自养脱氮工艺处理低碳氮比高氨氮废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于传统硝化反硝化脱氮工艺来说,当C/N<3时,如无外加有机碳源,反硝化过程就无法有效地进行,因此传统的生物脱氮工艺己不能满足低碳氮比高氨氮废水的处理要求,寻求一种适合低碳氮比高氨氮废水的处理工艺势在必行。自养脱氮工艺是通过自养微生物的代谢实现氮从NH4+-N至N2的转化,整个过程不消耗有机碳源,尤其适合处理高氨氮、低碳氮比的废水。目前关于自养脱氮工艺的研究大多是在不含有机碳源的无机废水条件下进行的,而实际废水中几乎不存在不含有机碳源的情况,采用自养脱氮系统在有机碳源环境下的运行适应性和稳定性还需要进一步研究。本研究采用自养脱氮工艺处理低碳氮比高氨氮废水,在前期建立的以不含有机碳配水为反应基质的单级自养脱氮系统的基础上,改用低C/N废水为反应基质,对反应器进行二次启动,研究了DO、C/N对系统脱氮性能的影响;进一步对系统内悬浮污泥和生物膜的微生物活性与微生物群落结构进行了研究。
     采用A、B两个生物膜SBR反应器启动低碳氮比高氨氮废水的自养脱氮系统,两个反应器进水水质和制条件完全一致。启动过程中逐步提高进水COD和NH4+-N浓度对污泥进行驯化,启动结束时COD和NH4+-N浓度分别为240~255mg/L、290~300mg/L,启动过程历经91d。启动初期(1~24d)控制系统pH为7.8~8.5、水温为30±2℃、DO为2.0~2.5(曝气)/0.2~0.4(停曝气)、曝/停比为2h:2h,系统TN去除率仅为60%左右,且出水NO3--N浓度较高。从第25d开始,降低系统DO浓度至1.4~1.7(曝气)/0.2~0.4(停曝气),其他条件不变,运行一段时间后,系统脱氮性能大幅提高,出水NO3--N浓度也大大降低,到启动结束时A、B两个系统的TN去除率均达到90%以上,理论推得,随着进水C/N的升高,系统内自养脱氮脱氮途径对TN去除率的贡献约由90%下降到60%,传统硝化反硝化途径对TN去除率的贡献约由10%上升到40%,自养脱氮仍占主导地位。
     稳定运行期的B系统内悬浮污泥的亚硝化活性、硝化活性、反硝化活性、厌氧氨氧化活性分别为0.07gN/gVSS·d、0.043gN/gVSS·d、0.017gN/gVSS·d、0.015gN/gVSS·d;生物膜的亚硝化活性、硝化活性、反硝化活性、厌氧氨氧化活性分别为0.112gN/gVSS·d、0.077gN/gVSS·d、0.15gN/gVSS·d、0.19gN/gVSS·d。生物膜各活性均高于悬浮污泥,尤其是反硝化和厌氧氨氧化活性,分别为悬浮污泥的9倍和13倍。表明生物膜更有利于形成好氧菌和厌氧菌共存的微环境,悬浮污泥和生物膜同时表现出了一定的反硝化活性,证明系统内也存在传统硝化反硝化脱氮途径。
     采用PCR-DGGE技术,对A、B系统以及前期以无机废水为反应基质的C系统内的悬浮污泥和生物膜的总微生物群落结构以及功能菌亚硝化菌(AOB)和厌氧氨氧化菌(ANAMMOX)的群落结构进行测定。结果表明:生物膜与悬浮污泥中的AOB群落结构差别不大,但生物膜样品的总微生物和ANAMMOX的种类和数量远多于悬浮污泥。与以无机废水为反应基质的系统内各微生物群落结构相比,加入有机碳源后,除AOB的群落结构没有发生较大改变外,系统内总微生物群落结构较无机系统更为复杂,其丰富度值有所提高,ANAMMOX的种类也发生了较大改变。
     本文的研究结果以期为自养脱氮工艺应用于实际工程提供参考和理论依据。
For traditional nitrification and denitrification denitrification, Denitrification process cannot effectively when C/N<3 if no plus organic carbon sources,So, The traditional biological denitrification cannot satisfy the requirements of low carbon and high ammonia nitrogen wastewater treatment, Looking for a suitable for low carbon and high ammonia nitrogen wastewater treatment process is imperative. Autotrophic nitrogen removal process could realize the conversion of ammonium to denitrogen gas by autotrophic bacteria, and it particularly suitable to treat high Ammonium and low C/N ratio wastewaters. At present, Most researches of autotrophic nitrogen removal process on condition of inorganicwastewater,but it is not exist in practical wastewater,It need to research the adaptability and stability of autotrophic nitrogen removal process on condition of organic wastes. This study adopts autotrophic nitrogen removal process treatment low carbon and high ammonia nitrogen wastewater, On the basis of one-stage completely autotrophic nitrogen removal process which is established by our group early, With low C/N wastewater as matrix.This paper studied DO&C/N impact on the performance of system denitrification during the start-up process system;it also studied microbial activity and microbial community structure of the different sludge forms in the system during stable operation stage. Main conclusions are as follows:
     Using two biofilm SBR reactor (A and B) to startup autotrophic nitrogen systems for low C/N ratio and high ammonia nitrogen wastewater,Inflow water quality and exercise macro-control condition of the two reactor are conformity.Domestication the sludge by gradually improve the concentration of COD and NH4+-N in the process of start, Eventually COD and NH4+-N concentration of inflow water are 240~255mg/L and 245~295mg/L, start-up process go through 91d. control condition of initial stage(1~24d) are pH:7.8~8.5,water temperature:30±2℃,DO:2.0~2.5(aeration)/0.2~0.4(not aeration), TN removing rate is 60% in system,and NO3--N concentration of effluent water is high. At 25d, Reduce the concentration of DO to 1.4~1.7(aeration)/0.2~0.4(not aeration), Other conditions remain unchanged, nitrogen removal in system is greatly improved and NO3--N concentration is reduced after a period of time, TN removal rate reached more than 90% in both of A and B system at the startup end. With the increase of the inlet C/N ,Theoretical calculation that autotrophic nitrogen removal pathway by 90% decline to 60% and traditional nitrification and denitrification pathway by 10% to 40%, autotrophic nitrogen removal pathway is still dominant.
     Taking the suspended sludge and biofilm in autotrophic nitrogen removal system as the research objects, Results showed that nitrosification activity, nitrification activity, ANAMMOX activity and denitrification activity of suspended sludge were 0.07gN/g VSS·d,.043gN/gVSS·d,0.17gN/gVSS·d and 0.015gN/gVSS·d, nitrosification activity, nitrification activity, ANAMMOX activity and denitrification activity of biofilm were0.112gN/ gVSS·d,077g N/gVSS·d, 0.15gN/g VSS·d and 0.19gN/gVSS·d, Microbial activity of biofilm is higher than suspended sludge, especially ANAMMOX activity and denitrification activity, which for the suspended sludge were 9 times and 13 times. which indicate that biofilm is more beneficial for the formation of aerobic-anaerobic micro-environment to make nitrification and ANAMMOX reaction perform well, and biofilm played dominant parts in autotrophic nitrogen removal system. Both of the suspended sludge and biofilm showing the denitrification activity and ANAMMOX activity,which proof that traditional nitrification and denitrification pathway and autotrophic nitrogen removal pathway existence in the system at the same time.
     Using PCR-DGGE to study total microbial community structure and functional bacteria community structure (AOB and ANAMMOX) in A,B and C system, Experimental results that AOB community structure of suspended sludge and biofilm are basically the same,but The number and variety of the total microbial community structure and ANAMMOX community structure in biofilm are more than in suspended sludge, Compared with microbial community structure of the system which With inorganic wastewater as matrix, After joining the organic carbon source, Besides the community structure of AOB not changed,the total microbial community is more complex, The variety of ANAMMOX have great change.
     The research results of this topic could provide reference and theoretical basis for autotrophic nitrogen removal process applied to practical engineering.
引文
[1]张占平.水体中氨氮污染来源及其控制—富营养化的思考[J].内蒙古环境科学,2008,20(5):71~72.
    [2] Kuba T, van LoosdrechtM C M, Heijnen J J . Phos phorus and nitrogen removal with minimal COD requirement by integrati on of denitrifying dephos phatati on and nitrificati in sludge system[J]. Water Research, 1996,30 (7):1702~1710.
    [3]马富国,张树军,彭永臻等.部分亚硝化-厌氧氨氧化耦合工艺处理污泥脱水液[J].中国环境科学.2009,29(2):219~224.
    [4]董良飞, David Salzgeber, Hansruedi Siegrist等.单级自养脱氮SBR处理消化污泥上清液研究[J].中国给水排水,2008,24(13):96~99.
    [5]郝瑞霞,赵继成,马宁等.城市污水处理厂泥区废液水质特性分析[J].中国给水排水,2008,24(23):75~84.
    [6] Young-Ho Ahn,Hoon-Chang Choi.Autotrophic nitrogen removal from sludge digester liquids in up?ow sludge bed reactor with external aeration[J].Process Biochemistry, 2006, 41(2):1945~1950.
    [7]毕学军,王振江,于澎学等.各污泥处理单元废液的磷含量控制问题[J].中国给水排水,2003,19(1): 98~99 .
    [8]胡勤海,金明亮,方士等.吹脱-SBR-附混凝法处理垃圾填埋场渗滤液[J].中国给水排水,2000,22(3):21~24.
    [9]储华新.化肥生产中氨氮废水的生化处理[J].化肥设计,2006,44(4):57~59.
    [10]盛贻林,王方园.味精废水的预处理试验研究[J].环境保护科学, 2007,33(1):28~29.
    [11]方建章,黄少斌.生化法处理煤气废水[J].环境污染与防治,1999,21(4):10~12.
    [12]王欢,裴伟征,李旭东等.低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮环[J].环境科学,2009,30(3):815~821.
    [13]孙振世,柯强,陈英旭.SBR生物脱氮机理及其影响因素[J].中国沼气,2001,19(2):16~19.
    [14] Priyali S, Dentel S K. Simultaneous nitrification-denitrification in a fluidized bed reactor [J]. Water Science and Technology, 1998. 38(1):247~254.
    [15]胡林林,王建龙,文湘华,等.2003.低溶解氧条件下生物脱氮研究中的新现象[J].应用与环境生物学报, 9(4):444~447.
    [16] Li Y Z, He Y L, Ohandja D J, Ji J, et al. Simultaneous nitrification-denitrification achieved by an innovative internal-loop airlift MBR: Comparative Study [J]. Bioresource Technology, 2008.99(13):5867~5872.
    [17]杨麒,李小明,曾光明等.同步硝化反硝化的形成机理影响因素[J].环境科学与技术,2004,27(3):102~104.
    [18] Bruce E.Rittmann,WayneE.Langeland. Simultancous denitrification with nitrification in single- channel oxidation ditches[J]. Journal WPCF,1985,57(4):300~308.
    [19] Klangduen Pochana, Jürg Keller. Study of factors affecting simultaneous nitgrification and denitrification(SND) [J]. Water Science and Technology,1999,39(6):61~68.
    [20] Klangduen Pochana, Jürg Keller and Paul Lant. Model development for simultaneous nitrification and denitrification[J]. Water Science and Technology,1999,39(1):235~243.
    [21] Kuenen J G, Robertson L A. Combined nitrification denitrification process. [J]. FEMS Microbial Reviews,1994,15(2):109~117.
    [22] Jetten S M, Strous M, The anaerobic oxidation of ammonium[J]. FEMS Microbial Reviews. 1998,22(5):421~437.
    [23] Elisabeth V Munch,Paul Lant, Jurg Keller. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J]. Water Research, 1996,30(2):277~284.
    [24] Ma Tao, Zhao Chaocheng, Peng Yongzhen, et al. Study on Stabilization of Shortcut Nitrification-Denitrification in Domestic Water Treatment Applying Real-time Control Strategy [J]. Progress In Environmental Science and Technology.2009,18(2): 1623~1628.
    [25] Voets J P. Removal of nitrogen from highly nitrogenous wastewater [J]. JWPCF, 1975,47(4):394~389.
    [26] Sutherson S,Ganczarcayk J J.Inhibition of nitrite oxidation during nitrification:some observation [J]. Water Research,1986,21(7):257~266.
    [27] Mulder J W, Rogier van Kempen. N-removal by SHARON[A]. IAWQ conference[C] ,1997. 30~ 31.
    [28] Hellinga C.Schellen.A J C.et.The SHARON Process:an Innovative Method for Nitrogen Removal from Ammonium-tichwaste-water[J]. Water Science and Technology, 1988,37(9): 135~142.
    [29]朱霞,赵宗升.废水生物脱氮新工艺研究进展[J].山西建筑,2008,34(1):185~186.
    [30] Anke Hippen, Karl-Heinz Rosenwinkel, Goetz Baumgarten , et al . Aerobic deammonification: a new ex perience in the t reatment of wastewater [J] . Water Science and Technology,1997 ,35 (10) :111~120
    [31] Helmer C, Kunst S. Nitrogen loss in a nitrifying biofilm sustem [J]. Water Science and Technology,1999,39 (7):13~21.
    [32] Olav sliekers A , Derwort N , Campos Gomez J L , et al .Completely autot rophic nit rogen removal over nit rite in one single reactor [J] . Water Reseach ,2002 ,36 :2475~2482.
    [33] Olav sliekers A , Third K A , Abma W. CANON and Aanammox in a gas - lift reactor [J ] . FEMS Microbiology Letter ,2003 ,218 :339~344.
    [34] Laanbroek H J, Bodelier P L E, Gerards S. Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations [J]. Arch Microbiol, 1994.161: 156~162.
    [35] Bernet N, Peng D C, Delgenes J P, et al. Nitrification at low oxygen concentration in biofilm reactor [J]. Journal of Environment and Engineering, 2001,127 (3): 266~271.
    [36] Garrido J M, Van Bnethum WAJ, Vna Loosdreeht MCM,Heijnen J J. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension eractor[J]. Biotechnology and Bioengineering.1997,53(2):168~178.
    [37] Pollice A,Tnadoi V,Lestingi C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate[J].Water Research,2002,36(10):2541~2546.
    [38] Hao X D, Heijnen J J, Van Loosdrecht. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process [J]. Water Research, 2002(a).36(19):4839~4849.
    [39] Hyungseok Yoo. Nitorgen removal from synthetic wastewater by simultnaeous nitrification and denitrification via nitrite in intemrittently-aerated reaetor[J].Water Research,1999, 33(l):146~149.
    [40] Antoniou P, Hamilton J, Koopman B, et al. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria [J].Water Research, 1990. 24 (1): 97~101.
    [41] Gupta S K, Sharma R. Biological oxidation of high strength nitrogenous wastewater [J].Water Research, 1996.30 (3): 593~600.
    [42] Strous M, Van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge [J]. Applied & Environmental Microbiology, 1997a.63, 2446~2448.
    [43] Fux C,Boehler M, Huber P,Burmier L. Biological treatment of amrnonium-rich wastewater by partial nirtitation and subsequent anaerobic ammonium oxidation(an -mrnox)in a pilot plnat[J].Jounral of Biotechnology,2002,99(3):295~306.
    [44]杨洋,左剑恶,沈平等.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学,2006,27(4):691~695.
    [45]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,17(2):193~198.
    [46] Dalsgaard T, Thamdrup B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments [J]. Applied & Environmental Microbiology, 2002. 68(8): 3802~3808.
    [47] Rysgaard S, Glud R N, Risgaard-Petersen N, et al. Denitrification and Anammox activity in Arctic marine sediments [J]. Limnology & Oceanography, 2004. 49(5):1493~1502.
    [48]胡勇有,梁辉强,朱静平等.有机碳源环境下的厌氧氨氧化批式实验[J].华南理工大学学报(自然科学版),2007,35(6):116~119.
    [49]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报, 2001. 17(2):193~197.
    [50] Egli K, Bosshard F, Werlen C, et al. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon[J]. Microbiology Ecology, 2003. 45 (4):419~432.
    [51] BIPIN KP,FUTABAK,YUKOS,eta l.Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors[J]. Bioresource Technology,2007(98):2201~2206.
    [52]郝晓地, van Loosdrecht M. 2003.荷兰鹿特丹DOKJAVEN污水处理厂介绍[J].给水排水,29(10):19~25.
    [53] U van Dongen ,M S M J et ten , M van Loosdrecht .TheSHARON2ANAMMOX process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001 (144):153~160.
    [54] Sliekers A.O., Strous M., Jetten M.S.M. Completely autotrophic ammonia removal over nitrite in one reactor[J] . Water Research,2002, 36:2475~2482.
    [55] Third K.A., Sliekers A.O., Jetten M.S.M. The CANON system(completely autotrophic nitrogen-removal over nitrite) under ammonium limitation limitation:Interaction and competition between three groups of bacteria[J] .Syst.Appl.Microbiol, 2001, 24: 588~596.
    [56] Hao XD , Heijnen JJ , van Loosdrecht MCM. Sensitivity analysis of a biofilm model describing a one-stage completely autot rophic nit rogen removal (CANON) process[J]. Biotechol Bioeng ,2002 ,77 (3) : 266~277.
    [57]郭劲松,罗本福,方芳.生物脱氮研究的新进展—全程自养脱氮工艺[J].环境科学与技术. 2005,28 (6):102~105.
    [58]王翠.不同C/N比低浓度污水的A/O/N脱氮研究[D].华中科技大学硕士学位论文,2006.
    [59]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002:376~382.
    [60]杨虹,李道棠,朱章玉.全程自养脱氮新技术处理污泥脱水液的研究[J].环境科学,2001,25(2):105~107.
    [61] J.R. V′azquez-Pad′?n, M.J. Pozo, M. Jarpa, M. Treatment of anaerobic sludge digester ef?uents by the CANON process in an air pulsing SBR[J]. Journal of Hazardous Materials, 2008,11(11):1~30.
    [62] Taichi Yamamoto,Keita Takaki,Toichiro Koyama. Novel Partial Nitritation Treatment forAnaerobic Digestion Liquor of Swine Wastewater Using Swim-Bed Technology[J]. The Society for Biotechnology, 2006. 102(6): 497~503.
    [63]杨国红.SBBR单级自养脱氮工艺性能与氮转化途径研究[D].重庆大学博士学位论文,2009.
    [64]国家环保局编.水和废水监测分析方法[M] . (第四版).北京:中国环境科学出版社, 2002.
    [65] Shammas N.K. Interactions of temperature, pH and biomass on the nitrification process[J]. JWPCF. 1986; (58):52~59.
    [66] Strous M,Kuenen J G,Jetten M S M. Key Physiology of Anaerobic Ammonium Oxidation[J]. Appl. Enviro. Microbiol.1999.65(7):3248~3250.
    [67] Fdz-polanco F.et al. Temperature effect on nitrifying bacteria activity in biofilers: activation and free ammonia inhibition[J]. Water Science and Technology, 1994, 30(11), 121~130.
    [68] Nielsen M, Bollmann A, Sliekers O, et al. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor [J]. FEMS Microbiology Ecology, 2005 , 51(2) : 247~256.
    [69]包涵,张卫东,宫正,薛源.膜曝气生物膜反应器运行单级自养脱氮工艺功能型菌群特性研究[J].环境科学,2009.30(5):1461~1467.
    [70]方芳,杨国红,郭劲松,秦宇.DO和曝停比对单级自养脱氮工艺影响试验研究[J].环境科学,2007,28(9) :1975~1980.
    [71] Helmer C, Tromm C, Hippen A, et al. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems [J]. Water Science and Technology, 2001,43(1): 311~320.
    [72]廖德祥,李小明,曾光明,杨麒,杨国靖.单级SBR生物膜中全程自养脱氮的研究[J].中国环境科学, 2005,25(2):222~225.
    [73] J.M.Garrido,Influence of Dissolved Oxygen Concentration on Nitrite Accumulation in aBiofilm Airlift Suspension Reactor[J].Biotechnology and Bioengineering.1997,53(2): 1479~1488.
    [74] Philips S,Laanbroek HJ ,Verstraete W.Origin ,causes and effects of increased intrite concentrations in aquatic environments[J]. Environmental Science &BioP Technology, 2002 ,1: 141~152.
    [75] Mosquera C orral A , G onzàlez F , Campos J L , et al . Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds [J] . Process Biochemistry, 2005 ,40 : 3109~3188.
    [76] JettenM SM, Str ousM,Van de Pas2 Schoonen K T, et al .The anaerobic oxidati on of ammonium [ J ]. FEMS Microbi ol Rev, 1999, 22 (5) : 421~437 .
    [77]郝晓地,曹秀芹,曹亚莉等.厌氧氨氧化细菌在生物膜系统中起主要脱氮作用的模拟预测[J].环境科学学报, 2004, 24 (6) : 1007~1013 .
    [78]高守有,彭永臻,王淑莹等.Orbal氧化沟生物脱氮的中试研究[J].中国给水排水,2005,8(21):5~9.
    [79]张小玲.生物膜内亚硝化过程及反硝化特性研究[D].西安建筑科技大学,硕士论文,2001,5.
    [80] Julián Carrera,Teresa Vicent,Javier Lafuente.Effect of influent COD/N ratio on biological nitrogen removal(BNR)from high-strength ammonium industrial wastewater[J].Process Biochemistry,2004,3(9):2035~2041.
    [81]叶建锋,薄国柱.低碳源条件下厌氧氨氧化影响因素的研究[J].水处理技术,2006,32(9):30~33.
    [82] Zhang DJ . The integration ofmethanogenesiswith denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor . Journal of Environment Science, 2003, 15 (3) : 423~432.
    [83] Jianlong W, J ing K . The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGS B reactor . Process Biochemical , 2005, 40: 1973~1978.
    [84]吕永涛,陈祯,吴红亚等.有机物浓度对厌氧氨氧化脱氮性能影响试验研究[J].环境工程学报,2009,3(7):1189~1192.
    [85]朱静平,胡勇有,闫佳.有机碳源条件下厌氧氨氧化ASBR反应器中的主要反应[J ] .环境科学,2006,27 ( 7 ) :1353~1357.
    [86] Toh S K,Ashbolt N J . Adap tati on of anaer obic ammonium oxidising cons ortium t o synthetic coke-ovens wastewater[J]. Appl Microbiol Biotechnol, 2002, 59 (2 /3) : 344~52 .
    [87]周少奇.生物脱氮的生化反应计量学关系式[J].华南理工大学学报(自然科学版),1998,26(3):124~126.
    [88]黄翠芳,孙宝盛,张海丰.膜生物反应器与传统活性污泥工艺的比较研究[J].工业用水与废水,2007,38(2):9~11.
    [89]欧阳科,刘俊新.膜生物反应器与传统活性污泥反应器内生物群落特征[J].环境科学,2009,30(2):499~503.
    [90]高孟春,杨敏,佘宗莲.金春姬.膜-生物反应器与活性污泥工艺处理氨氮废水的微生物特性比较[J].中国海洋大学学报,2005,35(9):830~834.
    [91] Innerebner G, Insam H, Franke-whittle I H, et al. Idetification of anammox bacteria in a full-scale deammonification plant making use of anaerobic ammonia exudation [J]. Systematic and Applied Microbiology, 2007. 30(5):408~412.
    [92]刘薇.液中膜生物反应器全程自养脱氮试验研究[D].中国农业大学硕士学位论文,2005.
    [93]欧阳科,刘俊新.不排泥运行条件下膜生物反应器污泥活性的研究[J].给水排水, 2008,34(7):46~51.
    [94]王颖,缺氧/好氧生物膜反应器处理高浓度含碳和氮工业废水的研究[D].北京:北京工业大学硕士学位论文, 2003.
    [95]张小玲,王志盈,彭党聪,等.低溶解氧下活性污泥法的短程硝化研究[J].中国给水排水, 2003,19(7):1~4.
    [96] Ahn Y H , Hwang I S , Min K S. ANAMMOX and partial denit ritation in anaerobic nit rogen removal f rom piggery waste[J ] . Water Science and Technology, 2004 , 49 (526) : 145~153.
    [97]胡宝兰,郑平,冯孝善.新型生物脱氮技术的研究[J].应用与环境生物学报, 1999.S1:68-73.
    [98] Turk O. Mavinic D S. Maintaining nitrite buildup in a system acclimated to free ammonia [J]. Water Research, 1989. 23: 1383~1388.
    [99] Dapena-Mora A, Campos J L, Mosquera-Corral A, et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR [J]. Biotechnology, 2004. 110(2):159~170.
    [100]秦宇.SBBR单级自养脱氮工艺及其微生态特性研究[D].重庆大学博士学位论文,2009.
    [101] Ying Yanling , LüZhenmei ,Min Hang , et al . Dynamic changes of microbial community diversity in a photohydrogen producing reactor monitored by PCR-DGGE[J] . Journal of Environmental Sciences ,2008 ,20 (9) :1118~1125.
    [102] Liu X , Ren N ,Yuan Y. Performance of a periodic anaerobic baffled reactor fed on Chinese taditional medicine indust rial wastewater [J]. Bioresource Technology ,2009 ,100 (1): 104~110.
    [103]肖勇,杨朝晖,曾光明,等. PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器( SBBR)中的细菌多样性[J] .环境科学,2007 ,28 (5) :1095~1101.
    [104] Muyzer G, E.C. de Waal, A.G. Uitterlinden, Profiling of complex microbial populations by denat coding for 16S rRNA[J]. Appl. Environ. Microbiol., 1993,59(3): 695-700.
    [105]张丹,徐慧,刘耀平等.OLAND生物脱氮系统运行及其硝化菌群的分子生物学检测.应用与环境生物学报,2003,9(5):530~533.
    [106] Gillian D, Speksnijder A G C L, Zwart G J M, et al. Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca, Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR amplified gene fragment coding for 16S rDNA [J]. Appl Environm Microbiol, 1998.64(9):3464~3472.
    [107] Murray A E, Hollibaugh J T, Orrego C. Phylogenetic composition of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments [J]. Appl Environm Microbiol, 1996.62(7):2676~2680.
    [108]李探微,彭永臻,韦苏.气提式循环反应器生物膜与游离活性污泥处理污水的特点[J].环境保护科学, 2000, 100(28):10~13.
    [109]姜峰,常红,梁瑞等.生物膜SBR与活性污泥SBR的比较研究[J] .兰州理工大学学报, 2006,32(4):70~73.
    [110]宫正,刘思彤,杨凤林等.启动炭管膜曝气生物膜反应器实现全程自养脱氮[J].环境科学, 2008.29(5):1221-1226.
    [111] Wyffels S,Boeckx P, Pynaert K, et al . Nitrogen removal from sludge reject water by a two-stage oxygen-limited autot rophicnit rification denit rification process[J].Water Science and Technology,2004, 49 (526) : 57~64.
    [113] Strous M,FuerstJ A,Kramer E.H.M.etal,.Missing lithotroph identified as new planetomycete[J]. Nature,1999,400(6743):446~449.
    [114] Sehmid M.C.Maas B.Dapena A.etal.Biomarkers for in situ deteetion of anaerobie ammonium-oxidizing(anammox) baeteria[J]. Applie dand Environmental Microbiology, 2005, 71(4):1677~1684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700