 2009,37(4):385-392.
    [52]B. M.Vogelaar, M.Makkee, J.A.Moulijn. Applicability of supercritical water as a reaction medium for desulfurisation and demetallisation of gas oil[J]. Fuel Processing technology,1999, 61(3):265-277.
    [53]Takafumi Sato, Tadafumi Adschiri, Kunio Arai, et al. Upgrading of Asphalt with and without partial oxidation in supercritical Water[J]. Fuel,2003,82(10):1231-1239.
    [54]Atsushi Kishita, Satoru Takahashi, Hirotaka Kamimura, et al. Upgrading of bitumen by hydrothermal visbreaking in supercritical water with alkali[J]. Journal of the Japan Petroleum Institute,2003,46(4):215-221.
    [55]Liqun Zhao, Zhenmin Cheng, Ding Yong. Experimental study on vacuum residuum upgrading through pyrolysis in supercritical water[J]. Energy and Fuels,2006,20(5):2067-2071.
    [56]Ayten Ates, Gisele Azimi, Ki-Hyouk Choi, et al. The role of catalyst in supercritical water desulfurization[J]. Applied catalyst B:Environmental,2014,147:144-155.
    [57]Jian Cheng, Yihong Liu, Yunhua Lou, et al. Hydrocracking of Gudao Residual Oil with Dispersed Catalysts Using Supercritical Water-Syngas as a Hydrogen Source [J]. Petroleum Science and Technology,2005,23(11-12):1453-1462.
    [58]Jian Cheng, Yihong Liu, Yunhua Lou, et al. Hydrocracking of Gudao Residual Oil with Dispersed Catalysts Using Supercritical Water-Syngas as a Hydrogen SourcePart Ⅱ:The comparison of residue hydrocracking in different hydrogen sources [J]. Petroleum Science and Technology,2006,24(11):139-1346.
    [59]Honghe Ma, Shuzhong Wang, Lu Zhou. Sulfur transformation during supercritical water oxidation of methanthiol and thiirane[J].Advanced Materials Research,2012,610-613: 1377-1380
    [60]Honghe Ma, Shuzhong Wang, Lu Zhou. Kinetic behavior and sulfur transformation of iron sulfide during supercritical water oxidation[J].Advanced Materials Research,2012,524-527: 1939-1942.
    [61]Ihara Kosei, Ueda Hachiro, Sue Kiwamu. Decomposition of sodium thiosulfate and sodium thiocyanate in supercritical water[J]. Nihon Enerugi Gakkaishi,2006,85(2):126-134.
    [62]Tao Wang, Botao Xiang, Jun Liu,et al. Supercritical water oxidation of sulfide[J]. Environment Science & Technology,2003,37(9):1955-1961.
    [63]Peiqing Yuan, Zhenmin Cheng, Weilai Jiang, et al. Catalytic desulfurization of residual oil through partial oxidation in supercritical water[J]. The Journal of supercritical fluids,2005, 35(1):70-75.
    [64]Pushkaraj R.Patwardhan, Michael T.Timko, Caleb A.Class, et al. Supercritical water desulfurization of organic sulfides is consistent with free-radical kinetics[J]. Energy fuels,2013, 27(10):6108-6117.
    [65]Wen Li, Shucai Guo. Supercritical desulfurization of high rank coal with alcohol/water and alcohol/KOH[J]. Fuel processing technology,1996,46(2):143-155.
    [66]Tao Wang, Xiaofeng Zhu. Sulfur transformations during supercritical water oxidation of a Chinese coal[J]. Fuel,2003,82(18):2267-2272.
    [67]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].太原:太原理工大学,2004.
    [68]Kambara S, Takarada T, Yamamoto Y, et al. Relation between functional forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis[J]. Energy fuels,1993,7(6): 1013-1020.
    [69]Li C Z, Tan L L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during pyrolysis[J]. Fuel,2000,79(15):1899-1906.
    [70]Li C Z, Tan L L.Formation of NOx and Sox precursors during the pyrolysis of coal and biomass. Part Ⅰ. Effects of reactor configuration on the determined yields of HCN and NH3 during the pyrolysis[J]. Fuel,2000,79(15):1883-1889.
    [71]Solomon P R, Collet M B. Evolution of fuel nitrogen in coal devolatilization[J]. Fuel,1978, 57(12):749-755.
    [72]秦玲丽.金属化合物对煤热解过程中硫、氮转化的影响[D].太原:太原理工大学,2007.
    [73]徐健.煤气化特性及氮的迁徙规律实验研究[D].武汉:华中科技大学,2012.
    [74]Yang Guo, Shuzhong Wang, Donghai Xu, et al. Hydrogen production by catalytic supercritical water gasification of nitriles[J]. International Journal of Hydrogen Energy,2010,35(10): 4474-4483.
    [75]M.D.Bermejo, F.Cantero, M.J.Cocero,et al. Supercritical water oxidation with high ammonia concentrations:Pilot plant experimental results and modeling[J]. Chemical Engineering Journal, 2008,137(3):542-549.
    [76]Cyril Aymonier, Patrick Beslin, Claude Jolivalt,et al.Hydrothermal oxidation of a nitrogen-containing compound:the fenuron[J]. Journal of Supercritical Fluids,2000, 17(1):45-54.
    [77]K.M. Benjamin, P.E. Savage. Supercritical water oxidation of methylamine[J]. Industrial & Engineering Chemistry Research,2005,44 (14):5318-5324.
    [78]卢中卿,马春元,王志强,等.超临界水氧化后生活垃圾中元素的迁移规律[J].动力工程,2008,28(5):783-788.
    [79]P.A. Webley, J.W. Tester, H.R. Holgate. Oxidation kinetics of ammonia and ammonia-methanol mixtures in supercritical water in the temperature range 530-700℃ at 246 bar[J]. Industrial & Engineering Chemistry Research,1991,30(8):1745-1754.
    [80]P.I. Proesmans, L. Luan, S. Buelow. Hydrothermal oxidation of organic wastes using ammonium nitrate[J]. Industrial & Engineering Chemistry Research,1997,36(5):1559-1566.
    [81]M.J. Cocero, E. Alonso, R. Torio, et al. Supercritical water oxidation in a pilot plant of nitrogenous compounds:2-propanol mixtures in the temperature range 500-700℃[J]. Industrial & Engineering Chemistry Research,2000,39(10):3707-3716.
    [82]K.M. Benjamin, P.E. Savage. Detailed chemical kinetic modeling of methylamine in supercritical water[J]. Industrial & Engineering Chemistry Research,2005,44 (26):9785-9793.
    [83]Guangming Zhang, Inez Hua. Supercritical water oxidation of nitrobenzene[J]. Industrial & Engineering Chemistry Research,2003,42(2):285-289.
    [84]Dong Soo Lee, Kye Sung Park, Young Woo Nam, et al. Hydrothermal decomposition and oxidation of P-niitroaniline in supercritical water[J]. Journal of Hazardous Materials,1997, 56(3):247-256.
    [85]A.Leybros, A.Roubaud, P.Guichardon,et al. Supercritical water oxidation of ion exchange resins: degradation mechanisms[J]. Process safety and environmental protection,2010,88(3):213-222.
    [86]Shuangjun Chang, Yucun Liu. Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation[J]. Journal of Environmental Sciences,2007,19(12):1430-1435.
    [87]Wei Xiang, Han Baoping, Zhou Dong, et al. Physicochemical properties and heavy metals teachability of fly ash from coal-fired power plant[J]. International Journal of Mining Science and Technology,2012,22(3):405-409.
    [88]吕海亮,陈皓侃,李文.铁岭煤中重金属元素的赋存形态及其在热解过程中的挥发性为研究[J].燃料化学学报,2004,32(2):140-145.
    [89]孔火良.流化床煤反应中金属元素的迁移特性研究[D].南京:东南大学,2003.
    [90]卢骏营.02/C02燃烧方式下煤中痕量元素赋存及迁移规律研究[D].南京:东南大学,2009.
    [91]秦攀.煤燃烧重金属生成规律的研究[D].杭州:浙江大学,2005.
    [92]Nikolaos Koukouzas, Chrisovalantis Ketikidis, Grigorios Itskos. Heavy metal characterization of CFB-derived coal fly ash[J]. Fuel processing technology,2011,92(3):441-446.
    [93]A.Tessier, P.G.C.Campbell, M. Bisson. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51(7):844-850.
    [94]Quevauv iller P, Rauret G, Lopez-Sanchez J F, et al. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three stage sequential extraction procedure [J]. Science of the total environment,1997,205(2-3):223-234.
    [95]Rauret G, Lopez-Sanchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring,1999,1(1):57-61.
    [96]Filippids A, Geograkopoulos, Kassoli-Fournarak A, et al. Trace element contents in composite samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece[J]. International Journal of Coal Geology,1996,29(4):219-234.
    [97]赵峰华,彭苏萍,李大华,等.低煤级煤中部分元素有机亲和性的定量研究[J].中国矿业大学学报,2003,32(1):18-22.
    [98]刘晶,郑楚光,张军营,等.煤中易挥发痕量元素赋存形态的分析方法及实验研究[J].燃烧科学与技术,2003,9(4):295-299.
    [99]刘晶,陆晓华,郭欣,等.煤中痕量砷和汞的形态分析[J].华中理工大学学报,2000,28(7):71-731.
    [100]赵峰华,彭苏萍,唐跃刚,等.合山超高有机硫煤中Fe-Mn-Hg-Zn-Ni-Cr-V的赋存状态及意义[J].中国矿业大学学报,2005,24(1):33-36.
    [101]郑刘根,刘桂建,齐翠翠,等.淮北煤田煤中汞的赋存状态[J].中国地质大学学报,2007,32(2):279-284.
    [102]郑刘根,刘桂建,齐翠翠,等.中国煤中汞的环境地球化学研究[J].中国科学技术大学学 报,2007,37(8):951-963.
    [103]周笑怡,张辉,刘淑琴.煤及其转化产物中重金属形态分布研究[J].矿物岩石地球化学通报,2005,24(3):195-199.
    [104]刘晶,郑楚光,曾汉才.固体吸附剂控制燃煤重金属排放的实验研究[J].环境科学,2003,24(5):23-27.
    [105]D. Bo, F.S. Zhang, L.J. Zhao. Influence of supercritical water treatment on heavy metals in medical waste incinerator fly ash[J]. Journal of Hazardous Materials,2009,170(1):66-71.
    [106]FuRong Xiu, Yingying Qi, Fu-Shen Zhang. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process[J]. Waste Management,2013,33(5):1-7.
    [107]Furong Xiu, Fushen Zhang. Electrokinetic recovery of Cd,Cr,As,Ni,Zn and Mn from waste printed circuit boards:Effect of assisting agents[J]. Journal of Hazardous Materials,2009,170 (1):191-196.
    [108]Furong Xiu, Fushen Zhang. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process[J]. Journal of Hazardous Materials,2009,165(1-3):1002-1007.
    [109]Daoan Zou, Yong Chi, Jun Dong, et al. Supercritical water oxidation of MSW leachate:factor analysis and behavior of heavy metals[J/OL]. Environmental Progress & Sustainable Energy, [2013.11.04].
    [110]Lei Li, Zhirong Xu, Chunlei Zhang,et al. Quantitative evaluation of heavy metals in solid residues from sub-and supercritical water gasification of sewage sludge[J]. Bioresource technology,2012,121:169-175.
    [111]Zhirong Xu, Wei Zhu. The fate of heavy metal during subcritical and supercritical water gasification of sewage sludge[C]. Water Resource and Environmental Protection (ISWREP), 2011 International Symposium on (Volume:2)
    [112]Jian Jin, Xiaodong Li, Yong Chi, et al. Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology[J]. Waste management & research,2010,28(12):1133-1142.
    [113]王宝凤,李文,李保庆,等.吴家坪煤中砷在亚临界水条件下的行为[J].燃料化学学报,2005,33(6):763-766.
    [114]王宝凤,李文,李保庆,等.亚临界水条件下煤中铅的挥发性研究[J].中国矿业大学学报,2006,35,(1):29-34.
    [115]卫小芳,刘铁峰,黄戒介,等.澳大利亚高盐煤中钠在热解过程中的形态变迁[J].燃料化学学报,2010,38(2):144-148.
    [116]汉春利,张军,刘坤磊,等.煤中钠存在形式的研究[J].燃料化学学报,1999,27(6): 575-578
    [117]汉春利,张军,颜峥,等.煤中钾存在形式的研究[J].燃料科学与技术,2001,7(2):167-169.
    [118]刘小伟,徐明厚,姚洪.煤中钠元素赋存形态对亚微米颗粒物形成的影响研究[J].工程热物理学报,2009,30(9):1589-1592.
    [119]陈川,张守玉,刘大海等.新疆高钠煤中钠的赋存形态及其对燃烧过程的影响[J].燃料化学学报,2013,41(7):832-838.
    [120]Ke Zhou, Minghou Xu, Dunxi Yu, et al. Formation and control of fine potassium-enriched particulates during coal combustion[J]. Energy & Fuels,2010,24(12):6266-6274.
    [121]刘小伟,徐明厚,于敦喜,等.元素钾、硅、铝在PM1O的形态与分布研究[J].工程热物理学报,2006,27(5):887-890.
    [122]吴桢芬,苏有勇,王华,等.气氛对垃圾焚烧中金属迁移特性的影响[J].环境工程学报,2011,5(7):1623-1626
    [123]GB/T 214-2007,煤中全硫的测定方法[S].
    [124]GB/T 212-2008,煤的工业分析方法[S].
    [125]GB/213-2003,煤的发热量测定方法[S].
    [126]Dehui Yu, Masahiko Aihara, Micheael Jerry Antal. Hydrogen production by steam reforming glucose in supercritical water[J]. Energy & Fuels,1993,7(5):574-577.
    [127]W.BUhler, E.Dinjus, H.J.Ederer, et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water. The Journal of Supercritical Fluids,2002, 22(1):37-53.
    [128]曾凡桂,周志玲,王传格,等.应用煤热解及氢气生成动力学分析煤热解氢气的生成反应类型-以屯兰2号煤镜煤为例[OL].[2009-12-22].中国科技论文在线,http://www.paper.edu.cn/releasepaper/content/200912-749
    [129]Adschiri T, Sato T, Shibuichi H, et al. Extraction of Taiheiyo coal with supercritical water-HCOOH mixture[J]. Fuel,2000,79(3-4):243-248.
    [130]Goring GE, Curran GP, Tarbox RP, Gorin E. (Kinetics of carbon gasification by steam)-Effect of pressure and carbon burn-off on rate of interaction of low temperature char with steam-hydrogen mixtures at 1600°F[J]. Industrial Engineering Chemistry,1952,44(5): 1057-1065.
    [131]Zielke CW, Gorin E. Kinetics of carbon gasification[J]. Industrial Engineering Chemistry, 1957,49(3):396-403.
    [132]Van Heek KH, Juntgen H, Peters W. Fundamental studies on coal gasification in utilization of thermal energy from nuclear high-temperature reactors[J]. J Inst Fuel,1973,46:249-258.
    [133]王孝镕.硫离子、亚硫酸根和硫代硫酸根的分光光度法测定[J].烟台师院学报,1986,2(2): 18-22.
    [134]编委会.《水和废水监测分析方法》[M].中国环境科学出版社,2002:164-165.
    [135]GB/T 215-2003,煤中各种形态硫的测定方法[S].
    [136]HJ 535-2009,水质氨氮的测定纳氏试剂分光光度法[S].
    [137]GB 7493-87,水质亚硝酸盐氮的测定分光光度法[S].
    [138]编委会.《水和废水监测分析方法》[M].中国环境科学出版社,2002:259-261
    [139]HJ 484-2009,水质氰化物的测定容量法和分光光度法[S].
    [140]杨会民,王雅平,王美君,等.反应气氛对煤热解过程中硫变迁与释放的影响[J].现代化工,2009,29(增刊):37-39.
    [141]Guifang Chen, Yong Zhang, Chunyuan Ma, et al. Element transformation and gaseous products distribution for lignite gasification in supercritical water[J]. Applied mechanics and materials,2014,448-453:2999-3004
    [142]李斌,曹晏,张建明,等.高硫煤热解反应过程中硫的变迁行为[J].环境科学,2003,24(2):60-65.
    [143]郭慧卿.霍州煤热解预脱硫及其热解气体分析[D].太原:太原理工大学,2007.
    [144]刘慧君.钙基添加剂作用下煤热解和气化行为及其硫迁移[D].上海:华东理工大学,2011.
    [145]Attar Amir. Chemistry, thermodynamics and kinetics of reaction of sulfur in Coal-gas reaction: A review[J].Fuel,1978,57(4):201-212.
    [146]John H. Levy, Tim J.White. The reaction of pyrite with water vapour[J]. Fuel,1988,67(10): 1336-1339.
    [147]Fenrong Liu, Wen Li, Baoqing Li, et al. Sulfur transformation during pyrolysis of Zunyi coal by atmosphere pressure-temperature programmed reduction-mass spectrum[J]. Journal of Fuel Chemistry and Technology,2008,36(1):6-9.
    [148]Setyawati Yani, Dongke Zhang. Transformation of organic and inorganic sulphur in a lignite during pyrolysis:Influence of inherent and added inorganic matter[J]. Proceedings of the combustion institute,2009,32(2):2083-2089.
    [149]Yongqin Qi, Wen Li, Haokan Chen, et al. Sulfur release from coal in fluidized-bed reactor through pyrolysis and partial oxidation with concentration of oxygen[J]. Fuel,2004,83(16): 2189-2194.
    [150]Dongke Zhang, Setyawati Yani. Sulphur transformation during pyrolysis of an Australian lignite[J]. Proceeding of the combustion institute,2011,33(2):1747-1753.
    [151]李斌,曹晏,张建民,等.高硫煤热解反应过程中硫的变迁行为[J].环境科学,2003,24(2):60-65.
    [152]Yongqin Qi, Wen Li, Haokan Chen,et al. Desulfurization of coal through pyrolysis in a fluidized-bed reactor under nitrogen and 0.6% O2-N2 atmosphere[J]. Fuel,2004,83(6): 705-712.
    [153]史文权.无机化学[M].武汉大学出版社,2011:227-230.
    [154]史文权.无机化学[M].武汉大学出版社,2011:96.
    [155]张成,李婷婷,夏季,等.高硫煤不同气氛温和热解过程中含硫组分释放规律的实验研究[J].中国电机工程学报,2011,3(14):24-31.
    [156]林志颜.煤中有机硫热解析出机理的量子化学研究[D].阜新:辽宁工程技术大学,2008
    [157]史文权.无机化学[M].武汉大学出版社,2011:236
    [158]John D. Frantz, William L. Marshall.Electrical conductances and ionization constants of salts, acids, and bases in supercritical aqueous fluids:I, Hydrochloric acid from 100 to 700℃ and at pressures to 4000 bars[J]. American Journal of Science,1984,284 (6):651-667.
    [159]Peter Kritzer. Corrosion in high-temperature and supercritical water and aqueous solution:a review[J]. The Journal of supercritical fluids,2004,29(1-2):1-29.
    [160]马承愚,姜安玺,彭英利,等.含氯介质超临界水氧化过程中集中镍基合金腐蚀的实验研究[J].过程工程学报,2006,6(1):124-127.
    [161]Ansari A A, SingH I B. Tohschall HJ. Importance of geomorphology and sedimentation processes for metal dispersion in sediments and soils of the Ganga Plain:identification of geochemical domains [J]. Chemical Geology,2000,162:245-266.
    [162]黄亚继,金保升,仲此平,等.固体添加剂对煤气化过程中痕量元素的控制研究[J].环境科学学报,2005,25(4):507-511.
    [163]周代华,李学恒,徐凤林.重金属在氧化物表面的吸附形式[J].土壤学报,1997,34(3):348-351.
    [164]Spark K M, Johnson B B, Wells J D. Characterizing heavy-metal adsorption on oxides and oxyhydroxides[J]. European Journal of Soil Science,1995,46(4):621-631.
    [165]金圣圣,张丽梅,贺纪正.锰氧化物与环境中有机物的作用及其在环境修复中的应用[J].环境科学学报,28(12):2394-2403.
    [166]Savage P E, Gopalan S, Mizan T I, et al. Reactions at supercritical conditions:Applications and fundamentals[J].AIChE Journal,1995,41(7):1723-1778.
    [167]周黎,潘志彦,林春绵,等.无机盐在超临界水中溶解性研究进展[J].现代化工,2010,30(5):33-37.
    [168]Armellini F J, Tester J W. Solubility of sodium chloride and sulfate in subcritical and supercritical water vapor from 450~550℃ and 100-250 bar[J]. Fluid Phase Equilibria, 1993,84:123-142.
    [169]刘铁峰,房倚天,王洋.煤高温快速热解规律研究[J].燃料化学学报,2009,37(1):20-25.
    [170]张军,汉春利,刘坤磊,等.煤中碱金属及其在燃烧中的行为[J].热能动力工程,1999,14(2):83-85.
    [171]Chirag Sathe, Jun-ichiro Hayashi, Chun-zhu Li, et al. Release of alkali and alkaline earth metallic species during rapid pyrolysis of a Victorian brown coal at elevated pressures[J]. Fuel, 2003,82 (12):1491-1497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700