部分亚硝化—厌氧氨氧化耦合工艺处理污泥脱水液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥脱水液属于低碱度、低C/N、高氨氮废水,采用传统的生物硝化/反硝化工艺已不能满足这类低C/N、高氨氮废水的处理要求。因此开发应用型高效、低耗的生物脱氮工艺显得尤为重要,亚硝化、厌氧氨氧化(ANAMMOX)、全程自养脱氮等新型生物脱氮技术的研究成为当前的研究热点。然而,目前的研究成果大多处于实验室配水研究阶段。
     本试验以实际污泥脱水液为研究对象,采用缺氧滤床+好氧悬浮填料生物膜连续流工艺,在常温、高溶解氧条件下,于好氧反应器中实现和维持了脱水液部分亚硝化;同时采用先启动硝化生物膜再启动ANAMMOX应器的方法,成功启动了ANAMMOX反应器,然后将部分亚硝化反应器和ANAMMOX反应器耦合起来,进而实现全程自养生物脱氮,达到高效生物脱氮目的。此耦合工艺具有无需外加有机碳源、节省需氧量、降低能耗等优点。
     本试验主要结果如下:
     在高溶解氧(6~9mg/L)、常温(15~29℃)、长SRT条件下,利用特定抑制因子游离氨(FA)对亚硝酸盐氧化菌的抑制作用,从而使氨氧化菌在数量或活性上占优势,成功地在缺氧滤床+好氧悬浮填料生物膜连续流工艺中实现了部分亚硝化。在亚硝化反应器启动前130d过程中FA浓度在1.0~10.3mg/L,均在抑制亚硝酸盐氧化菌活性的阈值范围内。长期维持FA的选择性抑制作用,从而获得稳定的亚硝化,亚硝氮积累率可达80%左右,当进水氨氮有机负荷(ALR)为1.15 kg/(m3·d)时,亚硝氮积累率高达97.7%。通过综合调控进水ALR、进水碱度/氨氮和好氧段水力停留时间,可以调节出水NO2--N/NH4+-N的比率。当进水NH4+-N平均为315.8mg/L,平均进水ALR为0.43 kg/(m3·d),进水碱度/氨氮为5.25时,出水NO2--N/NH4+-N为1.25左右,从而为ANAMMOX工艺创造了进水条件,较好地实现了匹配ANAMMOX工艺的部分亚硝化。
     采用先培养自养硝化生物膜,再启动ANAMMOX反应器的方法,可以在110d内快速启动厌氧氨氧化。第200d时反应器的NH4+-N和NO2--N去除容积负荷分别为0.526kg/(m3·d)和0.536kg/(m3·d)。在启动初期,由于好氧氨氧化占主导地位,出水pH值低于进水pH值。随着启动过程的推进,厌氧氨氧化逐渐占主导地位,出水pH值高于进水。第110~200d,氨氮去除量、NO2--N去除量、NO3--N生成量的比值平均为1:1.1:0.33。在ANAMMOX反应器的启动过程中,通过反应器内NH4+-N去除量、NO2--N去除量、NO3--N生成量及它们之间的比值、进出水pH值的变化作为指示参数,可以及时了解厌氧氨氧化的启动进程。生物膜启动厌氧氨氧化的反应器在提高ANAMMOX菌的固定化、减少菌种流失方面具有较大优势。
     部分亚硝化反应器出水NO2--N/NH4+-N比率对提高该耦合工艺的脱氮效率至关重要,当进水NH4+-N为640mg/L,ALR为1.16kg/m3·d,进水碱度/氨氮为5.1时,进入ANAMMOX反应器的NO2--N/NH4+-N为1.2左右时,ANAMMOX反应器TN去除率可达83.8%。在不需外加有机碳源的条件下,处理高氨氮、碱度不足、低C/N实际污泥脱水液,实现了高效自养脱氮。本耦合工艺是适合污泥脱水液水质特点的新型生物脱氮技术。
Sludge liquor, which is characterized by high concentration of ammonium、low alkalinity and low C/N ratio. The conventional biological nitrification-denitrification cannot to achieve the processing request for this kind of waste water. Therefor it is important that researching and developing new nitrogen removal biotechnology. In resent years, the new biotechnologies such as ANAMMOX (Anaerobic Ammonium Oxidation), NITRITATION, CANON process have been the focus of research all around the world. Whereas the most new nitrogen removal processes have been limited in laboratory scale.
     The sludge liquor was studied in this paper. The partial nitrification was achieved and and maintained stably in the aerobic carrier biofilm reactor under normal temperature and the high DO. At the same time, the ANAMMOX bioreactor can be started-up by cultivating autotrophic nitrifying biofilm first. The combine the nitritation reactor and the ANAMMOX reactor to achieve the completely autotrophic nitrogen removal over bitrite. The coupling process has advantages of no need of organic carbon addition, low oxygen consumption and energy consumption.
     The main results were as follows:
     The partial nitrification was achieved and maintained stably in the aerobic reactor under normal temperature(15~29℃)、the high DO(6~9mg/L) and long SRT, by the selective inhibition action of free ammonia to nitrite oxidation bacteria. The partial nitrification maintained stably in the aerobic reactor and nitration was about eighty percent when FA concentration was in the range of 1.0~10.3mg/L, in the 130 days prior to operation of the process. The nitration up to 97.7% when the influent ammonia loading rate(ALR) was 1.15 kg/m3·d. The effluent nitrite/ammonia ratio was about 1.25 when the average influent ammonia, influent ALR and influent ratio of alkalinity and ammonia were 315.80mg/L, 0.43 kg/m3·d and 5.25, respectively. So the effluent of partial nitrification process provided the influent substrate demand for the following ANAMMOX process.
     The start-up of the ANAMMOX bioreactor by autotrophic nitrifying biofilm was studied. The ANAMMOX bioreactor can be initiated within 110 days when cultivating autotrophic nitrifying biofilm before the start-up of the bioreactor. At the 200th day, the volumetric loading rates of NH4+-N and NO2--N are 0.526 kg/m3·d and 0.536 kg/m3·d respectively. At the beginning of the start-up phase, the effluent pH value is lower than the influent pH value, but gradually, the effluent pH becomes higher than the influent pH value as the pH value of the liquid in the bioreactor is alkaline. Between the 110th and 200th day, the ratio of the NH4+-N removal, the NO2--N removal and the NO3--N production is 1:1.1:0.33. In the start-up course of ANAMMOX bioreactor, by the variation of the ratio of the NH4+-N removal and the NO2--N removal and the NO3--N production, the effluent and influent pH can demonstrate the start-up progression of the bioreactor. Besides, the ANAMMOX bioreactor has greater advantages at improving the immobilized of ANAMMOX bacteria and reducing the outflow of bacteria.
     The effluent nitrite/ammonia ratio has a vital role to improve nitrogen removal efficiency of couping process. When influent ALR and alkalinity/ammonia ratio were respectively 1.16 kg/m3·d and 5.1, effluent ratioof nitrite to ammonia of the nitritation reactor was about 1.2 and total nitrogen removal efficiency of the ANAMMOX reactor was about 83.8%. The couping process achieved autotrophic nitrogen removal and without adding organic carbon source, so the noval adapt to water characteristics of digested sludge liquor.
引文
1王涛,熊艾玲,邓荣森. SHARON工艺和SHARON-ANAMMOX组合工艺的节能特征[J].重庆建筑大学学报,2003,25(4):59-63
    2城镇污水处理厂污染物排放标准(GB18918-2002)
    3蔡祖聪.氮形态转化途径研究的新进展厌氧氨氧化及其应用前景.应用生态学报,2001, 12(5): 795-798
    4吴永明.亚硝化-厌氧氨氧化联合工艺及其处理高氨氮废水的研究[M]. 2005,1-2
    5张小玲,彭党聪,王志盈等.短程硝化-反硝化经济特性分析[J].西安建筑科技大学学报(自然科学版), 2002, 34(3):239-242
    6 M. Henze, P. Harremo?s, J. L. C. Jansen, et al.. Wastewater Treatment Biological and Chemical Processes [M]. Springer Publishers, New York, 358-341
    7曹建平.基于亚硝化和厌氧氨氧化的新型生物脱氮技术的应用研究[D]. 2007, 1-2
    8张少辉.厌氧氨氧化工艺研究.浙江大学博士学位论文. 2004: 1-10
    9 World Health Organization Geneva. Environmental health criteria 54-Ammonia. Unitied Nations Environment Programme, the International Labour Organization, and the World Health Organization. 1986
    10赵庆良,等.废水脱氮工艺的原理特征与应用[J].黑龙江大学自然科学学报, 2005,22(5):580-587
    11叶建锋.废水脱氮处理技术[M].化学工业出版社.北京:2006
    12刘国文.有色金属冶炼氨氮废水处理方法研究.湖南有色金属,2004(3):37-40
    13 Siegrist H. Nitrogen removal from digester supernatant-comparison of chemical and biological methods[J]. Wat Sci Tech, 1996, 34(1-2):399-406
    14 U. Abeling, C. F. Seyfried. Anaerobic-aerobic treatment of high strength ammo- nium wastewater-nitrogen removal via nitrite. Wat Sci Tech, 1992, 26:1007-1015
    15 B. Wett, W. Rauch. The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Res., 2003, 37:1100-1110
    16支霞辉,王红武,丁峰.常温条件下短程生物硝化反硝化生物脱氮研究[J].环境科学研究. 2006, 19(1): 26-29
    17杜兵,孙艳玲,刘寅等.新型亚硝化工艺开发研究[J].给水排水. 2006,32(9): 17-20
    18郭海娟,马放,沈耀良. DO和pH值在短程硝化中的作用[J].环境污染治理与设备. 2006, 7(1): 37-39
    19高大文,彭永臻,王淑莹.交替好氧/缺氧短程硝化反硝化生物脱氮I.方法实现与控制[J].环境科学学报. 2004, 24(5): 761-768
    20宋学起,王淑莹,彭永臻等.以氯化和时间控制实现亚硝化型硝化反硝化[J].高技术通讯, 2004, 1: 95-99
    21高大文.污水生物脱氮新技术研究现状与发展方向.现代化工, 2004,24:202-207
    22 Jetten M S M. Towards a more sustainable wastewater treatment system[J]. Wat. Sci. Tech, 1997, 35(9): 171-180
    23 Keisuke Hanaki, et al. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended growth reactor. Wat. Res., 1990, 24(3): 297-302
    24 A. Abeliovich, A. Vonshak. Anaerobic metabolism of Nitrosomonas europeae. Archives of Microbiology, 1992, 158:267-270
    25王少坡,彭永臻等. CAST工艺处理低C/N废水中DO对NO2-积累的影响[J].哈尔滨工业大学学报, 2005, 37(3): 344-347
    26马勇,彭永臻等. A/O生物脱氮工艺处理生活污水中试(二)系统性能和SND现象的研究[J].环境科学学报, 2006, 26(5): 710-715
    27魏琛,罗固源等. FA和pH值对低C/N污水生物亚硝化的影响[J].重庆大学学报(自然科学版), 2006, 29(3): 124-127
    28 U. Abeling, C. F. Seyfrid. Anaerobic aerobic treatment of high strength ammonium wastewater nitrogen removal via nitrite. Wat. Sci. Tech., 1992, 26(5~6):1007-1015
    29张树军,彭永臻,曾薇,等.高氮城市生活垃圾渗滤液短程生物脱氮.环境科学学报,2006, 26(5):751-756
    30高景峰,彭永臻,王淑莹,等.以DO,ORP,pH控制SBR法的脱氮过程.中国给水排水,2001, 17(4):6-11
    31 Mike S M. Jetten, et al. Noval principle in the microbial conversion of nitrogen compounds. Antonie van Leeuwenhoek, 1997, (71)(1-2):75-93
    32 Van Neil E W J. Nitrification by heterotrophic denitrifiers and its relationship to autotrophic nitrification: [PhD Thesis]. Delft University of Technology, Delft, 1991, 20-29
    33 L. Kuai, W. Verstraete. Ammonium Removal by the Oxygen Limited Autotrophic Nitrification-Denitrification System[J]. Appl Env Microbiol., 1998, 64: 4500-4506
    34 B. Szatkowska, G. Cema, E. Plaza, et al. One-stage System with Partial Nitrification and Anammox Processes in Moving-Bed Biofilm Reactor. In: Proceedings of the International conference on biofilm systems VI, Amsterdam, 2006, pp. 49-58
    35 K. H. Rosenwinkel, A. Cornelius. Deammonification in the Moving-bed Process for the Treatment of Wastewater with High Ammonia Content[J]. Chem. Eng. Technol., 2005, 28: 49-52
    36 K. Pynaert, B. F. Smets, D. Beheydt, et al. Start-up of Autotrophic Nitrogen Removal Reactors via Sequential Biocatalyst Addition[J]. Environ. Sci. Technol., 2004,38:1228-1235
    37 Jetten M. S. M. Anaerobic ammonium oxidation by marina and freshwater planctomycele-like bacteria. Appl. Microbiology and Biotechnology, 2003, 63:107-114
    38 Xiaodi Hao, et al. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process. Wat. Res., 2002, 4839-4849
    39 Mulder A, Van de Graaf A A, Robertson L A, Kuenen J G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS microbiol. Ecol. 1995, 16(3): 177-183
    40 Van de Graaf A A, de bruijn P, Robertson L A, Jetten M S M, Kuenen J G. Metabolic Pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiol, 1997, 143(7):2415-2421
    41 K. A. Third, J. Paxman, M. Schmid, et al. Enrichment of Anammox from Activated Sludge and Its Application in the CANON Process[J]. Microbial Ecology, 2005, 49: 236-244
    42 B. Kartal, J. Rattray, M. Strous, et al. Candidatus“Anammoxoglobus propionicus”a New Propionate Oxidizing Species of Anaerobic Ammonium Oxidizing Bacteria[J]. Systematic and applied Microbiology, 2007, 30(1): 39-49
    43 S. Rysgaard, R. N. Glud. Anaerobic N2 Production in Arctic Sea Ice[J]. Limnol. Oceanogr.,2004, 49:86-94
    44 M. C. Schmid, B. Maas, A. Dapena, et al. Biomarkers for In Situ Detection of Anaerobic Ammonium-oxidizing(Anammox) Bacteria[J]. Appl. Environ.Microbiol.,2005,71:1677-1684
    45 M. M. M. Kuypers, G. Lavik, D. Woebken, et al. Massive Nitrogen Loss from the Benguela Upwelling System through Anaerobic Ammonium Oxidation[J]. Proc. Natl. Acad. Sci. USA, 2005, 102:6478-6483
    46 R. L. Meyer, N. Risgaard-Petersen, D. E. Allen. Correlation between Anammox Activity and Microscale Distribution of Nitrite in a Subtropical Mangrove Sediment[J]. Appl. Environ. Microbiol., 2005, 71:6142-6149
    47 N. Risgaard-petersen, R. L. Meyer, M. Schmid, et al. Anaerobic Ammonium Oxidation in an Estuarine Sediment[J]. Aquat. Microb. Ecol., 2004, 36:293-304
    48 S. Rysgaard, R. N. Glud, N. Risgaard-petersen, et al. Denitrification and Anammox Activity in Arctic Marine Sediments[J]. Limnol. Oceanogr., 2004, 1493-1502
    49 M. Trimmer, J. C. Nicholls, N. Morley, et al. Biphastic Behavior of Anammox Regulated by Nitrite and Nitrate in an Estuarine Sediment[J]. Appl. Environ. Microbiol., 2005, 71:1923-1930
    50 Kuypers M.M.M., Sliekers A.O., Lavik G., et al. Anaerobic Ammonium Oxidation by Anammox Bacteria in the Black Sea[J]. Nature, 2003, 422: 608-611
    51 Jetten Mike S M,et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1999, 22(6):421-437
    52 Strous M,et al. Key Physiology of Anaerobic ammonium Oxidation[J]. Applied AndEnvironmental Microbiology, 1999, 65(7):3248-3250
    53 Schalk J, et al. The anaerobic oxidation of hydrazine---a novel reaction in microbical nitrogen metabolism[J]. FEMS Microbiol. Lett., 1998, 158(1):61-67
    54 Siegrist H, Reithaar S, Koch G, et al. Nitrification Loss in Nitrifying Rotating Contactor Treating Ammonium-Rich Wastewater Without Organic Carbon[J]. Wat. Tech., 1998,38(8-9): 241-248
    55 Prince R C, George G N. The remarkable complexity of hydroxylamine oxidoreductase[J]. Nature Struct. Biol., 1997, 4(2): 247-250
    56 Schmidt I, Sliekers processes for the Schmid M, et al. New concepts of microbial treatment ogen removal in wastewater. FEMS Microbiology Reviews, 2003, 27(4): 481-492
    57 A. Gali, J. Dosta, M. C. M. Loosdrecht, et al. Two Ways to Achieve an Anammox Influent from Real Reject Water Treatment at Lab-Scale: Partial SBR Nitrification and SHARON Process Biochemistry, 2007,42(4): 715-720
    58 C. Hui-ping, A. Ohashi, H. Imachi, et al. Effective Partial Nitrification to Nitrite by Down-flow Hanging Sponge Reactor under Limited Oxygen Condition[J]. Water Research, 2007, 41: 295-302
    59 K. Furukawa, H. Tokitoh, P. K. Lieu, et al. Single-stage Nitrogen Removal Using Anammox and Partial Nitrification (SNAP) for Treatment of Synthetic Landfill Leachate[J]. Jpn. J. Water Treat. Biol., 2005, 41(2): 103-112
    60 G. Zheng, Y. Fenlin, K. Furudawa, et al. Feasibility of a Membrane-Aerated Biofilm Reactor to Achieve Single-Stage Autotrophic Nitrogen Removal Based on Anammox[J]. Chemosphere, 2007, 69(5): 776-784
    61 D. Zeqin, S. Tieheng. A Potential New Process for Improveing Nitrogen Removal in Constructed Wetlands-Promoting Coexistence of Partial-Nitrification and ANAMMOX[J]. Ecological Engineering, 2007, 31:69-78
    62 L. Zhu, L. Junxin. Landfill Leachate Treatment with a Novel Process: Anaerobic Anammox Oxidation(Anammox) Combined with Soil Infiltration System[J]. Journal of Hazardous Materials, In Press, Corrected Proof, Available online 31 May 2007
    63 Jetten M S M, Logemann S, Muyzer G, et al. Novel principles in the microbial conversion of nitrogen compounds. Antonie van Leeuwonheok, 1997, 71(1-2): 75-93
    64 Van Dongen U, Jetten M S M, Van Loosdrecht M C M. The SHARON-Anammox Process for treatment of ammonium rich wastewater[J]. Wat Sci Tech,2001,44(1):153-160
    65 Fux C, Boehler M, Huber P, Brunner I, Siegrist H. Biological treatment of ammonium-rich wastewater by partial nitrogen and subsequent anaerobic ammonium oxidation(anammox) in a pilot plant[J]. J Biotachnol,2002,99(3):295-306
    66 P. Battistoni, P. Pavan, F. Cecchni., etc. Phosphorus removal in real anaerobic supernatants: modeling and performance of a fluidized bed reactor. Water Science Technology, 1998,38(1):275-283
    67 H. Siegrist. Nitrogen removal from digester supernatants-comparison of chemical and biological methods. Water Science Technology,1996,34(1~2):399-406
    68 Villaverde S, Garc a–Encina P A, Fdz–Polanco F. Influence of pH over nitrifying biofilm activity in sumerged biofilers [J]. Wat Res, 1997, 31(5): 1180-1186
    69 Surmacz-Gorska J, Cichon A, Miksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter a nitrification and denitrification [J]. Wat Sci Tech,1997, 36(10): 73-78
    70 Hellinga C, Schellen A A J C, Mulder J W, et al. The SHARON process: an innovative method for nitrogen removal from ammonia–rich waste water [J]. Wat Sci Tech, 1998, 37(9): 135-142
    71 Munch E V, Lant P, Keller J. Simultaneous nitrification and denitrification in bench–scale sequencing batch reactors [J]. Wat Res, 1996, 30(2): 277-284
    72 Balmelle B, Nguyen M, Capdeville B, et al. Study of factors controlling nitrite build-up in biological processes for water nitrification [J]. Wat Sci Tech, 1992, 26(5–6) :1017-1025
    73 Mulder J. W., Rogier van Kempen. N-removal by SHARON. IAWQ Coference, 1997.30-31
    74高景峰. SBR法去除有机物和脱氮除磷在线模糊控制的基础研究[D].哈尔滨:哈尔滨工业大学, 2001. 193-194
    75 Hanaki K, Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Wat Res, 1990, 24(3): 297-302
    76 Hagopian D S, Riley J G. A closer look at the bacteriology of nitrification [J]. Aquacultural Engineering, 1998, 18(4): 223-244
    77 Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. J. Water Pollut. Control Fed., 1976, 48(5): 835-852
    78徐冬梅,聂梅生,金承基.亚硝酸型硝化的试验研究.给水排水, 1999, 25(7): 37-39
    79陈际达,陈志胜,张光辉,等.含氮废水亚硝化型硝化的研究[J ] .重庆大学学报(自然科学版), 2000, 23(3): 74-76
    80左剑恶,杨洋,蒙爱红.高氨氮浓度下的亚硝化过程及其影响因素研究.环境污染与防治, 2003, 25(6): 332-335
    81魏琛,罗固源.游离氨对稳定生物亚硝化的影响分析.重庆环境科学, 2003, 25(12): 50-52
    82 Wang Jianlong, Yang Ning. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry, 2004, 39(10):1223-1229
    83 Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl. Microbiol. Biotechnol., 1998, 50(5): 589-596
    84 Schmid M, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Sys. Appl. Microbiology., 2000, 23(1): 93-106
    85 Van de Graaf A A, De Bruijn P, Robertson L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8): 2187-2196
    86 Bock EI, Stueven R, Zart D. Nitrogen loss caused by denitrifying nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbial, 1995, 163: 16-20
    87张少辉,郑平,华玉妹.反硝化生物膜启动厌氧氨氧化反应器的研究[J].环境科学学报, 2004, 24(2): 220-224
    88杜兵,司亚安,孙艳玲,等. ANAMMOX微生物高负荷培养方法研究[J].给水排水, 2004, 30(10): 35
    89 Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation[ J ]. Appl Environ. Microbiol, 1999, 65 (7) : 3248 - 3250
    90 Jetten M S M, Strous M, van de Pas Schoonen K T, et al. The anaerobic oxidation of ammonium [ J ]. FEMS Microbiol Rev, 1999, 22 (5) : 421 - 437
    91杜兵,司亚安,孙艳玲,等.推流固定化生物反应器培养ANAMMOX菌.中国给水排水, 2003, 19(7):62~65
    92 Schmidt I, Sliekers O, Schmid M, et al. Aerobic and anaerobic ammonia oxidizing bacteria-competitors or natural partners[J]. FEMS Microbiology Ecology, 2002, 39(3): 175-181
    93 Sliekers A O, Derwort N, Campos Gomez J L, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research, 2002, 36(10): 2475-2482
    94 Egli K, Fanger U, Alvarez P J J, et al. Enrichment and characterization of an anammox bacterium from a roating biological contactor treating ammonium-rich leachate[J]. Archives of Microbiology, 2001, 175(3): 198-207
    95 Van de Graaf A A, De Bruijn P, Robertson L A, et al. Autotrophlic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor[J]. Microbiology,1996,142(8):2187-2196
    96 Lindsay M R, Webb R I, Strous M, et al. Cell compartmentalization in planctomycetes: novel types of structural organization for the bacterial cell. Arch. Microbiol.,2001,175(6): 413-429
    97郝晓地,仇付国, Van der Star W R L, Van Loosdrecht M C M.厌氧氨氧化技术工程化的全球现状及展望[J].中国给水排水, 2007, 23(18): 15-19
    98 Van der Star W R L, Abma W R, Blommers D, et al. Start up of reactors for anoxic ammonium oxidation: experiences from the first full scale ANAMMOX reactor in Rotterdam [J]. Water Research,2007, 41(18):4149-4163
    99郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004: 155-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700