短程硝化—厌氧氨氧化耦合工艺处理低C/N废水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境中氮元素的大量积累导致了水环境质量的严重恶化,垃圾渗滤液、消化污泥脱水液等低(超低)C/N高氨废水占氨氮排放总量的50%以上;对于传统的生物硝化—反硝化处理工艺来说,当C/N<2.5时,如无外加有机碳源,反硝化无法有效地进行,传统的生物脱氮工艺己不能满足这些高氨低碳废水的处理要求。
     如何实现低C/N高氨废水高效、低耗处理一直是污水处理领域的难题,本课题立足于国内外处理高氨低碳废水相关工艺的最新科研成果,以短程硝化—厌氧氨氧化耦合工艺实现低C/N废水的处理。该耦合工艺的短程硝化系统采用SBR作为反应器,以经恢复后的亚硝化活性污泥作为短程硝化系统的接种污泥,在启动及优化试验中,研究了匹配厌氧氨氧化条件的短程硝化系统的不同反应参数;厌氧氨氧化工艺采用UASB作为反应器,以厌氧反硝化污泥作为接种污泥,进行启动运行试验,并最终使短程硝化-厌氧氨氧化耦合实现低C/N高氨废水的有效处理。
     试验结果表明:短程硝化反应控制DO为0.8~0.9mg/L、pH为7.0~7.5、COD约200 mg/L、碱度/NH4+-N约为1左右时,可以将出水水质中NO2--N/NH4+-N控制在合适的比例范围内,能较好的实现与厌氧氨氧化相匹配的短程硝化工艺。基于试验数据本文推导了NO2--N有效积累的数学模型,确定出水中NO2--N/NH4+-N的比例与进、出水的函数关系。厌氧氨氧化系统温度为35±1℃、pH为7.0~7.5、无需投加碳源时,ANAMMOX反应可以将80%以上的NH4+-N和NO2--N转化为N2。耦合工艺稳定运行180天的结果显示,厌氧氨氧化反应器可以很好的适应短程硝化的出水,处理后出水TN的去除率平均为70.8%,并基于试验数据确定ANAMMOX反应的动力学参数,得到以NH4+-N和NO2--N为基质的数学模型。
     本实验的研究成果以期为实现新型生物脱氮技术的应用及工程化提供基础技术参数。
The significant accumulation of nitrogen in the water environment had casued the serious deterioration of water environmental quality. The emissions of low or lower C / N and the high ammonia wastewater, such as leachate, sludge dewatering digestiona and so on, took up the total ammonia emissions more than 50 percent. For the traditional biological denitrification - denitrification process, when C / N <2.5, and if no additional organic carbon, the denitrification would not be carried out effectively. The traditional biological denitrification - denitrification process has been unable to meet the requirements of treatment the high-ammonia and low-carbon wastewater.
     How to achieve the treatment of high-ammonia and low-carbon wastewater with high efficient and low power consumption is a diffcult problem in the field of sewage treatment. The issues based on the latest scientific research findings of domestic and abroad about high-ammonia and low-carbon wastewater, and used the SHARON-ANAMMOX coupling technology to carry out the treatment of low C/N wastewater. In the coupling technology, SBR was adopted as the reactor of SHARON, and nitritational activated sludge was used as the vaccination sludge, and achieced half- nitrosation successfully. In the experiment of start and optimization, the different reaction parameters of SHARON, which matched with ANAMMOX, was studied. The ANAMMOX in the conditions of UASB as the reactor and anaerobic digestion sludge as the vaccination sludge, carried out the starting test, and joined up SHARON-ANAMMOX to achieve the treatment of low C / N wastewater.
     The results of experiment showed that in the conditions of DO=0.8-0.9 mg / L, pH=7.0-7.5, COD≈200 mg/L and alkalinity/NH4+-N≈1, the ratio of NO2--N/NH4+-N of effluent can be controlled in the appropriate range, and can match better with ANAMMOX. Based on the test datas, the paper derived from the mathematical model of the effective accumulation of nitritation, and determined the function of the ration of NO2--N/NH4+-N in effluent and the influent and effluent. In the conditions of T=35±1℃, pH=7.0-7.5, and without addition carbon, ANAMMOX can make more than 80 per cent of NH4+-N and NO2--N into N2. The results of the coupling technology,which operated 180-day stably,showed that the ANAMMOX reactor can adapt the effluents of SHARON very well, and the TN removal rate can up to 70.8 percent averaged. Based on the test datas, and used Haldam model, attained the kinetic parameters of ANAMMOX.
     The research results of the experiment expected to privode basic technology parameters for the engineering of novel biological nitrogen removal technology.
引文
[1]中华人民共和国国家环保总局.GB8978-1996中华人民共和国国家标准—污水综合排放标准[S].北京:中国标准出版社,1998-01-01
    [2]王建龙.生物脱氮新工艺及其技术原理[M].中国给水排水,2000,17:29-32
    [3]杨宁.亚硝化/反硝化生物脱氮新工艺试验研究[D].清华大学硕士论文,2004:12-13 [4 ]A. Minder. Anaerobic Ammonium Oxidation[J].J. 1992 US patent. 427849 (507884)
    [5]Van de Graff. Anaerobic Oxidation of Ammonium is a Biologically Mediated Process[J]. Appl. Environ. Microbiol, 1995, 16: 12461251
    [6]王建龙.厌氧氨氧化工艺的微生物学特性[J].生命的化学.2002, 22(5): 470-472
    [7]郑平,胡宝兰,徐向阳,等.厌氧氨氧化电子受体的研究[J].应用与环境生物学报,1998.4(1): 74-76
    [8]王建龙.厌氧氨氧化工艺的微生物学特性[J].生命的化学.2002, 22(5): 470-472
    [9]Ingo Schmidt, Olav Sliekers, Markus Schmid, et al. Aerobic and Anaerobic Ammonia Oxidizing Bacteria-Competitors or Natural Partners[J]. FEMS Microbiology Ecology, 2002,39:175-181
    [10]M. S. M. Jetten, et al. The Anaerobic Oxidation of Ammonium[J]. FEMS Microbiology Review, 1999, 22: 421-437
    [11]C. Fux, H. Siegrist. Nitrogen Removal from Sludge Digester Liquids /denitrification or Partial Nitrification/Anammox: Environmental Nitrification Economical Considerations[J].Water Science&Technology, 2004, 50(10): 19-26
    [12]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M]..北京:科学出版社,2004
    [13]陈滢,王洪臣,彭永臻.控制低溶解氧浓度实现生活污水短程硝化研究[J].2004,20(3):339-341
    [14] C. Hellinga, A. A. J. J. Schellen, J. W Minder, et al. The SHARON Process: an Innovative Method for Nitrogen Removal from Ammomicroogranism[J]. Water Sci Technol, 1997, 37(9): 135-142
    [15]Linping Kuai and Willy Verstraete. Ammonium Removal by The Oxygen-Limited Autotrophic Nitrification-Denitrification System[J]. Applied& Environmental Microbiology, 1998, 64(11): 4500-4506
    [16]M.Strous, van Gerven E, J. G Kuenen and M. S. M. Jetten. Effects of Aerobic and Microaerobic Conditions on Anaerobic Ammonium-Oxidizing (Anammox) Sludge[J]. Applied &Environmental Microbiology, 1997, 63(6): 2446-2448..
    [17] N. Bernet, D. C. Peng, DelgenesJ-P. Nitrification at Oxygen Concentration Biofilm Reactor. Environment[J]. Eng ASCE(American Society of Civil Engineers), 2001, 127(3): 266-271
    [18] A. Olav Sliekersa, N. Derworta, J. L. Campos Gomez, et al. Completely Autotrophic Nitrogen Removal Over Nitrite in One Single Reactor[J]. Water Research, 2002,36: 2475-2482
    [19]A. Olan Sliekers, K.A. Thir W. Abma, et al. CANON and Anammox in a Gas-Lift Reactor. FEMS Microbiology Letters[J]. 2003,218: 339-344
    [20] A. Dapena-Mora, J. L. Campos, A. Mosquera-Corral, et al. Stability of the ANAMMOX Process in a Gas-Lift Reactor and a SBR[J]. Journal of Biotechnology, 2004,110: 159-170
    [21]Schmidt, L, Hermefink, C. Van de Pas-Schoonen, et al. Anaerobic Ammonia Oxidation in the Presence of Nitrogen Oxides (NOx) by two Different Lithotrophs[J]. Applied& Environmental Microbiology, 2002,68(11): 5351-5357
    [22]A. Teske. Evolutionary Relationships among Ammonia- and Nitrite-Oxidizing Bacteria[J]. Bacteriology, 1994, 176: 6623-6300
    [23]X. Li, G..Zen, K.H. Rosenwinkel, et al. Start up of Deammonification Process in one Single SBRSvstem-Water Science &Technology, 2004, 50(6): 1-8
    [24]Than Khin, Ajit P.Annachhatre. Novel Microbial Nitrogen Removal Processes[J]. Biotechnology Advances, 2004,22: 519-532
    [25] Marc Strous, Eric Van streams with the Configuration [J].Anaerob Gerven, Ping Zheng, et al. Ammonium Removal from Concentrated Waste is Ammonium Oxidation (ANAMMOX) process in Different Reactor Water Res[J]. 1997,31(8): 1955—1962
    [26] Christian Fux, Marc Boehler, Philipp Huber, et al. Biological Treatment of Ammonium-Rich Wastewater by Partial Nitritation and Subsequent Anaerobic Ammonium Oxidation (anammox) in a Pilot Plant[J]. Journal of Biotechnology, 2002, 99: 295-306
    [27] C Hellinga, A.A.J. C. Schellen, J. W. Mulder, et al The SHARON Process:An innovative method for nitrogen removal from ammonium rich wastewater Wat Sci Tech[J].1998,37(9):135-142
    [28]左剑恶,杨洋,蒙爱红.厌氧氨氧化工艺在UASB反应器中的启动运行研究[J].上海环境科学. 2003,22(10):665~668
    [29]张少辉,郑平.厌氧氨氧化反应器启动方法的研究[J].中国环境科学,2004,24(4):496-500
    [30]M.S.M Jetten , et al. The Anaerobic Oxidation of Ammonium[J].FEMS Microbiology Review.1999,22:421-437
    [31]杨洋,左剑恶,沈平等.接种不同普通污泥的厌氧氨氧化反应器的启动运行研究[J].环境科学.2004, 25(增刊):39-42
    [32]张少辉,郑平,华玉妹.反硝化生物膜启动厌氧氨氧化反应器的研究[J].环境科学学报2004(2): 220-224
    [33]胡勇有,邹怀庆,陈柱.厌氧氨氧化菌的培养与驯化研究[J].华南理工大学学报2002(11):160-134
    [34] Helmer C, et al Nitrogen loss in a nitrifying biofilm system Wat Sci Tech[J]. 1999,39(7): 13-21
    [35]陈绍军,迟若岩,张志颖等.氮硝化过程的指示生物与环境条件[J].给水排水,1995,5(1):1819
    [36]杜兵,司亚安等.推流式固定化生物反应器培养ANAMMOX菌[J].中国给水排水2003,19(7):6265
    [37]郭辉.亚硝化-厌氧氨氧化联合工艺处理高氮低碳废水试验研究[D].长安大学硕士论文.2007.45-49
    [38]顾夏生.废水处理数学模式[M].北京:清华大学出版社,1982.4.
    [39]郑平,胡宝兰.厌氧氨氧化菌混培养生物生长及代谢动力学研究[J].生物工程学报,2001,
    [40]王建龙.厌氧氨氧化工艺的微生物学特性[J] .生命的化学,2002,22 5 :470-472.
    [41] R.E.布坎南,N.E.吉本斯等.伯杰细菌鉴定手册(第八版)[M].1984:622-630
    [42]徐昕荣,贾晓珊,陈杰娥.一种未见报道过的厌氧氨氧化微生物的鉴定及其活性分析[J].环境科学学报.26(6):912-918
    [43]郑艺梅,胡承孝.第三届安徽省科技论坛暨安徽省第二届微量元素科学研讨会论文集[C].2004
    [44]王志盈,水污染控制现代生物反应理论[M].西安建筑科技大学,2002.10.
    [45]哈尔滨建筑工程学院主编排水工程(下册)[M].中国建筑出版社,1986.
    [46]王志盈,刘超翔,袁林江,彭党聪.低溶解氧下生物流化床内亚硝化过程选择特性研究[J].西安建筑科技大学学报,2000,32(1):4-7.
    [47]杨宁.亚硝化/反硝化生物脱氮新工艺实验研究[D].清华大学硕士论文,2004: 12-13
    [48]Gee, C. Modeling Eng.(ASCE), 1990, of Nitrification under Substrate-Inhibiting Conditions[J]. J. Environ. 116:135-142
    [49]Bae W Optimal Operation Factors for Nitrite Accumulation in Batch Reactors. Biodegradation[J]. 2002,12: 359-366
    [50]郑平.厌氧氨氧化菌混培物及代谢动力学研究.生物工程学报[J].2001, 17(3):193-198
    [51]蒙爱红. .亚硝化一厌氧氨氧化工艺的试验研究[D].清华大学硕士学位论文,2001
    [52]陈金声,史家梁,徐亚同.硝化速率测定和硝化细菌计数考察脱氮效果的应用[J].上海环境科学1996, 3(3): 18-20
    [53]李谷,黄正,范玮等.硝化细菌富集方法的研究[J].淡水渔业,2000, 30(9): 36-38
    [54]Thamdrup Band Palsgaard T.Production of N2 through anaerobic ammonia oxidation coupled to nitrate reduction in marine sediments.Applied and Environmental Microbiology,2002,68(3):1312-1318
    [55]李亚新,董春娟,徐明德.厌氧消化过程中Fe、Co、Ni对NH4+-N的拮抗作用[J].城市环境与城市生态,2000,13(4):11-12
    [56]R.E.施皮斯著.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社,2001.4.
    [57]Charles Glass,John Silvestein onInhibition of denitrification in activated sludge by nitrite[M].Wat.Environ.Res.Vol69(6):145-1154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700