膜生物反应器中厌氧氨氧化的运行特性及微生态结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于生化性较差的或高浓度含氮废水,传统生物脱氮工艺处理成本较高。目前国内外对低碳氮比(C/N)废水处理技术的发展趋势是采用厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)技术。但要将这项技术推向应用,必须要解决Anammox菌的菌种来源和菌体持留等问题。本论文在总结前人对Anammox研究成果的基础上,首先比较了不同普通污泥源对Anammox反应器启动效能,选出最佳污泥源。在此基础上,在膜生物反应器(Membrane Bioreactor,MBR)中,研究了其运行特性及运行过程中微生物群落结构及相对数量的变化,并研究了Anammox过程中MBR的最佳工况条件。主要研究内容如下:
     (1) R1、R2、R3三个反应器中分别接种好氧污泥、厌氧颗粒污泥、厌氧消化污泥,经过2-3个月的运行,均获得了具有Anammox活性的富集培养物。其中R1、R2、R3中总氮去除率分别达到76 %、82 %和80 %;出水污泥浓度分别为1.34 gSS/d、0.42 gSS/d、0.95gSS/d;污泥体积指数则分别为23.23 ml/gSS、11.11 ml/gSS和19.38 ml/gSS;三个反应器稳定运行所消耗的时间关系为R3     (2) MBR运行过程中,污泥VS/TS由初始的0.66提高到0.77,说明体系中出现了适应环境的菌群;MBR稳定运行后,Anammox颗粒污泥粒径主要集中在0.2-1mm,实验证明了颗粒污泥是Anammox功能的重要承载者;总氮容积负荷达0.245 g/(L.d),总氮去除率约80 %,NH4+-N和NO-2-N去除率分别为81 %、91 %。MBR运行初期,由异养菌等菌体自溶造成膜污染严重,当Anammox成为主导反应时,由Anammox微生物生长造成的膜污染远远小于MBR运行初期。
     (3) MBR抗水力负荷实验表明,水力停留时间(HRT)由14 h缩短至7.9 h时, MBR能稳定运行,NH4+-N、NO2--N去除率分别保持在75 %、85 %;温度在30-35℃、pH值为7-8,Anammox活性较高;上升流速在1.8-2.3 m/h时,MBR运行状况良好;从氮素去除情况、运行成本、操作的简便性综合来看,较为合适的操作方式为:进水0.55 h,循环5 h,沉降0.3 h,出水0.15 h。
     (4)扫描电镜(SEM)实验发现,接种污泥以杆状菌为主,有少量的丝状菌和球菌;Anammox污泥主要是由球菌和杆菌组成。T-RFLP实验证实,Anammox菌富集前后微生物群落结构和相对数量发生了明显变化,运行后整个反应器中适应Anammox运行方式的菌种增殖较多,种类丰富,包括planctomyce、pirellula、gemmata、pseudomonas。
For the traditional biological nitrogen removal technology, it results expensive in those wastewaters with low biodegradable matter and high nitrogen concentrations. Nowadays the trend in development of treating wastewater with lower ratio of carbon to nitrogen is anaerobic ammonium oxidation(Anammox) process. In order to put it into practical use, Anammox inocula must be achieved and the biomass must be hold inside the reactor. Based on the summarizing the results of previous studies on Anammox, the influence of different sludges on the efficiency of Anammox process was studied in this paper. On the basis of those study, the operation characterictics and microbial community distribution of Anammox in a membrane bioreactor was analysed. The best operation of MBR in the Anammox process was also studied in this studied. The main results were as follows:
     (1) After 2-3 months of incubation, The enrichment of Anammox strains from the conventional sludge such as aerobic sludge, anaerobic granular sludge and anaerobic digestion sludge are observed in the R1, R2, R3; The removal rate of ammonium, nitrite and total nitrogen were 82 %, 92 %, 91 %; The concentration of effluent sludge were 1.34 gSS/d, 0.42 gSS/d, 0.95gSS/d; The volume index of sludge were 23.23 ml/gSS, 11.11 ml /gSS and 19.38 ml/gSS; Judged by the start-up time, R1was the shortest, followed by R2 and R3.
     (2) The VS/TS was changed from 0.67 to 0.77 during the Anammox process in MBR; At the end of the anammox reactor operation, the size of Anammox granular sludge was mainly concentrated in 0.2-1mm, experiment demonstrated that granular sludge played an important role in the Anammox process; and the nitrogen-loading rate amounted to 0.245 kgTN/(m3.d), and the removal efficiency of total nitrogen, ammonia and nitrite was 80%, 81%, 91 %, respectively. Cell lysis from heterotrophs was proposed to be one key factor influencing the membrane fouling in the first days, and the first days was remarkably higher than that the period of Anammox bacteria dominated the microbial community in the reactor.
     (3) During the hydraulic shock text, the HRT of MBR was gradually shorted from 14 to 7.9 h, the NH4+-N and NO2--N removal efficiencies were stable at about 75% and 85%, respectively. Anammox activities were good when temperature was 30-35℃and pH was 7-8. The optimal ascend velocity of flow is 1.8-2.3 m/h in this study. Consideration of nitrogen removal, operating costs, the simplicity of operation, the optimal operation mode was that the reactor was operated in cycles of 6 h , fed for 0.55 h, mixed for 5 h, settlement for 0.3 h, draw for 0.15 h.
     (4) The photographs showed that the seeding sludge were mostly rod bacteria while Anammox sludge was mostly spherical and rod in shape. Based on terminal restriction fragment length polymorphism (T-RFLP) analysis, the composition and relative populations of the microbial community changed obviously in association with the enrich of Anammmox. The enrichment of Anammox strains such as planctomyce, pirellula, gemmata, pseudomonas were found after enrichment in MBR.
引文
1.郑平,徐向阳,胡宝兰.新型生物脱氮技术[M].北京:科学出版社,2004.5-10.
    2. Broda E. Two kinds lithotrophs missing in nature. Z Allg Microbial,1977,17:491-493.
    3. Mulder A,Van de Graaf A A,Robertson L A,et al.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Eeol,1995,16:177-183.
    4. Van de Graaf A A,Mulde A,Jetten MSM,et al.Anaerobic oxidation of ammonium is a biologically mediated Process.Appi Environ Microbiol,1995,61:1246-1251.
    5. Strous M,Heijnen J J,Kuenen J G,et a1.The sequencing batch reactor as a powerful tool to study very slowly growing microorganism.Appl Microbiol Biotechnol.1998,50:589-596.
    6. Van de Graaf A A ,De Bruijn P,Robertson L A,et al.Metabolic pathway of anaerobic ammonium oxidation on the basis of N215 studies in a fluidized bed reactor. Microbioloy,1997,143:2415-2421.
    7. Tsushima I,Ogasawara Y,Kindaichi T,et al.Development of high-rate anaerobic ammonium oxidizing (anammox) biofilm reactors. Water research.2007,41:1623–1634.
    8. van der Star W R L,Abma W R,Blommers D,et al.Start-up of reactors for anoxic ammonium oxidation:Experiences from the first full-scale Anammox reactor in Rotterdam.Water Research, 2006,41:4149-4163.
    9. Niftrik L,Jetten M S M,Strous M,et al.Combined structural and chemical analysis of the anammoxosome:A membrane-bounded intracytoplasmic compartment in anammox bacteria Structural Biology,2008,161:401–410
    10. Kuenen J G,Jetten M S M,Strous M,et al.The anammoxosome:an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol Lett. 2004:233,7–13.
    11. Strous M,Kuenen J G,Jetten M.Key physiological parameters of anaerobic ammonium oxidation. Appl Microbiol Biotechnol.1999,65:3248–3250.
    12. Egli K,Fanger U,Alvarez P J J.Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium rich leachate.Archives of Microbiology.2001,175: 198-207.
    13. Isaka K,Sumino T,Tsuneda S.High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions.Bioscience and bioengineering.2007,5:486–490.
    14. Moreno G,Cruz A,Buitr′on G.Influence of S0/X0 ratio on anaerobic activity tests. Water Sci Technol. 1999,40(8):9–15.
    15. Dapena-Mora A,Fern′andez I,CamposJ L,et al.Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production.Enzyme and Microbial Technology.2007,40 :859–865.
    16.金仁村,郑平,胡宝兰,陈旭良.污泥颗粒化快速启动厌氧氨氧化反应器的探讨[J].环境污染与防治,2006,28(10):772-775.
    17.赵志宏,廖德祥,李小明,曾光明,杨麒.厌氧氨氧化微生物颗粒化及其脱氮性能的研究[J].环境科学. 2007, 28(4):800-804.
    18.赵宗升,赵云霞,陈智均,等.厌氧氨氧化菌接种污泥的选择培养过程研究[J].环境工程学报.2007,1(2):39-42.
    19.林丰妹,郑平.气提式内循环硝化反应器运行性能的研究[J].生物工程学报.2002,18(4):492-496.
    20.刘寅,杜兵,司亚安,等.厌氧氨氧化菌的培养与推流式反应器氨厌氧工艺[J].环境科学.2005 ,26(2):137-141.
    21.沈平,左剑恶,杨洋.接种不同污泥的厌氧氨氧化反应器的启动与运行[J].中国沼气,2004,22 (3):3-7.
    22. Trigo C,Campos J L,Garrido J M,et al.Start-up of the Anammox process in a membrane bioreactor. Biotechnology,2006,126:475–487.
    23.金仁村,郑平,胡宝兰,等.厌氧氨氧化反应器的稳定性及其模糊评价[J].华南理工大学学报:自然科学版,2006 ,34 (9):121-127.
    24.胡宝兰,陈旭良,郑平.两种Anammox反应器性能的对比研究[J].环境科学学报.2005,25 (4):545-551.
    25. Dapena-Mora A,CamposJ L,Mosquera-Corral A,et al.Stability of the ANAMMOX process in a gas-liftreactor and a SBR.Biotechnology,2004,110:159-170.
    26. Strous M,Van Gerven E,Zheng P,et al.Ammonium removal from coucentrated waste streams with the anaerobic ammonium oxidation(Anammox)process in different reactor configurations.Wat Res,1997,31: 1955-1962.
    27. Aysen Y,Yesim C Y,John L,et al.Nitrogen cycling in the offshore waters of the Black Sea .Estuarine Coastal and Shelf Science,2007,74: 493-514.
    28. Kartal B,Koleva M,Arsov R,et al.Adaptation of a freshwater anammox population to high salinity wastewater.Biotechnology.2006,126:546–553.
    29. Chamchoi N,Nitisoravut S,Schmidt J E.Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresource Technology.2008,99: 3331–3336.
    30. Tage D,Stefan H,Robert C A,et al.Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments.Geochimica et Cosmochimica Acta,2005,69(8):2057–2065.
    31. Rysgaard S,Glud RN,Risgaard-Petersen N,et al.Denitrification and Anammox activity in Arctic marine sediments.Limnol Oceanogr,2004,49 (5):1493–1502.
    32. Van de Graaf A A,De Bruijn P,Robertson L A,etal.Autotrophic growth of anaerobic ammonium oxidizing micro-organisms in a fluidized bed reactor.Microbiol,1996,142: 2187-2196.
    33. Liu W T,Marsh T L,Cheng H,et al.Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.Appl Environ Microbiol, 1997,63(11): 4516-4522.
    34. Horz H P,Yimga M T,Liesack W.Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA mmoX mxaF and 16S rRNA and ribosomal DNA including pmoA based terminal restriction fragment length polymorphism profiling.Appl Environ Microbiol,2001,67(9): 4177-4185.
    35. Strou M,Kuenen J G,John A F,et al.The Anammox case-A new experimental manifesto for microbiological eco-physiology.Antonie van Leeuwenhoek,2002,81:693–702.
    36. Fernández I,Vázquez-Padín J R,Mosquera-Corral A.Biofilm and granular systems to improveAnammox biomass retention. Biochemical Engineering,2008,42,308–313.
    37. Toh S K,Webb R I,Ashbolt N J.Enrichment of autotrophic anaerobic ammonium oxidizing consortia from various wastewaters. Microbial Ecology,2002,43:154-167.
    38. Chamchoi N,Nitisoravut S.Anammox enrichment from different conventional sludges.Chemosphere, 2007,66: 2225–2232.
    39. Kazuhiro M,Tatsuo S,Yasuhiro T,et al.Quantification of anammox populations enriched in an immobilized microbial consortium with low levels of ammonium nitrogen and at low temperature.Appl Microbiol Biotechnol,2007,76:1173–1179.
    40.杨洋,左剑恶,全哲学.UASB反应器中厌氧氨氧化污泥的种群分析.中国环境科学2006,26(1):52-56.
    41. Liu S,Yang F G,Xue Y,et al.Evaluation of oxygen adaptation and identification of functional bacteria composition for Anammox consortium in non-woven biological rotating contactor.Bioresource Technology,2008,99:8273–8279.
    42.任宏洋,张代钧,丛丽影.厌氧氨氧化反应器启动及污泥产率系数测定[J].重庆大学学报,2008,31(1): 88-92.
    43.雒怀庆.厌氧氨氧化生物脱氮技术基础及其细菌群落的研究[D].广州:华南理工大学,2003: 66-72:86-112.
    44. Meng F G,Yang F L,Shi B Q,et al.A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities.Sep Purif Technol.2008,59:91–100.
    45. Cirpus I E,Strous M.,Kuenen G J,et al. A new soluble 10 kDa monoheme cytochrome c-552 from the anammox bacterium Candidatus“Kuenenia stuttgartiensis”.FEMS Microbiol Lett,2005, 252:273–278.
    46.唐崇俭,郑平,张蕾.厌氧氨氧化反应器的接种污泥和启动策略[J].中国给水排水,2008, 24(14):15-20.
    47. Liao D X,Li X M,Yang Q,et al. Enrichment and granulation of Anammox biomass started up with methanogenic granular sludge.World Microbiol Biotechnol.2007,23:1015–1020.
    48. Dapena-Mora A,Arrojo B,Campos J L,et al.Improvement of the settling properties of Anammox sludge in an SBR. Chem Technol Biotechnol,2004,79(12):1412–1420.
    49. Wang J L, Kang J.The characteristics of anaerobic ammonium oxidation (ANAMMOX)by granular sludge from an EGSB reactor.Process Biochemistry. 2005,40:1973-1978.
    50.张胜华.水处理微生物学.北京:化学工业出版[M],2005:139-141.
    51.张少辉.厌氧氨氧化工艺研究.浙江:浙江大学[D],2004:57-60.
    52. Arrojo B,Mosquera-Corra A l,Campos J L,et al.Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR),Biotechnology,2006,123:453–463.
    53. Liu Y,Tay J H.The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge.Water Res,2002,36,1653–1665.
    54.郑平.厌氧氨生物氧化技术研究.浙江:浙江大学[D],1999:68-79.
    55. Wang T,Zhang H M,Yang F L,et al. Start-up of the Anammox process from the conventional activated sludge in a membrane bioreactor.Bioresource Technology,2009,100:2501–2506.
    56. Lukow T,Dunfield P F,Liesack W.Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic andnon-transgenic potato plants.FEMS Microbiol Ecol, 2000,32:241–247.
    57. Dollhopf S L,Hashsham S A,Tiedje J.Interpreting 16S rDNA T-RFLP data:application of self-organizing maps and principal component analysis to describe community dynamics and convergence. Microb Ecol,2001,42:495–505.
    58. Kent A D,Smith D J,Benson B J,et al.Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities.Appl Enviro Microbiol,2003, 69:6776-6768.
    59. Schlegel H G.著,陆卫平,周德庆,郭杰炎,等译.普通微生物学[M].上海:复旦大学出版社,1990,1
    60.胡宝兰.厌氧氨氧化微生物学研究.浙江:浙江大学[D],2005,98-120.
    61. Yang Q X,Jia Z J,Liu R Y,et al.Molecular diversity and Anammox activity of novel planctomycete-like bacteria in the wastewater treatment system of a full-scale alcohol manufacturing plant[J]. Process Biochemistry, 2007, 42: 180–187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700